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Motivation & Contributions

B Non-blind deconvolution is an important component for
removing image blur (e. g., due to camera shake)

B High-quality methods are often slow and do not scale to
large megapixel-sized images

B Fast Fourier-based methods are lacking in restoration quality

Our Contributions

1. Generalize discriminative FFT-based deconvolution by using
regularization based on convolutional neural networks

2. Propose a simple and effective boundary adjustment to
adhere to the circular convolution assumption imposed by FFTs

3. Obtain state-of-the-art results on two deconvolution bench-
marks, even compared to much slower high-quality methods

FFT-based Image Deconvolution
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sharp image x blur kernel k η ∼ N (0, I/λ) observation y

Restoring x from y,k with regularization requires optimization
→ often by solving a sequence of linear equation systems (EqS)
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Circular convolution assumption allows direct solution of EqS:

xt+1 = F−1

(
F
(
k ~ y + A

)
|F(k)|2 + B

)
F : Fourier transform

B Wiener filter:

A = 0 and B = noise/image spectrum ratio

B Shrinkage Fields (CSF) [1]:

A =
βt
λ

∑
i
fit ~ ψit(fit ⊗ xt) and B =

βt
λ

∑
i
|F(fit)|2 ,

where fit are linear filters and ψit are 1D shrinkage functions

FDN Fourier Deconvolution Network
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We generalize Shrinkage Fields [1] by choosing

A =
1

ωt(λ)
· φcnnt (xt) and B =

1

ωt(λ)
·
∑

i
|F(fit)|2

I More powerful: CNNs instead of pixel-wise shrinkage functions

I More flexible: Filters fit in B are decoupled from A

I Noise generalization: Noise-adaptive regularization weight ωt(λ)
allows one model to be used for images with varying noise levels

B CNNs modulate smoothness → strong response at sharp edges
ω0(λ) = 261.6 ω1(λ) = 2036.9 ω2(λ) = 701.1 ω3(λ) = 1211.2 ω4(λ) = 968.4
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CNN output: Sharp image (left) and output of CNNs for the first 5 model stages.

B More versatile noise-adaptive models trained for a range of noise
levels perform similar to noise-specialized ones
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Levin et al. [4] test data, σ = 1.5

σtrain = 1.5
σtrain = 1.0 . . . 3.0
σtrain = 0.1 . . . 12.75
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Sun et al. [5] test data, σ = 2.55

σtrain = 2.55
σtrain = 1.0 . . . 3.0
σtrain = 0.1 . . . 12.75

Noise-specialized vs. noise-adaptive models: PSNRs after each model stage.

New Boundary Adjustment Method

B Fourier-based deconvolution assumes circular boundary
conditions, which is inaccurate for blurred natural images

B Common edgetaper operation is used for pre-processing to
approximate missing boundary regions of blurred image y

From analysis of [6,7], we propose to iteratively update the
boundary region based on current deblurred image estimate xt:

C = y + boundary(k⊗ xt)

re-blurred boundary region observed interior region C
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I Simple, yet effective: Consistently improves upon edgetaper to
alleviate restoration artifacts and obtain better results

I Trivial to implement, works with all FFT-based methods

I Parameter-free, negligible computational cost per iteration

32 33 34 35

Wiener

Wiener

CSF

CSF

FDN

FDN

edgetaper

Our BA

edgetaper

Our BA

edgetaper

Our BA

stage 1 stage 2 stage 3 stage 4 stage 5 stage 50

Comparison of our boundary adjustment and standard edgetaper (Levin et al. data [4]).
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Example (Wiener filter): Our boundary adjustment can reduce strong restoration artifacts.

High Resolution Example

observation

our result

observation (×4)

groundtruth (×4)

our result (×4)

B Less than 10s to restore 4 megapixel with unoptimized code
on a GPU (much faster if image size is known in advance)

B Other high-quality methods too slow for images of this size

Quantitative Results

B Two common
benchmarks
for non-blind
deconvolution

B 10-stage FDN trained
with noise range
σtrain = 1.0 . . . 3.0

I We outperform CSF
and the much slower
high-quality methods
RTF and EPLL

CSF [1] FDN EPLL [3] RTF [2]
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Sun et al. data [5] Levin et al. data [4]

Average PSNR in dB on two benchmarks.
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Code
Keras/TensorFlow

https://goo.gl/7MvKZy
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