
A Primal-Dual Solver for Large-Scale Tracking-by-Assignment

Stefan Haller1, Mangal Prakash2, Lisa Hutschenreiter1, Tobias Pietzsch2,

Carsten Rother1, Florian Jug2, Paul Swoboda3, Bogdan Savchynskyy1

1Visual Learning Lab, Heidelberg University, 2Center for Systems Biology, Dresden,
3Max-Planck-Institute for Informatics, Saarbrücken

Abstract

We propose a fast approximate solver for the
combinatorial problem known as tracking-by-
assignment, which we apply to cell tracking.
The latter plays a key role in discovery in
many life sciences, especially in cell and devel-
opmental biology. So far, in the most general
setting this problem was addressed by off-the-
shelf solvers like Gurobi, whose run time and
memory requirements rapidly grow with the
size of the input. In contrast, for our method
this growth is nearly linear.

Our contribution consists of a new (1) de-
composable compact representation of the
problem; (2) dual block-coordinate ascent
method for optimizing the decomposition-
based dual; and (3) primal heuristics that
reconstructs a feasible integer solution based
on the dual information. Compared to solv-
ing the problem with Gurobi, we observe an
up to 60 times speed-up, while reducing the
memory footprint significantly. We demon-
strate the efficacy of our method on real-world
tracking problems.

1 Introduction

The tracking problem consists of segmenting images
obtained over T time steps and matching the segments
in consecutive images to each other. In the case of cell
tracking each cell in the image t must be matched to the
corresponding cell (or a pair of cells in case of a division)
in the image t+ 1. Tracking problems are important
not only for bioimaging [4, 18, 36] but also for general
computer vision [23, 38]. Cell tracking represents one
of the hardest types of this problem, due to the exis-
tence of cell divisions and the indistinguishability of
individual cells.

Proceedings of the 23rdInternational Conference on Artificial
Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.
PMLR: Volume 108. Copyright 2020 by the author(s).

The most successfully deployed tracking models are typ-
ically formulated as integer linear programs (ILPs) and
are in general NP-hard. This makes the commonly used
ILP-based optimizations only amenable to moderately
sized tracking instances. With the advent of modern
microscopy techniques, this bottleneck became a lim-
iting factor for many real-world applications, leading
either to faulty tracking results, or impractical opti-
mization problems. In order to address run time and
scalability issues, we propose a new method to solve
tracking-by-assignment problems, whose iterations as
well as memory footprint scale nearly linearly with
the problem size. Its convergence speed enables us to
obtain high-quality approximate solutions in a fraction
of the time required by the best off-the-shelf solvers.

While this paper focuses on biologically motivated ob-
ject tracking, similar problems also arise in other vision
domains [11, 34, 37]. We believe that with appropriate
modifications our ideas can be applied there as well.

Related work. Any visual tracking contains two key
interrelated operations: segmentation and matching.
On one side, matching requires segmentation, on the
other side, the segmentation quality can often be sig-
nificantly improved by the matching results. There are
approaches addressing these two problems jointly [16],
however, the resulting algorithms are quite time con-
suming. Less expensive modeling techniques can be cat-
egorized into tracking-by-model-evolution and tracking-
by-assignment [15].

In tracking-by-model-evolution, objects are detected
in the first frame and a model of their properties,
e. g. shape and position, is obtained. This model is
then updated greedily for pairs of neighboring frames,
thereby tracking all detected objects. For sensible
results these methods typically require a high tempo-
ral resolution [15, 20]. Recently, neural networks for
tracking-by-model-evolution have been proposed that
jointly tackle segmentation and tracking and have the
ability to handle object divisions [1, 27]. They incor-
porate temporal information, e. g. by using LSTMs [1].
However, such network based approaches require vast
amounts of annotated training data, which is typically

A Primal-Dual Solver for Large-Scale Tracking-by-Assignment

not available for biomedical tracking problems.

By contrast, tracking-by-assignment first segments po-
tential object candidates in all time frames [13, 17, 20,
25, 29, 30]. There are two important cases: a single seg-
mentation hypothesis per object [20, 29] and multiple
ones [17, 30]. Multiple segmentation hypotheses may
correspond to different (typically overlapping) positions
of the same object, to parts of a single object looking
like separate ones, or to several objects close to each
other looking like a single one. Apart from better track-
ing quality, multiple segmentation approaches facilitate
user-driven proofreading of automated results [14, 17].

Existing optimization methods for tracking-by-
assignment fall into two categories: (i) local ap-
proaches that attempt to overcome scalability issues
by decomposing the overall tracking problem into
smaller sub-problems [3, 12, 39], and (ii) global ap-
proaches, treating the whole spatiotemporal problem
jointly [2, 10, 25, 26]. While the first type of method
scales better with the problem size, the second one
leads to better solutions. Among approaches of the
second type we distinguish the work [26], that couples
multiple min-cost-flow networks to handle divisions
and finds an approximate solution to the overall prob-
lem with an off-the-shelf LP solver. Another notable
contribution is the primal heuristics in [10], based on
sequentially computing shortest paths in an augmented
flow graph which accounts for object divisions. This
work generalizes the approach of [25] which utilizes the
Viterbi algorithm. However, these works do not han-
dle overlapping segmentation hypotheses. Additionally,
[10] and [25] do not provide any bounds on the qual-
ity of the proposed solutions. The work [2] employs
stochastic gradient descent to maximize a Lagrange
dual based on multiple min-cost-flow subproblems, and
obtains primal solutions by rounding. However, the
method does not allow for cell divisions.

After all, the most general models including both multi-
ple hypothesis and object divisions have been addressed
with off-the-shelf ILP solvers only [13, 14, 17, 30]. Build-
ing a scalable solver able to compete with, for example,
Gurobi in this case seems to be a non-trivial task, which
has not been addressed in the literature yet.

Contributions. We propose a new approximate op-
timization method for cell-tracking problems, which
favorably compares with Gurobi in terms of run time
and memory footprint, while delivering solutions of a
comparable quality. Our method is able to handle cell
divisions and multiple segmentation hypotheses. To-
gether with an approximate primal solution it provides
a lower bound on the optimum. This is achieved by op-
timizing the Lagrange dual problem constructed from a
new compact decomposition. To optimize the dual we
propose a specialized fast converging algorithm based
on the block-coordinate ascent principle. The approxi-

mate primal solution is obtained with a novel primal
heuristics based on conflict resolution and greedy elon-
gation of trajectories. While the dual solver simplifies
the objective function by reweighting its costs, the pri-
mal one reconstructs an integer solution based on these
costs. We empirically show advantages of our frame-
work on publicly available instances of the cell-tracking
challenge [36], on instances of developing flywing tis-
sue, and on an instance of nuclei tracking in developing
drosophila embryos. These datasets represent different
biological applications and exhibit diverse characteris-
tics. Therefore, we believe our method to be applicable
to a wide spectrum of cell-tracking problems.

The focus of our work is to improve the optimiza-
tion stage of a typical tracking-by-assignment pipeline,
therefore, we do not address modeling and segmen-
tation aspects of the problem here. We assume that
for each time step t ∈ {1, . . . , T} a set of segmenta-
tion hypotheses is available along with a set of possible
transitions and the corresponding costs.

Mathematical proofs and information about our code
and models can be found in the supplement.

2 Standard tracking as ILP

The standard modeling approach for tracking-by-
assignment is based on its problem (hyper-)graph rep-
resentation [13, 14, 20, 24, 29, 30], see Figure 1 (b). In
the following we omit the prefix hyper- and use the hat
superscript (as in V̂ or Ê) for the standard problem
graph to distinguish it from the graph we propose later.
Nodes V̂ of a problem graph Ĝ = (V̂, Ê) are associ-
ated with finite-valued variables, and edges Ê ⊆ 2V̂

correspond to the coupling constraints between the
respective nodes. Here, 2V̂ denotes the power set of V̂ .

Node set. For tracking-by-assignment the set of nodes
V̂ is divided into disjoint subsets V̂t corresponding to
each time step t ∈ {1, . . . , T}, i. e. V̂ =

⋃T
t=1 V̂

t. In
its turn, each subset V̂t is subdivided into a set V̂t

det

representing the segmentation hypothesis (detections)

at time step t, and a set V̂t
trans representing the possible

transitions (moves, divisions) from time step t to t+ 1.
We will write V̂det =

⋃T
t=1 V̂

t
det and V̂trans =

⋃T
t=1 V̂

t
trans

for the sets of all detection and transition nodes.

Each segmentation hypothesis as well as each transition
is associated with a binary variable, i. e. its value is in
the set {0, 1}. We will refer to the variable correspond-
ing to node v ∈ V̂ as xv, where xv ∈ {0, 1}. A variable
is said to be active if it assumes value 1.

Edge set. The set of edges Ê coupling the nodes is
divided into subsets Êt corresponding to each time
step t ∈ {1, . . . , T}, i. e. Ê =

⋃T
t=1 Ê

t. In turn, Êt =
Êtmove∪Ê

t
div∪Ê

t
conf , where Êtmove ⊆ V̂

t
det×V̂

t+1
det ×V̂

t
trans and

S. Haller, M. Prakash, L. Hutschenreiter, T. Pietzsch, C. Rother, F. Jug, P. Swoboda, B. Savchynskyy

t

t+ 1

V̂t
det V̂t

trans V̂t+1
det

t+ 1t

u1

u2

u3

v1

v2

v3

w1

w2

w3

w4

w5

.

t t+ 1

stan
d
ard

con
stru

ction

L
agran

ge
d
ecom

p
osition

conflict (overlapping
segmentations)

(u1, u2) ∈ Êconf

u1

w1

→v1 ∈ Êmove

u3

w5

⇒v2/v3 ∈ Êdiv

u1 ∈ V
t
det v1 ∈ V

t+1

det

u2 ∈ V
t
det v2 ∈ V

t+1

det

u3 ∈ V
t
det v3 ∈ V

t+1

det

c
∈
V

tco
n
f

u1→v1 ∈ Emove

u2
→

v1
∈
Emove

u2→
v2 ∈

Emove

u3
→
v2

∈
Em

ov
e

u3
⇒

v2/v
3

∈ Ediv

xu3,in xu3,out

xu3,det

θu3,out(u3→v2)

u1 c ∈ Econf

(a) oversegmentation (b) standard problem graph Ĝ (Sec. 2) (c) our compact decomposition graph G (Sec. 3)

Figure 1: Illustration of the standard model and our proposed problem decomposition. Each detection (segmenta-
tion hypothesis) in (a) is represented by a node in V̂det in the standard model (b). Possible transitions between
time steps are represented by a node in V̂trans. Hyper-edges Ê handle detection and transition coupling constraints.
Our Lagrange decomposition (c) represents each detection together with its incoming and outgoing transitions by
a single node in Vdet. Conflicting detections are represented by separate nodes in Vconf . Edges E correspond to
coupling constraints between nodes and refer to transitions (blue), divisions (green), and conflicts (red).

