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Outlines

Previously – lots of stuff. CNN-s, graphical models, energy
minimization, algorithms, modelling issues ...

Today:
– Clustering and superpixels
– Normalized cuts
– Continuous approaches

Next class:
statistical inference and learning for structured models
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Clustering

The pixel inside a segment should be “similar”

→ partition the set of pixels into subsets so that the pixels
inside one subset are similar → clustering

Example: colour segmentation. Dissimilarity: colour difference
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Clustering

The task: partition a set of objects into “meaningful” subsets
(clusters). The objects in a subset should be “similar”

Notations:
Set of clusters K
Set of indices i = {1, 2, . . . , |I|}
Feature vectors xi, i ∈ I

Partitioning:

C = (I1, I2, . . . , I|K|), Ik ∩ Ik′ = ∅ for k 6= k′,
⋃
k

Ik = I
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Clustering

Let xi ∈ Rn and each cluster has a “representative” yk ∈ Rn

The task reads ∑
k

∑
i∈Ik

||xi − yk||2 → min
C,y

An alternative: the clustering C is a mapping C : I → K that
assigns a cluster number to each i ∈ I

∑
i

||xi − yC(i)||2 → min
y,C∑

i

min
k
||xi − yk||2 → min

y
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Clustering, K-Means algorithm

Initialize centers randomly,
Repeat until convergence:

1. Classify:

C(i) = k = arg min
k′

||xi − yk′ ||2 ⇒ i ∈ Ik

2. Update centers:

yk = arg min
y

∑
i∈Ik

||xi − y||2 = 1
|Ik|

∑
i∈Ik

xi

– The task is NP
– converges to a local optimum depending on initialization
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An application – superpixel segmentation
Object are pixels. Features are RGBXY-values.
→ Those pixels belong to the same cluster that are close to
each other both spatially and in in the RGB-space

SLIC: http://ivrg.epfl.ch/research/superpixels
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Cuts

The Idea: the image is a graph
G = (V,E), pixels are nodes V ,
edges E link neighbouring nodes.
Edges are weighted,
the weights wuv depend on:
– how similar are the corresponding
patches (coloring, features etc.);

– how far are the corresponding pixels
from each other.

A cut is a (minimal) subset C of edges so, that the “remaining
graph” is not connected.
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Cuts

Alternatively, it can be seen as a partitioning of the node set
V into two subsets A and B, i.e. A ∪B = V , A ∩B = ∅

The quality of a cut is the sum of all its edge weights:

cut(A,B) =
∑

u∈A,v∈B
wuv

The task is to fing the cut of optimal quality.
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Normalized Cut [Shi, Malik, 2000]

Cuts do not account for the cardinality of the partitions –
they are “not ballanced”

Association:

assoc(A, V ) =
∑

u∈A,t∈V
wut

1) Normalized Cut:

NCut(A,B) = cut(A,B)
assoc(A, V ) + cut(A,B)

assoc(B, V )

2) Total normalized association:

Nassoc(A,B) = assoc(A,A)
assoc(A, V ) + assoc(B,B)

assoc(B, V )
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Normalized Cut

Interesting – it is the same:

Ncut(A,B) = cut(A,B)
assoc(A, V ) + cut(A,B)

assoc(B, V ) =

= assoc(A, V )− assoc(A,A)
assoc(A, V ) + assoc(B, V )− assoc(B,B)

assoc(B, V ) =

= 2−Nassoc(A,B)→ min
(A,B)

⇒ Nassoc(A,B)→ max
(A,B)
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Normalized Cut – Solution
Let xi ∈ {+1,−1} be an indicator variable:
+1 means “belongs to A”, −1 – “belongs to B”

Ncut(A,B) =
∑
xi<0,xj>0−wijxixj∑

xi>0 d(i) +
∑
xi>0,xj<0−wijxixj∑

xi<0 d(i)

with di = ∑
j wij.

