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What are inverse problems?

Forward process:
Many parameters X may map to same observation y
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What are inverse problems?

The inverse problem is ambiguous and ill-posed
Regularization can guide towards most likely solution
But actually we want conditional probabilities
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IWhat are Invertible Neural Networks?

X Invertible Neural Net Yy

Bijective mapping between two domains
Both directions efficient to compute
Tractable Jacobian determinant

Input and output must have equal dimensions
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Invertible Neural Networks: i-ResNet [6]

Standard ResNet block, but with contractive residual
X1 = Xt + gp, (X¢)

Inverse via fixed-point iteration:

Approximate Jacobian determinant via power series:

det ([ -+ Jget(xt)) ‘ ~ En:(—l)kﬂtr (Jgel,;(xﬂk)
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IInvertibIe Neural Networks: Neural ODE [7]

From discrete, block-wise transformations to

continuous flow field traversed via ODE solver
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Invertible Neural Networks: Various other options

Orthogonal weight matrices [8]
Invertible convolutions in Fourier space [9]

Autoregressive models: asymmetric cost
Can be alleviated [10]

Autoencoder, VAE: no Jacobian determinant
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Invertible Neural Networks: Coupling Blocks

uq V1
split concatenate
U9 Vo
Vi
concatenate split
Vo
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Invertible Neural Networks: Coupling Blocks

Chain coupling blocks (C) together like residual blocks
X<—> 4—»@4—' 4—»@4—» e o o 4-»@4_» Qy

Important: permute variables between blocks!
Permutations Q are easy to invert
Can be relaxed to (learned) orthogonal matrices

Split and permute channels for images/embeddings
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Invertible Neural Networks: Affine Coupling Blocks

uj Vi
split concatenate
Uy © e + amP
Vi =10

Vo = Uy © exp(s(ul)) + t(uy)

Following “Real NVP” architecture [4]:
Transformation T consists of scaling s and translation t
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Invertible Neural Networks: Affine Coupling Blocks

U Vi
concatenate split

U9 Vo

u; = Vy

uy = (va — t(uy)) @ exp(s(ul))

Following “Real NVP” architecture [4]:
Transformation T consists of scaling s and translation t
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Problem: many-to-one mapping is not bijective

Visual Learning
Lab Heidelberg

13



. Fix: augment observations with latent variables

X < [y, z] is a one-to-one mapping, equal dimensions
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Learning augmented mapping with an INN [1]

/) Y

> L2 to match

y training data
Invertible Neural Net i
MMD to

’ match N (0,1)

MMD 1:0<
match p(x)

I N

\ —J /

MMD(u,v’) = E; j[r(us, uj)] — 2 - E; j[x(u;, u})] + E; j[k(u}, u’)] [5]

)
2

with multiquadratic kernel k(u,u’) = (1 4+ H u—hu’

Jointly learn forward process and encoding of
the lost information, get the inverse for free!
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Learning augmented mapping with an INN [1]

g

MMD tO<
match p(x)

)

Invertible Neural Net

\

I N

\ L2 to match
training data

\ MMD to
match N (0,1)

To sample p(x|y), fix y and run z samples through the net
— correct posterior if all losses perfectly converged

Data set must represent true x distribution

Training must ensure y and z are independent
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Toy example: Inverse kinematics

2D arm with four degrees of freedom and prior p(x)
X is the pose, y is the end point
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Toy example: Inverse kinematics

Complex enough to not be trivial, but still allow
ground truth and easy visualization
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Toy example: Inverse kinematics

ABC baseline (rejection sampling)

Inverse Problem:
Distribution over all poses ending in a given point

¥\7isual Leaming
Lab Heidelberg

19



Toy example: Inverse kinematics

ABC baseline (rejection sampling)

Inverse Problem:
Distribution over all poses ending in a given point
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Toy example: Inverse kinematics

ABC baseline (rejection sampling) Invertible Neural Network
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‘Real example: Multispectral tissue imaging

Image from DKFZ Heidelberg,
arrows indicate clips
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‘Real example: Multispectral tissue imaging

(Simulated) forward process:

\

Perfusion

Oxygenation \/\/\

Thickness

Scattering

params. N T } T I ]
Tissue Subsurface Emitted light Camera

properties scattering spectrum response

Inverse Problem: Distribution over tissue properties
given the multispectral measurement
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‘Real example: Multispectral tissue imaging
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Real example: Multispectral tissue imaging
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A different perspective

So far, we augmented y to make bijection fit

Problems: dimensions need to add up, forward process
can’t be ambiguous, MMD doesn’t scale very well
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A different perspective

Learn relation between x and z conditioned ony
X <> Z is a one-to-one mapping with equal dimensions
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Can be learned with conditional INN [3]

Y )

SR Y
maximum
X Conditional INN 7 | » likelihood
loss (NLL)

. —_J /
go(x | y) = p(z) - |det Jy|y s »|, p(z) =N(0,1)

L(x,y) =—log (go(x]y))

1
=3 -z° — log |det Jy |y ., 4
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Can be learned with conditional INN [3]

S

X

—

|
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Conditional INN

QQ(X ‘ Y) :p(Z) ’ }det Jx|y +—>z’>

L(x,y) =—log (go(x]y))

1

)

Z

—/

/

p(Z) — N(Ov 1)

=3 -z° — log |det Jy |y ., 4

maximum
> likelihood
loss (NLL)

Observation y selects from a family of networks
that represent maps between p(x|y) and p(z)
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‘Conditional Coupling Block

C
feature
extractor

coupling
network

Vi

split concatenate

Condition ¢ as additional input to coupling network
Feature extractor can be shared between all blocks
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Higher dimensional example: Colorization

Inverse Problem:

Distribution over
realistic color
images X that look
like y in grayscale
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Higher dimensional example: Colorization

Ill

Four convolutional “stacks”, one fully connected

Random orthogonal matrices for mixing up channels

Visual Learnin
Lab Heidelberg 32



Higher dimensional example: Colorization

Ill

Four convolutional “stacks”, one fully connected

Random orthogonal matrices for mixing up channels

Multiscale via Haar Wavelet downsampling:

o3 b ) average horizontal vertical diagonal 4 xclix.d
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‘Meaningful latent space

A 4 Visual Learnin
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‘Meaningful latent space

New condition

Outputs
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‘Comparing architectures (2]

L2 to match

Y | ( training data
Invertible Neural Net _gliESs
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‘Comparing architectures [2]

(T

cycle loss

MMD
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Comparing architectures: kinematics example

Rejection Sampling INN Conditional INN IAF + Decoder MAF + Decoder

Invertible ResNet InvAuto Autoencoder Conditional VAE Mixture Density Network
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‘Comparing architectures: kinematics example
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‘Comparing architectures: ballistics example

ABC baseline (rejection sampling) &

2D point mass thrown with gravity and drag
X is starting point, angle and force; y is impact location
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‘Comparing architectures: ballistics example

ABC baseline (rejection sampling) &

Inverse problem:
Distribution over all throws that hit a given location
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‘Comparing architectures: ballistics example
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‘Comparing architectures: ballistics example
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Summary

INNs let us sample directly from the conditional
posterior p(x|y) of an inverse problem

Two setups:

Direct (INN), with loss on forward process
Bayesian (cINN), where y is a conditional input

Several architectures; coupling blocks work well for us

Public code available under github.com/VLL-HD/FrEIA
(also contains many other invertible building blocks)
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