Êtdiv ⊆ V̂
t
det × (V̂t+1

det)2 × V̂t
trans are edges corresponding

to possible moves and divisions of the cells between
time steps t and t+ 1, and Êtconf ⊆ 2V̂

t
det are the edges

prohibiting the activation of conflicting (intersecting)
segmentation hypothesis at time step t. Note that for
each node in V̂t

trans there is exactly one incident edge.

Coupling constraints. Let (u, v, w) ∈ Êtmove be a
possible move from time step t to t + 1 connecting
nodes u ∈ V̂t

det and v ∈ V̂t
det via transition node w ∈

V̂t
trans. We write u

w
→v for such edges. Then the set of

corresponding coupling constraints is defined as

∀u
w
→v ∈ Êmove : xw ≤ xu ∧ xw ≤ xv , (1)

ensuring that if either of the hypothesis is deacti-
vated (xu = 0 or xv = 0), the move is deactivated
as well (xw = 0). Analogously, we denote possible
divisions (u, v, v′, w) ∈ Êtdiv by u

w
⇒v/v′, and obtain the

following coupling constraints for divisions:

∀u
w
⇒v/v′ ∈ Êdiv : xw≤xu ∧ xw≤xv ∧ xw≤xv′ . (2)

For any detection node v ∈ V̂det we denote by
în(v) the set of incoming transitions, i. e. în(v) :=

{w ∈ V̂trans | ∃u : u
w
→v ∈ Êmove or ∃u, v′ : u

w
⇒v/v′ ∈

Êdiv ∨ u
w
⇒v′/v ∈ Êdiv}. Likewise, for all u ∈ Vdet

we define ˆout(u) := {w ∈ V̂trans | ∃ v : u
w
→v ∈

Êmove or ∃ v, v′ : u
w
⇒v/v′ ∈ Êdiv} as the set of outgo-

ing transitions.

To guarantee that each hypothesis at time step t is
matched to at most one at time steps t+ 1 and t− 1,

uniqueness constraints are introduced as follows:

∀ v ∈ V̂det :
∑

w∈în(v)

xw ≤ 1 and
∑

w∈ôut(v)

xw ≤ 1 . (3)

Finally, conflicting segmentation hypothesis are con-
nected via similar constraints:

∀ c ∈ Êconf :
∑

v∈c

xv ≤ 1 . (4)

Objective function. Let X̂ ⊆ {0, 1}|V̂| be the set
of binary vectors x satisfying all coupling constraints
defined by (1)-(4). Each coordinate xv, v ∈ V̂, is as-
sociated with a cost θv ∈ R based on image data (for
segmentation hypothesis) and geometric priors (for
transitions). The goal of tracking is to find an assign-
ment x ∈ X̂ that minimizes the cost of the active binary
variables, i. e. which solves

min
x∈X̂
〈θ, x〉 , (5)

where θ = (θv)v∈V̂ . Problem (5) is the standard ILP
representation of the tracking problem. In this form it is
usually addressed (see e. g. [13, 14, 20, 24, 29, 30]) by off-
the-shelf solvers like Gurobi [9] or CPLEX [5]. However,
the run time and memory requirements of these solvers
rapidly grow with the size of the input. Moreover,
even solving an LP relaxation of the above problem,
i. e. considering a vector in [0, 1]|V̂| satisfying (1)-(4),
requires a significant time using standard solvers, as
they are based on simplex or interior point methods
with a super-linear iteration complexity. Note that first
order subgradient-based methods perform even slower
than the standard solvers [19].

A Primal-Dual Solver for Large-Scale Tracking-by-Assignment

3 Our decomposable representation

Efficiency of large-scale approximate optimization
methods heavily depends on the problem decompo-
sition used to build a dual problem. A good decompo-
sition should contain small number of easily tractable
subproblems. Consider a trivial decomposition of (5),
when every binary variable corresponds to a separate
subproblem. It would satisfy the tractability condition,
but the large number of subproblems would signifi-
cantly slow down the optimization. Therefore, below
we give an alternative representation of the problem (5),
which leads to a natural decomposition with a much
smaller number of easily tractable subproblems.

Lagrange decomposition idea. Assume we want
to minimize a function F (x) representable as F (x) =
F1(x) + F2(x). The Lagrange decomposition [6, 7,
8, 32] duplicates the variable x and introduces the
equality constraint x1 = x2, i. e. minx F (x) =
minx1,x2 : x1=x2

(

F1(x1) + F2(x2)
)

. Dualization of the
constraint x1 = x2 leads to the Lagrange dual problem,
which forms a lower bound for the original problem:

min
x

F (x) ≥ max
λ

min
x1,x2

(

F1(x1) + F2(x2) + 〈λ, x1 − x2〉
)

=max
λ

[

min
x1

(

F1(x1)+〈λ, x1〉
)

+min
x2

(

F2(x2)−〈λ, x2〉
)

]

. (6)

Tightness of the lower bound as well as the efficiency of
its maximization depend on the decomposition of F into
F1 and F2. Ideally, the minimization subproblems over
x1 and x2 are solvable in closed form, and the coupling
constraint x1 = x2 is only violated in a small subset
of coordinates of the subproblem minima. The dual
vector λ allows to reweight the functions associated
with the duplicated variables during optimization in
order to reduce violations of coupling constraints.

Decomposed graph. We will apply the Lagrange
decomposition idea to problem (5). To this end, we first
duplicate all binary variables and then regroup them.
Each group corresponds to a new graph node. This
leads to considerably less nodes. Although each node is
associated with a non-binary variable, its minimal value
can still be efficiently found. All coupling constraints
turn into simple equalities as in the general scheme (6).

Graph structure. Our graph G = (V, E), see Fig-
ure 1 (c), contains only two types of nodes: detection
and conflict nodes. The transition variables are du-
plicated (tripled for divisions) and their copies are
assigned to the corresponding detection nodes. Since
each detection corresponds to a large number of transi-
tions, this significantly decreases the graph size. The
detection variables are duplicated as well and their
copies are assigned to the detection and conflict nodes.
Below we give the formal definitions.

The set of graph nodes is defined as V = Vdet ∪ Vconf ,
where Vdet := V̂det and Vconf := Êconf , i. e. the detection

nodes and conflict edges in the standard model corre-
spond to detection and conflict nodes in our model. As
in the standard model, Vt

det and Vt
conf denote the nodes

at time step t ∈ {1, . . . , T}.

Each edge in the edge set E = Emove ∪ Ediv ∪ Econf corre-
sponds to either a transition or conflict. The transition
edges divide into Emove := Êmove, Emove ⊆ (Vdet)

2, cor-
responding to moves, and Ediv := Êdiv, Ediv ⊆ (Vdet)

3,
corresponding to divisions. As for the standard model,
we will denote an edge (u, v) ∈ Emove by u→v, and an
edge (u, v, w) ∈ Ediv by u⇒v/w.

Conflict edges (u, c), denoted by u c, are introduced
between any detection node u ∈ Vdet and conflict node
c ∈ Vconf as soon as û ∈ ĉ for the corresponding û ∈
V̂det and ĉ ∈ Êconf . Note, Econf ⊆ Vdet × Vconf . When
considering a conflict node c ∈ Vconf , we also use c to
refer to all detection nodes that are part of the conflict,
i. e. u ∈ c if and only if u c ∈ Econf . Furthermore, for
any u ∈ Vdet we define conf(u) := {u′ c ∈ Econf | u =
u′} as the set of all conflicts concerning u.

Detection variables. As noted above, nodes of the
graph G correspond to variables having more than two
states. These states are represented by binary vectors.

To define the state space of the detection variables we
first introduce the sets in(u) and out(u), correspond-
ing to în(û) and ˆout(û) in Ĝ. For any detection node
u′ ∈ Vdet we denote by in(u′) the set of all incom-
ing transitions, i. e. in(u′) := {u→v ∈ Emove | v =
u′} ∪ {u⇒v/w ∈ Ediv | v = u′ or w = u′}. Anal-
ogously, we define out(u′) := {u→v ∈ Emove | u =
u′} ∪ {u⇒v/w ∈ Ediv | u = u′} as the set of all outgo-
ing transitions.

Consider u ∈ Vdet. The set of states Xu, which models
whether the detection u is active, and if so, which
incoming and outgoing edge is active, is defined as

Xu=

xdet ∈ {0, 1}

xin ∈ {0, 1}
|in(u)|

xout ∈ {0, 1}
|out(u)|

∣

∣

∣

∣

∣

∣

〈1, xin〉 ≤ xdet,

〈1, xout〉 ≤ xdet

. (7)

The scalar products 〈1, xin〉 and 〈1, xout〉 express the
number of activated incoming and outgoing transitions.
Note that they can only be non-zero if the detection
is active, i. e. if xdet = 1. Below we use xin(e) for
any incoming edge e ∈ in(u) to refer to the value of
this edge in the current state. Analogously, we use
xout(e) for edges e ∈ out(u). Recalling the standard
model, for any w ∈ V̂trans associated with u

w
→v ∈ Êmove

(u
w
⇒v/v′ ∈ Êdiv) the binary variable xw is split into two

(three) variables, one belonging to out(u) and another
to in(v) (and in(v′)).

With each detection u ∈ Vdet we associate a cost vec-
tor θu = (θdet, θin, θout) consisting of the cost θdet ∈ R

for activating the detection, and costs θin ∈ R
|in(u)|

S. Haller, M. Prakash, L. Hutschenreiter, T. Pietzsch, C. Rother, F. Jug, P. Swoboda, B. Savchynskyy

and θout ∈ R
|out(u)| associated with the incoming and

outgoing edges. θdet = θû, where û ∈ V̂det is the corre-
sponding detection node in the standard model. θin and
θout are obtained by splitting the given transition costs
between incoming and outgoing variables, i. e. θin(e) =
1
|e|θŵ for all e ∈ in(u), and, analogously, θout(e) = 1

|e|θŵ
for all e ∈ out(u), where ŵ ∈ V̂trans is the transition
node corresponding to e in the standard model. So
each admissible state x = (xdet, xin, xout) ∈ Xu has a
linear cost 〈θu, x〉 = 〈θdet, xdet〉+ 〈θin, xin〉+ 〈θout, xout〉.