. . .

min
x
Ncut(x) = min

y

yT (D −W )y
yTDy

with yi ∈ {1,−b}, yTD1 = 0
D is a diagonal matrix of di-s,
W is the matrix of wij-s,
b is also defined by wij-s

CV II: Other Segmentation Approaches 8.07.2016 12



Normalized Cut – Solution

min
y

yT (D −W )y
yTDy

, s.t. yi ∈ {1,−b}, yTD1 = 0

This expression is known as so-called Rayleigh quotient. For
the relaxed problem, i.e. yi ∈ [1,−b], the solution is obtained
by the one of generalized eigenvalue system

(D −W )y = λDy

“... Thus, the second smallest eigenvector of the generalized
eigensystem is the real valued solution to our normalized cut
problem.”

λ-s – Graph Spectrum – spectral analysis
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Normalized Cut
“... the eigenvector with the third smallest eigenvalue is the
real valued solution that optimally subpartitions the first two
parts. In fact, this line of argument can be extended to show
that one can subdivide the existing graphs, each time using
the eigenvector with the next smallest eigenvalue.”

“Soft Segmentation”
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Active Contours (Snakes) [Kass, Witkin, Terzopoulos, 1988]

There is a parametric definition of a contour:

v(s) =
(
x(s), y(s)

)
, s ∈ [0, 1]

(may be closed ot not)

Its energy is:

E(v) =
∫ 1

0

[
Eint

(
v(s)

)
+Eimage

(
v(s)

)
+Econ

(
v(s)

)]
ds→ min

v
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Active Contours

Intrinsic energie:

Eint
(
v(s)

)
=
(
α(s)|vs(s)|2 + β(s)|vss(s)|2

)
/2

vs und vss are the first and the second derivatives respectively
α(s) and β(s) are position-specific weights – form model
For example, β(s∗) = 0 means “A corner at s∗ is possible”

Eimage
(
v(s)

)
is a data term

– how the image at
(
x(s), y(s)

)
should look like

i.e. intensity I
(
x(s), y(s)

)
, edge

∣∣∣∇I(x(s), y(s)
)∣∣∣2

Econ
(
v(s)

)
are “additional forces” (e.g. user inputs)
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Active Contours

Andrew Blake and Michael Isard: Active Contours
http://www.robots.ox.ac.uk/~contours/
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Continuous vs. discrete

Continuous

+ Low-level properties –
length, curvature etc.

+ Shape modeling
− Statistical interpretation,

learning

Discrete

k = 1
k = 2
. . .

k = kmax

r r r r

r

r

e e
e

e

e

− Metrication artifacts
+ Spatial relations
+ Multi-label problems
− Locality
+ Sound statistical

interpretation
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Mumford-Shah Funktional [Mumford, Shah, 1989]

Motivation:
The observed 2D-Image is a
projection of a 3D-scene

Light rays meet objects
→ image function inside the
projection of an object is smooth

Object borders lead to discontinuities
of the image function

⇒ image function is piece-wise smooth
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Mumford-Shah Funktional

R ⊂ R2 – image domain, Γ – discontinuities
g : R→ R – image function to be approximated
f : R→ R – piece-wise smooth approximation

E(f,Γ) = µ2
∫
R

(f−g)2dxdy+
∫
R−Γ
‖∇f‖2dxdy+ν|Γ| → min

f,Γ

The approximation f should
– coincide with the image function as good as possible
– be smooth
– have as less discontinuities as possible

Note: without any of the requirements (energy terms) the
problem is trivial
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Mumford-Shah Funktional
← examples for different µ and ν
Topology problem !!!
This is not a segmentation in a
common sense – i.e. not a
partitioning of the image into
disjunct areas
The found edges are not necessarily
segment borders
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Mumford-Shah Funktional
Special case: piece-wise constant approximation –
“Cartoon-Limit”

E(f,Γ) = µ2
∫
R

(f−g)2dxdy+
∫
R−Γ
‖∇f‖2dxdy+ν|Γ| → min

f,Γ

for µ, ν → 0 converges to

E(a,Γ) =
∑
i

∫
Ri

(g − ai)2dxdy + ν|Γ| → min
a,Γ

The solution wrt. ai for fixed partitioning Γ is:

ai = 1
|Ri|

∫
Ri

g dxdy

– the image is partitioned into regions i,
– the colouring inside each region is a constant
Now the topology is correct: edges can not arbitrary end since
it is obviously not optimal (due to |Γ|)
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Chan-Vese Modell [Chan, Vese, 2001]

The number of segments in the Cartoon-Limit is not
pre-defined – it is estimated as well

Even more specialized model: two regions only:

E(c1, c2, C) = µ · Length(C) + ν · Area(C)

+λ1

∫
inside(C)

|u0(x, y)− c1|2dxdy

+λ2

∫
outside(C)

|u0(x, y)− c2|2dxdy

Can be efficiently solved by Level Set method
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Level Set Method [Osher, Sethian, 1988 ?]

