Learning to Push the Limits of Efficient FFT-based Image Deconvolution

Motivation & Contributions

- \triangleright Non-blind deconvolution is an important component for removing image blur (e.g., due to camera shake)
- \triangleright High-quality methods are often slow and do not scale to large megapixel-sized images
- \triangleright Fast Fourier-based methods are lacking in restoration quality

Our Contributions

and Genetics

- L. Generalize discriminative FFT-based deconvolution by using regularization based on **convolutional neural networks**
- 2. Propose a **simple and effective boundary adjustment** to adhere to the circular convolution assumption imposed by FFTs
- 3. Obtain state-of-the-art results on two deconvolution benchmarks, even compared to much slower high-quality methods

FFT-based Image Deconvolution

UNIVERSITÄT HEIDELBERG

erc

¹Heidelberg University

FDN Fourier Deconvolution Network

We generalize Shrinkage Fields [1] by choosing $\mathbf{A} = \frac{1}{\langle \mathbf{v}, \langle \mathbf{v} \rangle} \cdot \phi_t^{\text{CNN}}(\mathbf{x}^t) \quad \text{and} \quad \mathbf{B} = \frac{1}{\langle \mathbf{v}, \langle \mathbf{v} \rangle} \cdot \sum_i |\mathcal{F}(\mathbf{f}_{it})|^2$ $\omega_t(\mathbf{x})$ $\omega_t(\Lambda)$

- ► More powerful: CNNs instead of pixel-wise shrinkage functions
- ▶ More flexible: Filters \mathbf{f}_{it} in $|\mathbf{B}|$ are decoupled from $|\mathbf{A}|$
- ▶ Noise generalization: Noise-adaptive regularization weight $\omega_t(\lambda)$ allows one model to be used for images with varying noise levels

 \triangleright CNNs modulate smoothness \rightarrow strong response at sharp edges

CNN output: Sharp image (left) and output of CNNs for the first 5 model stages.

 \triangleright More versatile noise-adaptive models trained for a range of noise levels perform similar to noise-specialized ones

Contact

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No 647769).

uschmidt@mpi-cbg.de

Code

Keras/TensorFlow https://goo.gl/7MvKZy

Jakob Kruse¹ Carsten Rother¹ Uwe Schmidt²

²MPI-CBG Dresden

New Boundary Adjustment Method

- ▷ Fourier-based deconvolution assumes **circular boundary** conditions, which is inaccurate for blurred natural images
- ▷ Common **edgetaper** operation is used for pre-processing to approximate missing boundary regions of blurred image \mathbf{y}

From analysis of [6,7], we propose to iteratively update the boundary region based on current deblurred image estimate \mathbf{x}^t :

$$\mathbf{C} = \mathbf{y} + \text{boundary}(\mathbf{k} \otimes \mathbf{x}^{t})$$

$$[\mathbf{x}^{t} \rightarrow \mathbf{x}^{t}] + [\mathbf{y}^{t} \rightarrow \mathbf{y}^{t}]$$

re-blurred boundary region

observed interior region

- ► Simple, yet effective: Consistently improves upon edgetaper to alleviate restoration artifacts and obtain better results
- ▶ Trivial to implement, works with all FFT-based methods
- ▶ Parameter-free, negligible computational cost per iteration

Comparison of our boundary adjustment and standard edgetaper (Levin *et al.* data [4]).

Example (Wiener filter): Our boundary adjustment can reduce strong restoration artifacts.

References

- [1] U. Schmidt and S. Roth. Shrinkage fields for effective image restoration. CVPR 2014.
- [2] U. Schmidt, C. Rother, S. Nowozin, J. Jancsary, and S. Roth. **Discriminative non-blind deblurring**. CVPR 2013.
- [3] D. Zoran and Y. Weiss. From learning models of natural image patches to whole image restoration. ICCV 2011. [4] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Understanding and evaluating blind deconvolution algorithms. CVPR 2009. [5] L. Sun, S. Cho, J. Wang, and J. Hays. Edge-based blur kernel estimation using patch priors. ICCP 2013.
- [6] M.S.C. Almeida and M.A.T. Figueiredo. Deconvolving images with unknown boundaries using the alternating direction method of multipliers. IEEE Trans. Image Process. 2013. [7] A. Matakos, S. Ramani, and J. A. Fessler. Accelerated edge-preserving image restoration without boundary artifacts. IEEE Trans. Image Process. 2013.

High Resolution Example

- \triangleright Less than 10s to restore 4 megapixel with unoptimized code on a GPU (much faster if image size is known in advance)
- \triangleright Other high-quality methods too slow for images of this size

Quantitative Results

- \triangleright Two common benchmarks for non-blind deconvolution
- > 10-stage FDN trained with noise range $\sigma_{\mathrm{train}} = 1.0 \dots 3.0$
- \blacktriangleright We outperform CSF and the much slower high-quality methods RTF and EPLL