Conflict variables. Let c ∈ Vconf . The associated
set of states Xc, that models which of the conflicting
detections, if any, is active, can be written as

Xc =
{

x ∈ {0, 1}|c| | 〈1, x〉 ≤ 1
}

. (8)

For any detection node u ∈ c we write x(u) to refer to
the value of this detection in the current state. With c
we associate a cost vector θc ∈ R

|c|. These costs are
initially zero, but may change during optimization. So
each admissible state x ∈ Xc has a linear cost 〈θc, x〉.

Coupling constraints. The semantics of each single
move, division and detection activation is split between
the states of multiple nodes in our problem graph.
Consider a move u→v from detection node u to v. To
obtain a consistent solution, we require moves to be
consistent in u and v, i.e. xu,out(u→v) = xv,in(u→v)
for any feasible combination of states xu ∈ Xu, xv ∈ Xv.
Analogous considerations for divisions and conflicts
result in the following coupling constraints for G:

∀ e = u→v ∈ Emove : xu,out(e) = xv,in(e),

∀ e = u⇒v/w ∈ Ediv : xu,out(e) = xv,in(e),

∀ e = u⇒v/w ∈ Ediv : xu,out(e) = xw,in(e),

∀u c ∈ Econf : xu,det = xc(u) . (9)

The set of all state assignments satisfying all coupling
constraints can then be written as

X =
{(

{xv ∈ Xv}v∈Vdet , {xc ∈ Xc}c∈Vconf
) ∣

∣ (9)
}

.

Minimization problem. Our graph decomposition
naturally gives rise to the minimization problem

min
x∈X

[

E(θ, x) :=
∑

u∈Vdet

〈θu, xu〉+
∑

c∈Vconf

〈θc, xc〉

]

. (10)

The goal is to find an optimal state assignment that
satisfies all coupling constraints given costs θ.

Dualization of coupling constraints. Let us return
to the general idea of the Lagrange decomposition (6).
Assume F1(x) = 〈θ1, x〉. Then F1(x)− 〈λ, x〉 = 〈θ1 −
λ, x〉. Similarly, if F2(x) = 〈θ2, x〉, then F2(x)+〈λ, x〉 =
〈θ2 + λ, x〉. In other words, λ shifts the costs between
parts of the decomposed problem. Since the value of
the objective F (x) = 〈θ1−λ, x1〉+ 〈θ2+λ, x2〉 remains
the same for any value of λ if x1 = x2, this is also
referred to as a reparametrization of the problem.

Dualizing all coupling constraints (9) in problem (10)
results in the following reparametrized cost vectors:

Reparametrization. A reparametrization is a vec-
tor λ ∈ Λ := R

|Emove|+2|Ediv|+|Econf |. Its coordinates
will be indexed with edges of the graph G. That is,
λ(e) ∈ R is the dual variable corresponding to the con-
straint xu,in(e) = xv,out(e) if e = u→v ∈ Emove, and
xu,det = xc(u) if e = u c ∈ Econf . The only exception
are divisions, since two constraints must be dualized
for each e = u⇒v/w ∈ Ediv, namely xu,out(e) = xv,in(e)
and xu,out(e) = xw,in(e), cf. (9). The corresponding
dual variables are denoted as λv(e) and λw(e) respec-
tively. The reparametrized costs θλ are defined as

∀ c ∈ Vconf ∀u ∈ c : θλc (u) := θc(u) + λ(u c),

∀u ∈ Vdet : θλu,det := θu,det −
∑

e∈conf(u)

λ(e),

∀u ∈ Vdet ∀ e ∈ in(u) :

θλu,in(e) :=

{

θu,in(e) + λ(e), e ∈ Emove

θu,in(e) + λu(e), e ∈ Ediv
,

∀u ∈ Vdet ∀ e ∈ out(u) :

θλu,out(e) :=

θu,out(e)−λ(e), e ∈ Emove

θu,out(e)−
∑

v′∈{v,w}

λv(e), e=u⇒v/w∈Ediv .

Each element of λ shifts the cost between two copies of
variables in different subproblems coupled by an edge
in E . This shift does not influence the optimization
objective as long as the coupling constraints (9) hold:

Proposition 1. ∀x ∈ X , λ ∈ Λ: E(θ, x) = E(θλ, x).

Our dual is built similarly to the general scheme (6):

Proposition 2. Dualizing all coupling constraints (9)
in the objective (10) yields the Lagrange dual problem
maxλ∈Λ D(λ), where

D(λ) :=
∑

u∈Vdet

min
xu∈Xu

〈θλu, xu〉+
∑

c∈Vconf

min
xc∈Xc

〈θλc , xc〉 . (11)

Obviously, D(λ) is concave and piecewise linear,
i. e. non-smooth. By construction, maxλ∈Λ D(λ) ≤
minx∈X E(θ, x). The dual objective D(λ) is a sum of
small-sized minimization problems. Due to the struc-
ture of (7) and (8), each subproblem related to a graph
node can be solved in linear time. As we show in the
supplement, the maximization of the dual (11) yields
the same value as the natural LP relaxation of (10).

4 Dual block-coordinate ascent (BCA)

In order to maximize (11), we developed an algorithm
based on the BCA principle, as such methods perform
competitively for similar relaxations of large-scale com-
binatorial problems. These techniques received a lot of
attention in connection with the local polytope relax-

A Primal-Dual Solver for Large-Scale Tracking-by-Assignment

Algorithm 1: Dual optimization

T ′ ← {1, . . . , T}; λ← 0
while not converged do

for t ∈ T ′ do

for v ∈ Vt
det do

compute ∆↑v on θλ ; λ← λ+∆↑v

for c ∈ Vt
conf do

compute ∆↑c on θλ; λ← λ+∆↑c

estimate assignment (Alg. 2, optional)
for v ∈ Vt

det do

compute ∆→v on θλ ; λ← λ+∆→v
(backward direction: use ∆←v)

reverse the order of T ′

ation of the discrete energy minimization problem [19].
BCA methods like TRW-S [21], SRMP [22] or the re-
cently proposed DMM [31] and MPLP++ [35] notably
outperform off-the-shelf solvers as well as dedicated
subgradient-based methods. However, they are inap-
plicable in our case, due to a substantially different
problem structure. The work [33] partially fills this
gap by proposing a general framework for constructing
dual BCA algorithms for a substantial subclass of com-
binatorial problems, which covers our problem as well.
However, our experiments with the framework [33] did
not lead to an improvement over Gurobi. Therefore, we
constructed a new algorithm, which resembles the local
polytope technique [21, 22, 28, 31, 35] and at the same
time uses the results of [33] to guarantee monotonicity
of the dual improvement.1

Dual BCA algorithm. Algorithm 1 is a realization
of the BCA principle for the Lagrange dual (11) and
guarantees its monotonous improvement. It contains
four types of updates (also referred to as passing mes-
sages). The first two, ∆↑u and ∆↑c , called conflict up-
dates, reweight the detection variable costs θu,det and
conflict variable costs θc(u). The second two, ∆→u and
∆←u , called transition updates, reweight costs θu,in and
θv,out across consecutive time steps. All update vectors
∆↑u, ∆↑c , ∆→u and ∆←u are in Λ, with zero assigned
to the unaffected coordinates. We process the time
steps sequentially. We first perform all conflict updates
within the current time step, then we propagate the
costs to the next time step via transition updates.

Conflict updates. In the dual problem D(λ) a detec-
tion will favor activation (xdet=1) if its locally minimal
state has negative cost. Ideally, only a single detec-
tion connected to a particular conflict node should be
active. Otherwise, a coupling constraint on at least
one of the edges in Econf or the constraint in Xc is vi-
olated, see (8), (9). The following updates encourage

1In particular, our updates are admissible [33, Lem.1],
but do not satisfy the maximality condition [33, eq.(15)].

agreement of the local minimizers of the conflict nodes
and the associated detection nodes. We define for all
u ∈ Vdet, e ∈ conf(u):

∆↑u(e) := min
x∈Xu : xdet=1

〈θu, x〉

|conf(u)|
.

Intuitively, ∆↑u redistributes as much of the cost as
possible to the connected conflict nodes while preserv-
ing the locally optimal state in the detection node.
Similarly, we define for all c ∈ Vconf , u ∈ c:

∆↑c(e) := −θc(u) +
1

2

[

〈θc, z
⋆
c 〉+ 〈θc, z

⋆⋆
c 〉

]

,

where e=u c, and z⋆c =argminx∈Xc
〈θc, x〉 is the best

and z⋆⋆c =argminx∈Xc\{z
⋆
c}
〈θc, x〉 the second-best state.

∆↑c shifts the cost back such that only the most promis-
ing detection ends up with a negative activation cost.

Transition updates. To propagate information
across time steps, we introduce the dual updates ∆→u
and ∆←u . We first define for all u ∈ Vdet:

x⋆
u := argmin

x∈Xu : xdet=1
〈θu, x〉, y⋆u := argmin

x∈Xu : xdet=1,
xin 6=x⋆

u,in, xout 6=x⋆
u,out

〈θu, x〉.

Intuitively, x⋆
u is the best state of u under the assump-

tion that u is active, while y⋆u is the best state differing
from x⋆

u in the incoming and outgoing edge.

Similar to the conflict updates, the transition updates
propagate as much information as possible by setting
all the outgoing respectively incoming costs to the same
value. We define for all u ∈ Vdet, e ∈ out(u):

∆→u (e) := min
x∈Xu :
xout(e)=1

〈θu, x〉 −Θu,out, if e ∈ Emove

(∆→u)v(e) :=
1
2

[

min
x∈Xu :
xout(e)=1

〈θu, x〉−Θu,out

]

, if e = u⇒v/w

where
Θu,out := min

{

0, 1
2

[

〈θu, x
⋆
u〉+ 〈θu, (1, x

⋆
u,in, y

⋆
u,out)〉

]

}

,

is either 0 or the mean value between the cost of x⋆
u

and the next-best state with a different outgoing edge.

