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What are inverse problems?

Forward process:
Many parameters x may map to same observation y
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What are inverse problems?

The inverse problem is ambiguous and ill-posed
Regularization can guide towards most likely solution

But actually we want conditional probabilities
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What are Invertible Neural Networks?

Bijective mapping between two domains

Both directions efficient to compute

Tractable Jacobian determinant

Input and output must have equal dimensions
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Invertible Neural Networks: i-ResNet [6]
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Standard ResNet block, but with contractive residual

Inverse via fixed-point iteration:

Approximate Jacobian determinant via power series:



Invertible Neural Networks: Neural ODE [7]
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From discrete, block-wise transformations to 
continuous flow field traversed via ODE solver



Invertible Neural Networks: Various other options

Orthogonal weight matrices [8]

Invertible convolutions in Fourier space [9]

Autoregressive models: asymmetric cost

Can be alleviated [10]

Autoencoder, VAE: no Jacobian determinant
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Invertible Neural Networks: Coupling Blocks
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Invertible Neural Networks: Coupling Blocks

Important: permute variables between blocks!
Permutations Q are easy to invert

Can be relaxed to (learned) orthogonal matrices

Split and permute channels for images/embeddings
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Chain coupling blocks (C) together like residual blocks



Invertible Neural Networks: Affine Coupling Blocks

Following “Real NVP” architecture [4]:

Transformation T consists of scaling s and translation t
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Invertible Neural Networks: Affine Coupling Blocks

Following “Real NVP” architecture [4]:

Transformation T consists of scaling s and translation t
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Problem: many-to-one mapping is not bijective
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Fix: augment observations with latent variables

x ↔ [y, z] is a one-to-one mapping, equal dimensions
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Learning augmented mapping with an INN [1]

Jointly learn forward process and encoding of
the lost information, get the inverse for free!

[5]
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Learning augmented mapping with an INN [1]
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To sample p(x|y), fix y and run z samples through the net
→ correct posterior if all losses perfectly converged

Data set must represent true x distribution

Training must ensure y and z are independent



Toy example: Inverse kinematics

2D arm with four degrees of freedom and prior p(x)
x is the pose, y is the end point
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Toy example: Inverse kinematics

Complex enough to not be trivial, but still allow 
ground truth and easy visualization
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Toy example: Inverse kinematics

Inverse Problem:
Distribution over all poses ending in a given point
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ABC baseline (rejection sampling)



Toy example: Inverse kinematics

Inverse Problem:
Distribution over all poses ending in a given point

20

ABC baseline (rejection sampling)
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Toy example: Inverse kinematics
ABC baseline (rejection sampling) Invertible Neural Network
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Real example: Multispectral tissue imaging

Image from DKFZ Heidelberg,
arrows indicate clips

22



Real example: Multispectral tissue imaging

Inverse Problem: Distribution over tissue properties 
given the multispectral measurement

(Simulated) forward process:

Tissue
properties

Subsurface 
scattering

Emitted light 
spectrum

Camera 
response
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Real example: Multispectral tissue imaging

oxygen saturation blood density scattering anisotropy layer thickness
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Real example: Multispectral tissue imaging

oxygen saturation blood density scattering anisotropy layer thickness
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A different perspective
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Problems: dimensions need to add up, forward process 
can’t be ambiguous, MMD doesn’t scale very well

So far, we augmented y to make bijection fit



A different perspective

Learn relation between x and z conditioned on y
x ↔ z is a one-to-one mapping with equal dimensions
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Can be learned with conditional INN [3]
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Can be learned with conditional INN [3]

Observation y selects from a family of networks
that represent maps between p(x|y) and p(z)
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Conditional Coupling Block

Condition c as additional input to coupling network

Feature extractor can be shared between all blocks
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Higher dimensional example: Colorization

Inverse Problem:

Distribution over 
realistic color 
images x that look 
like y in grayscale
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Higher dimensional example: Colorization

Four convolutional “stacks”, one fully connected

Random orthogonal matrices for mixing up channels
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CC = conditional coupling block



Higher dimensional example: Colorization

Four convolutional “stacks”, one fully connected

Random orthogonal matrices for mixing up channels

Multiscale via Haar Wavelet downsampling:
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CC = conditional coupling block



Meaningful latent space
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Meaningful latent space
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Comparing architectures [2]
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Comparing architectures [2]
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Missing here:
FFJORD, Parallel Wavenet, 

i-ConvNet, improved i-ResNet, 
classical Bayesian approaches



Comparing architectures: kinematics example
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Comparing architectures: kinematics example
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Comparing architectures: ballistics example

40

ABC baseline (rejection sampling)

2D point mass thrown with gravity and drag
x is starting point, angle and force; y is impact location



Comparing architectures: ballistics example
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ABC baseline (rejection sampling)

Inverse problem:
Distribution over all throws that hit a given location



Comparing architectures: ballistics example
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Comparing architectures: ballistics example
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Summary

INNs let us sample directly from the conditional 
posterior p(x|y) of an inverse problem

Two setups:
Direct (INN), with loss on forward process
Bayesian (cINN), where y is a conditional input

Several architectures; coupling blocks work well for us

Public code available under github.com/VLL-HD/FrEIA
(also contains many other invertible building blocks)
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