A contour is represented as the zero-level
of a Levelset function φ : R2 → R

C = {(x, y) ∈ Ω : φ(x, y) = 0},
inside(C) = {(x, y) ∈ Ω : φ(x, y) > 0},
outside(C) = {(x, y) ∈ Ω : φ(x, y) < 0}

Consider two auxiliary function:
Heaviside function (“step”)

H(z) =
{

1 if z > 0
0 otherwise

and Dirac function (“delta”)

δ(z) = ∇H(z)
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Level Set Method
The constituents of the Chan-Vese Modell can be written as

Length(C) =
∫

Ω
δ
(
φ(x, y)

)
dxdy,

Area(C) =
∫

Ω
H
(
φ(x, y)

)
dxdy∫

inside(C)
bla(x, y)dxdy =

∫
Ω
H
(
φ(x, y)

)
bla(x, y)dxdy

etc.

In short: integrals over areas are replaced by the corresponding
integrals over the whole image domain Ω

Other contour characteristics like e.g. curvature can also be
expressed relatively easy using these notations
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Calculus of Variations

Putting all together:

E(φ) =
∫

Ω

[
λ1 ·H(φ(x, y)) · ||u0(x, y)− c1||2+

+λ2 · (1−H(φ(x, y))) · ||u0(x, y)− c2||2 +

+µ · δ(φ(x, y))
]
dxdy → min

φ

Note: E is a mapping, argument of which is a function !!!

What is
∂E(φ)
∂φ

?
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Calculus of Variations
A function y : Ω→ R can be understood as a “vector” in a
space of infinite dimension, i.e. y ∈ R∞.
Correspondingly, an energy functional E(y) is E : R∞ → R.

Gâteaux derivative along a “direction” h : Ω→ R:

∂E(y)
∂y

∣∣∣∣∣
h

= lim
ε→0

E(y + εh)− E(y)
ε

= dE(y + εh)
dε

∣∣∣∣∣
ε=0
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Calculus of Variations, “standard” derivation chain
1. We have an expression for E(f, . . .) =

∫
Ω . . .

2. Write down the Gâteaux derivatives dE(f+εh)
dε

∣∣∣
ε=0

3. Require dE(f+εh)
dε

∣∣∣
ε=0

= 0 for all h ∈ R∞ – also known as
Euler-Lagrange equations

4. Consider them not for all h ∈ R∞ but only for the “basis”
(delta-functions)

h(x, y) =
{

1 if (x, y) = (x∗, y∗)
0 otherwise for all (x∗, y∗) ∈ Ω

5. Consider them only for integer positions (x∗, y∗) ∈ Z2

6. Replace the necessary stuff (gradients, divergences,
Laplacians etc.) by finite differences
→ obtain “usual” gradient (finite number of variables)
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Level Set Method

Approach:

Note: H and δ are not differentiable
→ replace them by something differentiable (sigmoid)

Then:
– either

- set Gateau derivatives to zero
→ obtain Euler-Lagrange equations

- discretize → obtain a system of equations
- resolve it by some iterative methods

– or
- Gateau derivatives → gragient
- gradient descent
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Level Set Method, Summary
Topology is correct,
it may change during the contour evaluation

Less sensitive to the initialization as compared
to the Active Contours

Many things can be expressed in a convinient
and unified manner

Generalization to the more than two segments
needs effort

Statistic interpretation is in question
⇒ problems to learn unknown parameters
(typical for almost all continuous approaches)
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Take home messages

There is a lot of very different segmentation approaches over
the (Computer Vision) world.

Sometimes, simple ones are preferable (like e.g. clustering or
active contours).

Each one has its application area (remember on the
comparison “Continuous vs. discrete”).

Next class:
statistical inference and learning for structured models
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