Similarly, for the updates in the opposite direction, we
define for all v ∈ Vdet, e ∈ in(v):

∆←v (e) := −min
x∈Xv,xin(e)=1

〈θv, x〉+Θv,in, if e ∈ Emove . (12)

Otherwise, if e ∈ Ediv, (∆←v)v(e) is assigned the right-
hand-side of (12). Here

Θv,in := min
{

0, 1
2

[

〈θv, x
⋆
v〉+ 〈θv, (1, y

⋆
v,in, x

⋆
v,out)〉

]

}

,

is either 0 or the mean value between the cost of x⋆
v

and the next-best state with a different incoming edge.

Proposition 3. Dual updates ∆ ∈ {∆←u ,∆→u ,∆↑u |
u ∈ Vdet} ∪ {∆

↑
c | c ∈ Vconf} monotonically increase the

dual function, i. e. ∀λ ∈ Λ: D(λ) ≤ D(λ+∆).

Since the optimal dual value is bounded from above
by the optimum of (5), the monotonicity implies con-

S. Haller, M. Prakash, L. Hutschenreiter, T. Pietzsch, C. Rother, F. Jug, P. Swoboda, B. Savchynskyy

Algorithm 2: Primal heuristics for time step t

µ⋆ ← argmin
µ∈{0,1}|V

t
det|
〈s, µ〉 s.t.

∑

v∈c
µv ≤ 1 ∀ c ∈ Vt

conf (13)

for v ∈ Vt
det do

xv ← OFF if µ⋆
v = 0

order elements v of Vt
det by their score s(v)

for v ∈ Vt
det with xv 6= OFF do

X ′v ←
{

x ∈ Xv

∣

∣

∣

x does not violate
coupling constraints

}

assign xv,in, xv,det according to argminx∈X ′
v
〈θλv , x〉

(backward direction: use xv,out instead)
propagate state xv accross edges in E

vergence of the sequence of dual values. The limit
value of the sequence, though, need not be the dual
optimum. This is a well-known property of block-
coordinate-ascent methods, which may get stuck when
applied to non-smooth functions.

5 Primal heuristics

For solving the tracking problem (10) computing a
reparametrization λ is not enough. The main goal is
to obtain a feasible primal assignment x ∈ X corre-
sponding to a low objective value. Generally, this is
non-trivial, since solutions to the node subproblems are
usually inconsistent, even if an optimal dual solution
λ⋆ = argmaxλ′∈Λ D(λ′) is considered. As mentioned
in Section 1, existing techniques either do not handle
overlapping segmentation hypotheses or do not allow
for cell divisions. Below, we propose a new primal
heuristics that handles the considered general case and
produces high-quality feasible primal assignments even
for non-optimal dual vectors λ.

Temporal direction. Similar to the dual optimiza-
tion algorithm our primal heuristics works in both
temporal directions. For the sake of simplicity we
restrict ourselves to the explanation of the forward
direction. After obtaining the primal assignments for
each direction, we keep the best of the two.

Incremental estimates. We estimate primal solution
for each time frame sequentially one by one, starting
from t = 0 and ending with t = T . Hence, we assume
that primal assignments xu ∈ Xu for u ∈ Vt′

det, t′ ∈
{1, . . . , t− 1}, are available when applying Algorithm 2
for time step t.

Conflict resolution. Before we look at edges that
connect different time steps, we first resolve the con-
flicts within the current time step t. Overall, we want
to activate the most promising detection hypotheses
while still obeying all coupling constraints in Econf . We
score the individual detections v ∈ Vdet by their lo-
cally cost-optimal state conditioned on actually activat-
ing v, i.e. s(v) := minx∈Xv : xdet=1〈θ

λ
v , x〉. To resolve the

0 20 40 60
run time (min)

−10

0

10

re
la
ti
ve

er
ro
r
(%

)

flywing-245

our

Gurobi

0 2 4 6

−10
0

10
flywing-100-1

0 1 2 3 4

−10
0

10
PhC-C2DL-PSC-1

Figure 2: Lower- () and upper-bound () for our
solver and Gurobi on selected instances. We obtain
high-quality solutions after only a few iterations.

conflicts of the current time step t, we solve with Gurobi
the weighted set packing problem of all detections in t:

min
µ∈{0,1}|V

t
det

|

〈s, µ〉 s.t.
∑

v∈c

µv ≤ 1 ∀ c ∈ Vt
conf , (13)

where s = (s(v))v∈Vt
det

. Note that even though the
problem (13) is NP-hard, its encountered instances are
small and can be solved almost instantly. In comparison
to cheaper approaches, using (13) yields significantly
better tracking solutions.

Transition assignments. After resolving all conflicts
for the current time step t, we look for a consistent as-
signment for xv,in for all v ∈ Vt

det with µ⋆
v = 1, where µ⋆

is a solution of (13). Ideally, we would like to set
them to a locally optimal state given their current cost
θλv . Unfortunately, this will in general violate coupling
constraints in Et−1move and Et−1div . Therefore, we use a
greedy approach and process all possible nodes, i. e. all
v ∈ Vt

det with µ⋆
v = 1, sequentially. While optimizing

xv,in for a given node v we ignore all options that would
violate coupling constraints with already fixed nodes.
Obviously, such a procedure heavily depends on the
node ordering. As we want to address the most promis-
ing states first, we order all nodes by their score s(v)
starting with the state with the best, i. e. lowest, score.

Propagation. When xv,in is assigned we propagate
this across incident coupling constraints in Et−1move∪E

t−1
div .

Eventually, this results in all variables xu,out being set
for all nodes u ∈ Vt−1

det of the previous time step. This
procedure leads to a consistent variable assignment up
to and including time step t.

Continuing the procedure for all time steps leads to a
consistent variable assignment for the whole problem.
As the quality of the assignment is expected to improve
with improvement of the dual, we run primal heuristics
repeatedly each 25 dual iterations.

6 Experimental evaluation

We evaluate the performance of our solver on cell and
nucleus tracking datasets from different biomedical re-

A Primal-Dual Solver for Large-Scale Tracking-by-Assignment

Instance Our Solver Gurobi Improvement
time mem. err. TRA time relax. / equ. / opt. mem. time mem.

(s) (MiB) (%) (s) (s) (s) (MiB)

drosophila 2.7 157 0.00 0.9999 0.9 9.2 9.3 1154 3.4 x 7.3 x

flywing-100-1 82.4 474 0.65 0.9867 270.6 301.8 554.9 5522 3.7 x 11.6 x
flywing-100-2 78.5 490 0.98 0.9826 243.0 275.2 2311.5 8527 3.5 x 17.4 x
flywing-245 159.8 1192 1.291 —2 1159.0 9540.6 —3 20756 59.7 x 17.4 x

Fluo-C2DL-MSC-1 1.9 53 0.38 0.9922 0.0 0.5 0.6 90 0.3 x 1.7 x
Fluo-C2DL-MSC-2 2.0 50 0.08 0.9863 0.0 0.1 0.1 61 0.1 x 1.2 x
Fluo-N2DH-GOWT1-1 0.5 58 0.00 1.0000 0.0 0.6 0.6 153 1.2 x 2.6 x
Fluo-N2DH-GOWT1-2 0.3 65 0.00 1.0000 0.0 1.1 1.1 196 3.3 x 3.0 x
PhC-C2DL-PSC-1 22.7 930 0.23 0.9952 40.9 219.7 267.6 13199 9.7 x 14.2 x
PhC-C2DL-PSC-2 17.9 708 0.14 0.9969 22.2 127.5 156.9 9870 7.1 x 13.9 x

1opt. unknown, shows rel. primal/dual-diff. instead 2opt. unknown, no reference available 3did not terminate within 8 h

Table 1: Quantitative comparison of our solver and the ILP solver Gurobi. We display run time, maximal memory
consumption (mem.), relative error of (5) compared to optimum (err.) and TRA score. For Gurobi time of root
relaxation (relax.), finding a comparable solution (equ.) and finding an optimal solution (opt.) is reported.

search projects. As our contributions are exclusively
concerned with the optimization of the problem in-
stances, we are not discussing any aspects of potential
model mismatch. We used reasonable segmentations ob-
tained by different segmentation routines and selected
appropriate costs for the different tracking events with-
out excessive fine-tuning (see supplement). Existing
methods that allow for overlapping segmentation hy-
potheses and cell divisions [13, 14, 17, 30] offload the
optimization to off-the-shelf ILP solvers like Gurobi [9],
which we use as baseline for our comparison.

Datasets and tracking instances. In total, we use
10 problem instances from 3 biomedical data domains,
see supplement for additional information.

Drosophila embryo data: We have one problem instance
for tracking nuclei in a developing Drosophila embryo.
The tracking model consists of 252 frames, each con-
taining about 320 detection hypotheses. With about
160 actual objects per time step, we typically observe
two conflicting hypotheses per real object in the data.

Flywing data: We use 3 problem instances for tracking
membrane-labelled cells in developing Drosophila fly-
wing tissue. Two of these consist of 100 frames, each
containing about 2 100 detection hypotheses. The third
instance is larger, consisting of 245 frames with more
than 3 300 detection hypotheses each. In contrast to
the embryo data, the segmentation hypotheses in these
problem instances are very dense, leading to consider-
ably larger sets of (transitively) conflicting detections.

Cell Tracking Challenge (CTC) data: Finally, we use
the publicly available cell tracking datasets Fluo-C2DL-
MSC, Fluo-N2DH-GOWT1, and PhC-C2DL-PSC [36]
to evaluate our solver. The CTC data consists of 48,
92, and 426 frames, where each frame contains on av-
erage 88, 186, and 1 400 detection hypotheses, respec-
tively, with conflict set sizes of about 10, 7, and 3. Each
dataset consists of two time-lapse movies, allowing us
to generate six tracking instances.

Evaluation criteria. We evaluate the performance
using two metrics, namely, total run time and overall
memory consumption. To ensure a fair run time com-
parison between our solver and Gurobi, we measure not
only the time it takes Gurobi to compute the optimal
solution, time (opt.), but also the time Gurobi needs
to surpass the quality of our best primal solution, time
(equ.). Additionally, we compute the relative error
|E(θ,x)−E(θ,x⋆)|
|E(θ,x⋆)| of our final assignment x with respect

to the optimal solution x⋆. We finally also compute the
TRA [36] score, a commonly used tracking scoring func-
tion. TRA values are in [0, 1], where 1 means that the
final assignment is identical to the reference solution,
while 0 occurs if the compared solutions have nothing
in common. We use TRA to compare our tracking
results to the optimal solution obtained with Gurobi.
Times show the median results of 5 single-threaded
runs on an Intel i7-4770 3.40GHz CPU.

Results and conclusions. In Table 1 we show the
results for our solver and Gurobi on all instances. Es-
pecially for larger problems, i. e. the PhC-C2DL-PSC
and flywing instances, our solver obtains near-optimal
solutions in a fraction of the time (sped-up by factor
between 3 and 60). Due to the compact decomposi-
tion, our solver consistently requires considerably less
memory than Gurobi (up to 17x). Figure 2 shows that
our solver converges to small relative errors after only
a few iterations. The high quality of our solutions is
confirmed by the TRA scores. Compared to existing
techniques our solver is scalable and quickly provides
high quality solutions even for large-scale real-world
problems, so far beeing practically intractable. There-
fore it is even applicable in low-latency settings like
user-driven proofreading of automated tracking results.

Acknowledgements. We thank the Centre for In-
formation Services and High Performance Comput-
ing (ZIH) at TU Dresden for generous allocation of
HPC resources (project HPDLF). We acknowledge

S. Haller, M. Prakash, L. Hutschenreiter, T. Pietzsch, C. Rother, F. Jug, P. Swoboda, B. Savchynskyy

Romina Piscitello Gomez and Suzanne Eaton from
MPI-CBG for sharing flywing data and Hernan Garcia
lab from UC Berkeley for sharing the drosophila dataset.
This work was supported partly by the German Re-
search Foundation (DFG SA 2640/1-1, “ERBI”), the
European Research Council (ERC Horizon 2020, grant
647769) and the German Federal Ministry of Research
and Education (BMBF, code 01IS18026C, “ScaDS2”).

References

[1] Assaf Arbelle and Tammy Riklin Raviv. Mi-
croscopy cell segmentation via convolutional
LSTM networks. arXiv:1805.11247, 2018.

[2] Asad A. Butt and Robert T. Collins. Multi-target
tracking by Lagrangian relaxation to min-cost net-
work flow. In IEEE Conference on Computer
Vision and Pattern Recognition, 2013.

[3] Gregory Castanon and Lucas Finn. Multi-target
tracklet stitching through network flows. In IEEE
Aerospace Conference, 2011.

[4] Nicolas Chenouard, Ihor Smal, Fabrice de Chau-
mont, Martin Maška, Ivo F. Sbalzarini, Yuan-
hao Gong, Janick Cardinale, Craig Carthel, Ste-
fano Coraluppi, Mark Winter, Andrew R. Co-
hen, William J. Godinez, Karl Rohr, Yannis
Kalaidzidis, Liang Liang, James Duncan, Hongy-
ing Shen, Yingke Xu, Klas E.G. Magnusson,
Joakim Jaldén, Helen M. Blau, Perrine Paul-
Gilloteaux, Philippe Roudot, Charles Kervrann,
François Waharte, Jean-Yves Tinevez, Spencer L.
Shorte, Joost Willemse, Katherine Celler, Gilles P.
van Wezel, Han-Wei Dan, Yuh-Show Tsai, Carlos
Ortiz-de Solorzano, Jean-Christophe Olivo-Marin,
and Erik Meijering. Objective comparison of par-
ticle tracking methods. Nature Methods, 11(3),
2014.

[5] IBM ILOG CPLEX. V12.8: User’s manual for
CPLEX. 2017.

[6] Monique Guignard. Lagrangean relaxation. Top,
11(2), 2003.

[7] Monique Guignard and Siwhan Kim. Lagrangean
decomposition: A model yielding stronger la-
grangean bounds. Mathematical programming, 39
(2), 1987.

[8] Monique Guignard and Siwhan Kim. Lagrangean
decomposition for integer programming: theory
and applications. RAIRO-Operations Research, 21
(4), 1987.

[9] LLC Gurobi Optimization. Gurobi optimizer ref-
erence manual, 2018. URL http://www.gurobi.

com.

[10] Carsten Haubold, Janez Aleš, Steffen Wolf, and
Fred A. Hamprecht. A generalized successive

shortest paths solver for tracking dividing tar-
gets. In European Conference on Computer Vision.
Springer, 2016.

[11] Umar Iqbal, Anton Milan, and Juergen Gall. Pose-
track: Joint multi-person pose estimation and
tracking. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2017.

[12] Khuloud Jaqaman, Dinah Loerke, Marcel Met-
tlen, Hirotaka Kuwata, Sergio Grinstein, Sandra L.
Schmid, and Gaudenz Danuser. Robust single-
particle tracking in live-cell time-lapse sequences.
Nature Methods, 5(8), 2008.

[13] Florian Jug, Tobias Pietzsch, Dagmar Kainmüller,
Jan Funke, Matthias Kaiser, Erik van Nimwegen,
Carsten Rother, and Gene Myers. Optimal joint
segmentation and tracking of Escherichia coli in
the mother machine. In Bayesian and Graphical
Models for Biomedical Imaging. Springer, 2014.

[14] Florian Jug, Tobias Pietzsch, Dagmar Kainmüller,
and Gene Myers. Tracking by assignment facil-
itates data curation. In International Confer-
ence on Medical Image Computing and Computer-
Assisted Intervention, IMIC Workshop, 2014.

[15] Florian Jug, Tobias Pietzsch, Stephan Preibisch,
and Pavel Tomancak. Bioimage informatics in the
context of drosophila research. Methods, 68(1),
2014.

[16] Florian Jug, Evgeny Levinkov, Corinna Blasse,
Eugene W. Myers, and Bjoern Andres. Moral
lineage tracing. In IEEE Conference on Computer
Vision and Pattern Recognition, 2016.

[17] Matthias Kaiser, Florian Jug, Thomas Julou, Sid-
dharth Deshpande, Thomas Pfohl, Olin K. Silan-
der, Gene Myers, and Erik van Nimwegen. Mon-
itoring single-cell gene regulation under dynami-
cally controllable conditions with integrated mi-
crofluidics and software. Nature Communications,
9(1), 2018.

[18] Lee Kamentsky, Thouis R. Jones, Adam Fraser,
Mark-Anthony Bray, David J. Logan, Katherine L.
Madden, Vebjorn Ljosa, Curtis Rueden, Kevin W.
Eliceiri, and Anne E. Carpenter. Improved struc-
ture, function and compatibility for CellProfiler:
modular high-throughput image analysis software.
Bioinformatics, 27(8), 2011.

[19] Jörg H. Kappes, Bjoern Andres, Fred A. Ham-
precht, Christoph Schnörr, Sebastian Nowozin,
Dhruv Batra, Sungwoong Kim, Bernhard X.
Kausler, Thorben Kröger, Jan Lellmann, Nikos
Komodakis, Bogdan Savchynskyy, and Carsten
Rother. A comparative study of modern inference
techniques for structured discrete energy minimiza-
tion problems. International Journal of Computer
Vision, 2015.

http://www.gurobi.com
http://www.gurobi.com

A Primal-Dual Solver for Large-Scale Tracking-by-Assignment

[20] Bernhard X. Kausler, Martin Schiegg, Bjoern An-
dres, Martin Lindner, Ullrich Koethe, Heike Leitte,
Jochen Wittbrodt, Lars Hufnagel, and Fred A.
Hamprecht. A discrete chain graph model for
3d+ t cell tracking with high misdetection robust-
ness. In European Conference on Computer Vision.
Springer, 2012.

[21] Vladimir Kolmogorov. Convergent tree-reweighted
message passing for energy minimization. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 28(10), 2006.

[22] Vladimir Kolmogorov. A new look at reweighted
message passing. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 37(5), 2015.

[23] Matej Kristan, Ales Leonardis, Jiri Matas, Michael
Felsberg, Roman Pflugfelder, Luka Cehovin Zajc,
Tomas Vojir, Gustav Hager, Alan Lukezic, Ab-
delrahman Eldesokey, et al. The visual object
tracking vot2017 challenge results. In IEEE Inter-
national Conference on Computer Vision, 2017.

[24] Xinghua Lou, Frederik O. Kaster, Martin S.
Lindner, Bernhard X. Kausler, Ullrich Köthe,
Burkhard Höckendorf, Jochen Wittbrodt, Heike
Jänicke, and Fred A. Hamprecht. Deltr: Digi-
tal embryo lineage tree reconstructor. In IEEE
International Symposium on Biomedical Imaging,
2011.

[25] Klas E.G. Magnusson, Joakim Jaldén, Penney M.
Gilbert, and Helen M. Blau. Global linking of cell
tracks using the viterbi algorithm. IEEE Transac-
tions on Medical Imaging, 34(4), 2015.

[26] Dirk Padfield, Jens Rittscher, and Badrinath
Roysam. Coupled minimum-cost flow cell track-
ing. In International Conference on Information
Processing in Medical Imaging. Springer, 2009.

[27] Christian Payer, Darko Štern, Thomas Neff, Horst
Bischof, and Martin Urschler. Instance segmen-
tation and tracking with cosine embeddings and
recurrent hourglass networks. In International
Conference on Medical Image Computing and
Computer-Assisted Intervention. Springer, 2018.

[28] Bogdan Savchynskyy. Discrete graphical models
— an optimization perspective. Foundations and
Trends in Computer Graphics and Vision, 11(3-4),
2019.

[29] Martin Schiegg, Philipp Hanslovsky, Bernhard X.
Kausler, Lars Hufnagel, and Fred A. Hamprecht.
Conservation tracking. In IEEE International
Conference on Computer Vision, 2013.

[30] Martin Schiegg, Philipp Hanslovsky, Carsten
Haubold, Ullrich Köthe, Lars Hufnagel, and
Fred A. Hamprecht. Graphical model for joint
segmentation and tracking of multiple dividing
cells. Bioinformatics, 31(6), 2014.

[31] Alexander Shekhovtsov, Christian Reinbacher,
Gottfried Graber, and Thomas Pock. Solving
dense image matching in real-time using discrete-
continuous optimization. In 21st Computer Vision
Winter Workshop, 2016.

[32] David Sontag, Amir Globerson, and Tommi
Jaakkola. Introduction to dual composition for
inference. In Optimization for Machine Learning.
MIT Press, 2011.

[33] Paul Swoboda, Jan Kuske, and Bogdan Savchyn-
skyy. A dual ascent framework for lagrangean
decomposition of combinatorial problems. In
IEEE Conference on Computer Vision and Pat-
tern Recognition, 2017.

[34] Siyu Tang, Bjoern Andres, Miykhaylo Andriluka,
and Bernt Schiele. Subgraph decomposition for
multi-target tracking. In IEEE Conference on
Computer Vision and Pattern Recognition, 2015.

[35] Siddharth Tourani, Alexander Shekhovtsov,
Carsten Rother, and Bogdan Savchynskyy.
MPLP++: Fast, parallel dual block-coordinate
ascent for dense graphical models. In European
Conference on Computer Vision, 2018.

[36] Vladimír Ulman, Martin Maška, Klas E.G. Mag-
nusson, Olaf Ronneberger, Carsten Haubold,
Nathalie Harder, Pavel Matula, Petr Matula,
David Svoboda, Miroslav Radojevic, Ihor Smal,
Karl Rohr, Joakim Jaldén, Helen M. Blau,
Oleh Dzyubachyk, Boudewijn Lelieveldt, Peng-
dong Xiao, Yuexiang Li, Siu-Yeung Cho, Alexan-
dre C. Dufour, Jean-Christophe Olivo-Marin,
Constantino C. Reyes-Aldasoro, Jose A. Solis-
Lemus, Robert Bensch, Thomas Brox, Jo-
hannes Stegmaier, Ralf Mikut, Steffen Wolf,
Fred A. Hamprecht, Tiago Esteves, Pedro Quel-
has, Ömer Demirel, Lars Malmström, Florian
Jug, Pavel Tomancak, Erik Meijering, Arrate
Muñoz-Barrutia, Michal Kozubek, and Carlos
Ortiz-de Solorzano. An objective comparison of
cell-tracking algorithms. Nature Methods, 14(12),
2017.

[37] Xinchao Wang, Engin Türetken, Francois Fleuret,
and Pascal Fua. Tracking interacting objects op-
timally using integer programming. In European
Conference on Computer Vision. Springer, 2014.

[38] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Ob-
ject tracking benchmark. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 37(9),
2015.

[39] Junliang Xing, Haizhou Ai, and Shihong Lao.
Multi-object tracking through occlusions by local
tracklets filtering and global tracklets association
with detection responses. In IEEE Conference on
Computer Vision and Pattern Recognition, 2009.

Supplementary Material

A Primal-Dual Solver for Large-Scale Tracking-by-Assignment

A.1 Project website

Our project website at https://vislearn.github.io/libct contains additional information. At the time

writing there we distribute: (i) The source code of our cell-tracking solver, (ii) information about how to obtain

the datasets, and (iii) the model parameters that we have used.

A.2 Tracking-by-Assignment formulation and cost computation

A description of the mathematical model of the tracking-by-assignment formulation was already given in Section 2.

Even though the reasoning in the paper has no restrictions on the costs, the cost assignment is a crucial step

when using the method in practice. In the following we describe the cost computation that we have used for

preparation of this paper, especially for obtaining the results in our experimental evaluation in Section 6.

The cost θu associated with each segmentation variable u ∈ V̂det is based on image and object features of the

underlying segmentation hypothesis. All segmentation hypotheses are assigned negative costs in order to promote

selection as part of a tracking solution, i. e., a segmentation hypothesis with higher negative cost is more likely to

be picked as part of a solution. Similar to [13, 14, 17], the cost θu of any segment hypothesis is chosen according

to its area and convexity according to the following rule

θu = −αdet · a(u) + βdet ·
(
|aC(u)− a(u)|

)
+ γdet ·max

(
0,
(
a(u)−A

))2
, (14)

where αdet, βdet and γdet are free coefficients, a(u) is the area of the hypothesis u, aC(u) is the area of convex

hull of that hypothesis u, and A is a free parameter that denotes the upper limit of the range of reasonable

object (segment) sizes.

The costs for all transitions between time steps (moves and divisions) are set up to reflect the knowledge of

biological experts. For any u
w
→v ∈ Êmove the associated cost θ

u
w
→v

is given by a function which takes segment size

and displacement (of segment centre of mass) between consecutive time points into account. The cost for a move

variable can be written as

θ
u

w
→v

= αmove ·∆a(u, v) + βmove ·∆p(u, v) , (15)

where αmove and βmove are free coefficients, ∆a and ∆p represent the change in area and in squared position

between two consecutive time points, respectively.

Let u
w
⇒v/v′ ∈ Êdiv. The cost θ

u
w
⇒v/v′ for division variable additionally accounts for the fact that a dividing cell

typically splits into two equally sized daughter cells, and that the cumulative volume of the daughter cells roughly

equals the volume of the mother cell. The division variable cost is given by

θ
u

w
⇒v/v′ = αdiv + βdiv ·∆amds(u, v, v

′) + γdiv ·∆a(v, v′) + κdiv ·∆a(v, v′)2 +

+ 0.5 · ρdiv · (∆p(u, v)2 +∆p(u, v′)2) + σdiv ·∆p(v, v′)2 + τdiv ·∆r(u, v, v′) ,
(16)

where αdiv, βdiv, γdiv, κdiv, ρdiv, σdiv and τdiv are free coefficients, ∆amds(u, v, v
′) := |a(u) − a(v) − a(v′)| is the

change of area between mother and daughter cells, and ∆r(u, v, v′) is the difference in angular orientation between

mother cell and daughter cells. Overall, the transition costs discourage the deviation from the above mentioned

biological rules for any decision variable. Transition costs are positive and in order to collect the reward (negative

costs) for a segmentation hypothesis, a solution needs to pay the price for explaining the past and future of this

segment.

https://vislearn.github.io/libct

A Primal-Dual Solver for Large-Scale Tracking-by-Assignment

Additionally, it is possible for a cell to appear/disappear along the image border (cells moving in/out of the field

of view) but costs of appearance and disappearance are set to be higher for cells further away from the image

boundary. For sake of simplicity our description in Section 2 does not include decision variables for appearance or

disappearance events. However, our formulation allows to deactivate all incoming (outgoing) transition variables

for a segment to model cell appearance (disappearance), see (3). The costs for appearance and disappearance

described below can be incorporated by simply shifting the costs of incoming and outgoing transition variables

and the affected segmentation variable by a constant factor. The cost θapp(u) and θdis(u) for an appearance or

disappearance of segmentation hypothesis u ∈ V̂det are given by

θapp(u) = αapp · a(u) + βapp ·
√

db(u) + γapp · db(u) , (17)

θdis(u) = αdis · a(u) + βdis ·
√

db(u) + γdis · db(u) , (18)

where αapp, αdis, βapp, βdis, γapp and γdis are free coefficients and db(u) represents the distance of the centre of

mass of hypothesis u to the closest image boundary.

All free coefficients and the parameter A are set to sensible values by the engineer of the proposed system. The

values we have used for all reported results are available online at our project website.

A.3 Source code of our cell-tracking solver

We implemented the suggested solving scheme in a modern C++ library. The source code of this implementation

is publicly available and we plan to incorporate further improvements in the future. To make the results presented

in this paper reproducible, the repository holding the source code also contains a fixed version which we used

during the preparation of this paper.

Along with the library we provide Python 3 bindings which allow to feed a text file representation of cell-tracking

problems into the native library to run the solver.

For further information about the implementation and the text formats, please refer to the README file that is

bundled with the source code.

Source code repository: https://github.com/vislearn/libct

https://github.com/vislearn/libct

S. Haller, M. Prakash, L. Hutschenreiter, T. Pietzsch, C. Rother, F. Jug, P. Swoboda, B. Savchynskyy

A.4 Detailed information about the datasets

A description of all used datasets can be found in Section 6. Instructions how to obtain the datasets can be

found on our project website. There we also distribute the resulting optimization problems for each cell-tracking

instance in a text format and provide all model parameters.

(a) drosophila (b) flywing

(c) Fluo-C2DL-MSC (d) Fluo-N2DH-GOWT1 (e) PhC-C2DL-PSC

Figure 3: Example images of datasets that have been used for the evaluation.

instance #timesteps #detections
time step # conflicts

time step transitive conflict clique

drosophila 252 323.3 ± 62.9 161.9 ± 62.9 2.0 ± 0.3

flywing-100-1 100 2041.1 ± 358.0 2138.8 ± 358.0 753.2 ± 997.2
flywing-100-2 100 2223.4 ± 258.2 1831.6 ± 258.2 131.4 ± 511.7
flywing-245 245 3317.2 ± 326.6 2733.5 ± 326.6 54.7 ± 373.9

Fluo-C2DL-MSC-1 48 115.1 ± 6.9 41.4 ± 6.9 12.3 ± 8.3
Fluo-C2DL-MSC-2 48 52.2 ± 4.9 18.8 ± 4.9 9.8 ± 8.8
Fluo-N2DH-GOWT1-1 92 168.4 ± 1.6 24.9 ± 1.6 7.3 ± 1.6
Fluo-N2DH-GOWT1-2 92 207.1 ± 4.9 36.8 ± 4.9 7.5 ± 2.0
PhC-C2DL-PSC-1 426 1551.4 ± 482.7 576.7 ± 482.7 3.4 ± 1.4
PhC-C2DL-PSC-2 426 1249.8 ± 372.6 455.8 ± 372.6 3.5 ± 1.4

Table 2: Characteristics of all used tracking problem instances.

A Primal-Dual Solver for Large-Scale Tracking-by-Assignment

A.5 Detailed convergence plots

0 1 2 3 4 5
run time (s)

−10

0

10

re
la
ti
ve

er
ro
r
(%

)

Fluo-C2DL-MSC-1

our

Gurobi

0 1 2 3 4 5
run time (s)

−10

0

10

re
la
ti
ve

er
ro
r
(%

)

Fluo-C2DL-MSC-2

our

Gurobi

0 1 2 3 4 5
run time (s)

−10

0

10

re
la
ti
ve

er
ro
r
(%

)

Fluo-N2DH-GOWT1-1

our

Gurobi

0 1 2 3 4 5
run time (s)

−10

0

10

re
la
ti
ve

er
ro
r
(%

)

Fluo-N2DH-GOWT1-2

our

Gurobi

0 1 2 3 4 5 6
run time (min)

−10

0

10

re
la
ti
ve

er
ro
r
(%

)

flywing-100-1

our

Gurobi

0 1 2 3 4 5 6
run time (min)

−10

0

10

re
la
ti
ve

er
ro
r
(%

)

flywing-100-2

our

Gurobi

0 10 20 30 40 50 60
run time (min)

−10

0

10

re
la
ti
ve

er
ro
r
(%

)

flywing-245

our

Gurobi

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
run time (s)

−10

0

10

re
la
ti
ve

er
ro
r
(%

)

drosophila

our

Gurobi

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
run time (min)

−10

0

10

re
la
ti
ve

er
ro
r
(%

)

PhC-C2DL-PSC-1

our

Gurobi

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
run time (min)

−10

0

10

re
la
ti
ve

er
ro
r
(%

)

PhC-C2DL-PSC-2

our

Gurobi

Figure 4: Comparison of lower-bound (dashed) and upper-bound (dotted) convergence for our solver and
Gurobi. We obtain high-quality solutions after only a few iterations. For more information see section 6.

S. Haller, M. Prakash, L. Hutschenreiter, T. Pietzsch, C. Rother, F. Jug, P. Swoboda, B. Savchynskyy

A.6 Proofs of mathematical statements

Lemma 1. The optimization objective E(θ, x) =
∑

v∈Vdet
〈θv, xv〉+

∑

c∈Vconf
〈θc, xc〉, cf. (10), is equivalent to

E(θ, x) =
∑

v∈Vdet

θv,det xv,det +
∑

e=u→v
∈Emove

θu,out(e)xu,out(e) +
∑

e=u→v
∈Emove

θv,in(e)xv,in(e) +

+
∑

e=u⇒v/w
∈Ediv

θu,out(e)xu,out(e) +
∑

e=u⇒v/w
∈Ediv

θv,in(e)xv,in(e) +
∑

e=u⇒v/w
∈Ediv

θw,in(e)xw,in(e) +
∑

e=v c
∈Econf

θc(v)xc(v) . (19)

Proof. First, we apply the definition of Xv for all v ∈ Vdet as well as the definition of Xc for all c ∈ Vconf . Next,
we write the inner products in an explicit form.

∑

v∈Vdet

〈θv, xv〉 =
∑

v∈Vdet

(

〈θv,det, xv,det〉+ 〈θv,in, xv,in〉+ 〈θv,out, xv,out〉
)

=
∑

v∈Vdet

θv,det xv,det +
∑

v∈Vdet

∑

e∈in(v)

θv,in(e)xv,in(e) +
∑

u∈Vdet

∑

e∈out(u)

θu,out(e)xu,out(e) (20)

∑

c∈Vconf

〈θc, xc〉 =
∑

c∈Vconf

∑

v∈Vdet :
v c∈Econf

θc(v)xc(v) =
∑

v c∈Econf

θc(v)xc(v) (21)

We can now use the definition of in(·) and out(·) to expand the corresponding sums in (20).
∑

v∈Vdet

∑

e∈in(v)

θv,in(e)xv,in(e) =
∑

v∈Vdet

∑

u∈Vdet :
e=

u→v∈Emove

θv,in(e)xv,in(e) +
∑

v∈Vdet

∑

u,w∈Vdet :
e=

u⇒v/w∈Emove

θv,in(e)xv,in(e) +
∑

v∈Vdet

∑

u,w∈Vdet :
e=

u⇒w/v∈Emove

θv,in(e)xv,in(e)

=
∑

e=
u→v∈Emove

θv,in(e)xv,in(e) +
∑

e=
u⇒v/w∈Emove

θv,in(e)xv,in(e) +
∑

e=
u⇒w/v∈Emove

θv,in(e)xv,in(e) (22)

∑

u∈Vdet

∑

e∈out(u)

θu,out(e)xu,out(e) =
∑

u∈Vdet

∑

v∈Vdet :
e=

u→v∈Emove

θu,out(e)xu,out(e) +
∑

u∈Vdet

∑

v,w∈Vdet :
e=

u⇒v/w∈Emove

θu,out(e)xu,out(e)

=
∑

e=
u→v∈Emove

θu,out(e)xu,out(e) +
∑

e=
u⇒v/w∈Emove

θu,out(e)xu,out(e) (23)

Substituting the terms in (10) by (20), (21), (22) and (23) results in equation (19).

Corollary 1. For any x ∈ X the optimization objective E(θ, x) is equivalent to

E(θ, x) =
∑

v∈Vdet

(

θv,det(e) +
∑

c∈Vconf :
v c∈Econf

θc(v)
)

xv,det(e) +
∑

e=u→v
∈Emove

(

θu,out(e) + θv,in(e)
)

xu,out(e) +

+
∑

e=u⇒v/w
∈Ediv

(

θu,out(e) + θv,in(e) + θw,in(e)
)

xu,out(e) (24)

Proof. Due to x ∈ X we know that the coupling constraints (9) hold. This means that for a given edge
e = u→v ∈ Emove it holds that xu,out(e) = xv,in(e) and similarly for divisions and conflict edges. We can now
regroup the expression (19) of Lemma 1 and sort all terms by elements of vector x to directly obtain (24).

A Primal-Dual Solver for Large-Scale Tracking-by-Assignment

Proposition 1. ∀x ∈ X , λ ∈ Λ: E(θ, x) = E(θλ, x).

Proof. Due to x ∈ X we can apply Coralarry 1 and hence know that E(θ, x) is equivalent to (24). Corolarry 1
also holds for E(θλ, x) and we obtain

E(θλ, x) =
∑

v∈Vdet

(

θλv,det(e) +
∑

c∈Vconf :
v c∈Econf

θλc (v)
)

xv,det(e) +
∑

e=u→v
∈Emove

(

θλu,out(e) + θλv,in(e)
)

xu,out(e) +

+
∑

e=u⇒v/w
∈Ediv

(

θλu,out(e) + θλv,in(e) + θλw,in(e)
)

xu,out(e) . (25)

By definition of the reparametrized costs θλ we can simplify each of the following terms into

∀ v ∈ Vdet : θλv,det(e) +
∑

c∈Vconf :
v c∈Econf

θλc (v) = θv,det(e)−
∑

c∈Vconf :
v c∈Econf

λ(v c) +
∑

c∈Vconf :
v c∈Econf

(

θλc (v) + λ(v c)
)

= θv,det(e) +
∑

c∈Vconf :
v c∈Econf

θc(v) (26)

∀ e = u→v ∈ Emove : θλu,out(e) + θλv,in(e) = θu,out(e)− λ(e) + θv,in(e) + λ(e)

= θu,out(e) + θv,in(e) (27)

∀ e = u⇒v/w ∈ Ediv : θλu,out(e) + θλv,in(e) + θλw,in(e) = θu,out(e)− λv(e)− λw(e) + θv,in(e) + λv(e) + θw,in(e) + λw(e)

= θu,out(e) + θv,in(e) + θw,in(e) (28)

Note that all tuples/triples of λ have been cancelling out each other. We can now insert (26), (27) and (28)
into (25) and obtain the same expression as the right-hand side of (24). Due to Coralarry 1 we now that the very
same expression is equivalent to E(θ, x), hence E(θλ, x) = E(θ, x).

S. Haller, M. Prakash, L. Hutschenreiter, T. Pietzsch, C. Rother, F. Jug, P. Swoboda, B. Savchynskyy

Proposition 2. Dualizing all coupling constraints (9) in the objective (10) yields the Lagrange dual problem
maxλ∈Λ D(λ), where

D(λ) :=
∑

u∈Vdet

min
xu∈Xu

〈θλu, xu〉+
∑

c∈Vconf

min
xc∈Xc

〈θλc , xc〉 . (11)

Proof. To recap, the primal optimization problem is defined as the following, cf. (9) and (10):

min
x∈{0,1}n

[

E(θ, x) =
∑

u∈Vdet

〈θu, xu〉+
∑

c∈Vconf

〈θc, xc〉
]

s.t.

xu,det = xc(u) ∀u c ∈ Econf
xu,out(u→v) = xv,in(u→v) ∀u→v ∈ Emove

xu,out(u⇒v/w) = xv,in(u⇒v/w) ∀u⇒v/w ∈ Ediv
xu,out(u⇒v/w) = xw,in(u⇒v/w) ∀u⇒v/w ∈ Ediv

(29)

We are now dualizing all the constraints of (29) by introducing a Lagrangean multipler for each equality constraint
in (29). In total we have |Econf | + |Emove| + 2 |Ediv| constraints, so to assign a Lagrangean multiplier to each
constraint we will write λ ∈ Λ = R

|Econf |+|Emove|+2 |Ediv|, see the definition in the main paper. The Lagrange dual
function augmented by the Lagrange multipliers now reads

D(λ) = min
x∈X

[

E(θ, x) +
∑

u c∈Econf

(
xc(u)− xu,det

)
λ(u c) +

∑

e=
u→v∈Emove

(
xv,in(e)− xu,out(e)

)
λ(e) +

+
∑

e=
u⇒v/w∈Ediv

(
xv,in(e)− xu,out(e)

)
λv(e) +

∑

e=
u⇒v/w∈Ediv

(
xw,in(e)− xu,out(e)

)
λw(e)

]

,

D(λ) = min
x∈X

[

E(θ, x) +
∑

u c∈Econf

xc(u)λ(u c) +
∑

e=
u→v∈Emove

xv,in(e)λ(e) +
∑

e=
u⇒v/w∈Ediv

xv,in(e)λv(e) +
∑

e=
u⇒v/w∈Ediv

xw,in(e)λw(e)−

−
∑

e=
u c∈Econf

xu,det(e)λ(e)−
∑

e=
u→v∈Emove

xu,out(e)λ(e)−
∑

e=
u⇒v/w∈Ediv

xu,out(e)λv(e)−
∑

e=
u⇒v/w∈Ediv

xu,out(e)λw(e)
]

. (30)

We can now apply Lemma 1 to replace the term E(θ, x) by (19) in (30). After regrouping the terms and sorting
them by elements of x we get

D(λ) = min
x∈X

[∑

v∈Vdet

θλ
v,det

︷ ︸︸ ︷
(

θv,det −
∑

c∈Vconf :
c v∈Econf

λ(c v)
)

xv,det+
∑

e=u→v
∈Emove

θλ
u,out(e)

︷ ︸︸ ︷
(

θu,out(e)− λ(e)
)

xu,out(e)+
∑

e=u→v
∈Emove

θλ
v,in(e)

︷ ︸︸ ︷
(

θv,in(e) + λ(e)
)

xv,in(e)+

+
∑

e=u⇒v/w
∈Ediv

(

θu,out(e)− λv(e)− λw(e)
)

︸ ︷︷ ︸

θλ
u,out(e)

xu,out(e) +
∑

e=u⇒v/w
∈Ediv

(

θv,in(e) + λv(e)
)

︸ ︷︷ ︸

θλ
v,in(e)

xv,in(e) +

+
∑

e=u⇒v/w
∈Ediv

(

θw,in(e) + λw(e)
)

︸ ︷︷ ︸

θλ
w,in(e)

xw,in(e) +
∑

e=v c
∈Econf

(

θc(v) + λ(e)
)

︸ ︷︷ ︸

θλ
c (e)

xc(v)
]

. (31)

Due to Lemma 1 we know that (31) is equivalent to D(λ) = minx∈X E(θλ, x) = minx∈X
[∑

u∈Vdet
〈θλu, xu〉 +

∑

c∈Vconf
〈θλc , xc〉

]
which is our unconstrained objective function for the Lagrange dual of (29).

As we want to maximize the dual function D(λ) with respect to λ ∈ Λ the Lagrange dual problem reads

max
λ∈Λ

min
x∈X

[∑

u∈Vdet

〈θλu, xu〉+
∑

c∈Vconf

〈θλc , xc〉
]

= max
λ∈Λ

[∑

u∈Vdet

min
xv∈Xv

〈θλu, xu〉+
∑

c∈Vconf

min
xc∈Xc

〈θλc , xc〉
]

. (32)

A Primal-Dual Solver for Large-Scale Tracking-by-Assignment

Proposition 3. Dual updates ∆ ∈ {∆←u ,∆→u ,∆↑u | u ∈ Vdet} ∪ {∆↑c | c ∈ Vconf} monotonically increase the dual

function, i. e. ∀λ ∈ Λ: D(λ) ≤ D(λ+∆).

Proof. For all possible choices of ∆ we want to show

D(λ) ≤ D(λ+∆),

for any fixed λ ∈ Λ, which is equivalent to 0 ≤ D(λ+∆)−D(λ). Without loss of generality we can assume λ = 0,

since any reparametrization is linear, and, therefore, θλ+∆ =
(
θλ
)∆

. So we can just redefine θ to match θλ. Thus,
it suffices to prove

0 ≤ D(∆)−D(0), (33)

for all possible choices of ∆.

Case 1: Let ∆ = ∆↑c , c ∈ Vconf arbitrary but fixed. Recall that for all u ∈ c, e = u c:

∆↑c(e) := −θc(u) +
1

2

[
〈θc, z

⋆
c 〉+ 〈θc, z

⋆⋆
c 〉
]
, with z⋆c = argmin

x∈Xc

〈θc, x〉, z
⋆⋆
c = argmin

x∈Xc\{z
⋆
c}
〈θc, x〉 .

For convenience, let Bc := 1
2

[
〈θc, z

⋆
c 〉 + 〈θc, z

⋆⋆
c 〉
]
. Note that 〈θc, z

⋆
c 〉 ≤ Bc ≤ 〈θc, x〉 for all x ∈ Xc \ {z⋆c} by

definition of z⋆c . We now rewrite the difference D(∆↑c)−D(0):

D(∆↑c)−D(0) =
∑

d∈Vconf

min
x∈Xd

〈θ
∆↑

c

d , x〉+
∑

v∈Vdet

min
x∈Xv

〈θ
∆↑

c
v , x〉 −

[
∑

d∈Vconf

min
x∈Xd

〈θd, x〉+
∑

v∈Vdet

min
x∈Xv

〈θv, x〉

]

= min
x∈Xc

〈θ
∆↑

c
c , x〉 − min

x∈Xc

〈θc, x〉+
∑

u∈c

min
x∈Xu

〈θ
∆↑

c
u , x〉 −

∑

u∈c

min
x∈Xu

〈θu, x〉

= min
x∈Xc

∑

u∈c

[
θc(u)− θc(u) +Bc

]
· x(u)− 〈θc, z

⋆
c 〉+

∑

u∈c

[

min
x∈Xu

〈θ
∆↑

c
u , x〉 − min

x∈Xu

〈θu, x〉

]

= min
{
0, Bc

}
− 〈θc, z

⋆
c 〉+

∑

u∈c

[

min
x∈Xu

(
〈θu, x〉+ [θc(u)−Bc] · xdet

)
− min

x∈Xu

〈θu, x〉

]

If z⋆c (u) = 0 for all u ∈ c, Equation (33) holds, as in this case θc(u) ≥ Bc ≥ 0 for all u ∈ c. So we are left with the
case that there exists u⋆ ∈ c such that z⋆c (u

⋆) = 1. Note that u⋆ is unique since z⋆c ∈ Xc, cf. (8). In particular,
z⋆c (u) = 0 for all u ∈ c, u 6= u⋆. Furthermore, it is 〈θc, z

⋆
c 〉 = θc(u

⋆) ≤ Bc ≤ 0. We now obtain:

D(∆↑c)−D(0) = min
{
0, Bc

}
− 〈θc, z

⋆
c 〉+

∑

u∈c :
z⋆
c (u)=0

[

min
x∈Xu

(
〈θu, x〉+ [θc(u)−Bc] · xdet

)
− min

x∈Xu

〈θu, x〉

]

+ min
x∈Xu⋆

(
〈θu⋆ , x〉+ [θc(u

⋆)−Bc] · xdet

)
− min

x∈Xu⋆

〈θu⋆ , x〉

≥ Bc − 〈θc, z
⋆
c 〉+ min

x∈Xu⋆

〈θu⋆ , x〉+ 〈θc, z
⋆
c 〉 −Bc − min

x∈Xu⋆

〈θu⋆ , x〉 = 0

Hence, D(∆↑c)−D(0) ≥ 0.

Case 2: Let ∆ = ∆↑u, u ∈ Vdet arbitrary but fixed. Recall that for all e ∈ conf(u):

∆↑u(e) := min
x∈Xu : xdet=1

〈θu, x〉

|conf(u)|
=

1

|conf(u)|
min

x∈Xu : xdet=1
〈θu, x〉 .

Now, rewriting the difference D(∆↑u)−D(0) yields:

D(∆↑u)−D(0)

=
∑

v∈Vdet

min
x∈Xv

〈θ
∆↑

u
v , x〉+

∑

c∈Vconf

min
x∈Xc

〈θ
∆↑

u
c , x〉 −

[
∑

v∈Vdet

min
x∈Xv

〈θv, x〉+
∑

c∈Vconf

min
x∈Xc

〈θc, x〉

]

= min
x∈Xu

〈θ
∆↑

u
u , x〉 − min

x∈Xu

〈θu, x〉+
∑

c∈Vconf :
u∈c

min
x∈Xc

〈θ
∆↑

u
c , x〉 −

∑

c∈Vconf :
u∈c

min
x∈Xc

〈θc, x〉

proof continues on next page

S. Haller, M. Prakash, L. Hutschenreiter, T. Pietzsch, C. Rother, F. Jug, P. Swoboda, B. Savchynskyy

D(∆↑u)−D(0)

= min
x∈Xu

[

〈θu, x〉 − xdet ·
∑

e∈conf(u)

∆↑u(e)
]

− min
x∈Xu

〈θu, x〉+
∑

c∈Vconf :
u∈c

[

min
x∈Xc

(
〈θc, x〉+∆↑u(u c) · x(u)

)
− min

x∈Xc

〈θc, x〉

]

= min
x∈Xu

[

〈θu, x〉 − xdet · min
y∈Xu :
ydet=1

〈θu, y〉
]

− min
x∈Xu

〈θu, x〉+
∑

c∈Vconf :
u∈c

[

min
x∈Xc

(
〈θc, x〉+

x(u)
|conf(u)| · min

y∈Xu :
ydet=1

〈θu, y〉
)
− min

x∈Xc

〈θc, x〉

]

= min
{

0, min
x∈Xu :
xdet=1

〈θu, x〉 − min
y∈Xu :
ydet=1

〈θu, y〉
}

−min
x∈Xu

〈θu, x〉+
∑

c∈Vconf :
u∈c

[

min
x∈Xc

(
〈θc, x〉+

x(u)
|conf(u)| · min

y∈Xu :
ydet=1

〈θu, y〉
)
− min

x∈Xc

〈θc, x〉

]

≥ 0− min
x∈Xu

〈θu, x〉+
∑

c∈Vconf :
u∈c

[

min
x∈Xc

〈θc, x〉+ min
x∈Xc

(
x(u)
|conf(u)| · min

y∈Xu :
ydet=1

〈θu, y〉
)

− min
x∈Xc

〈θc, x〉

]

= − min
x∈Xu

〈θu, x〉+
∑

c∈Vconf :
u∈c

min
x∈Xc

(
x(u)
|conf(u)| · min

y∈Xu :
ydet=1

〈θu, y〉
)

= − min
x∈Xu

〈θu, x〉+
∑

c∈Vconf :
u∈c

min
{

0, 1
|conf(u)| · min

y∈Xu :
ydet=1

〈θu, y〉
}

= − min
x∈Xu

〈θu, x〉+min
{

0, min
x∈Xu,xdet=1

〈θu, x〉
}

= − min
x∈Xu

〈θu, x〉+ min
x∈Xu

〈θu, x〉 = 0

Hence, D(∆↑u)−D(0) ≥ 0.

Case 3: Let ∆ = ∆→u , u ∈ Vdet arbitrary but fixed. Recall that for all e ∈ out(u):

∆→u (e) := min
x∈Xu :
xout(e)=1

〈θu, x〉 −Θu,out, if e ∈ Emove, (∆→u)v(e) :=
1
2

[

min
x∈Xu :
xout(e)=1

〈θu, x〉−Θu,out

]

, if e = u⇒v/w

where Θu,out := min
{

0, 1
2

[
〈θu, x

⋆
u〉+ 〈θu, (1, x

⋆
u,in, y

⋆
u,out)〉

]}

, x⋆
u := argmin

x∈Xu : xdet=1
〈θu, x〉, and y⋆u := argmin

x∈Xu : xdet=1,
xin 6=x⋆

u,in, xout 6=x⋆
u,out

〈θu, x〉.

Using similar techniques as above we can rewrite the difference D(∆→u)−D(0) as follows:

D(∆→u)−D(0)

=
∑

v∈Vdet

min
x∈Xv

〈θ
∆→

u
v , x〉+

∑

c∈Vconf

min
x∈Xc

〈θ
∆→

u
c , x〉 −

[
∑

v∈Vdet

min
x∈Xv

〈θv, x〉+
∑

c∈Vconf

min
x∈Xc

〈θc, x〉

]

= min
x∈Xu

〈θ
∆→

u
u , x〉+

∑

u→v∈
Emove ∩ out(u)

min
x∈Xv

〈θ
∆→

u
v , x〉+

∑

u⇒v/w∈
Ediv ∩ out(u)

[

min
x∈Xv

〈θ
∆→

u
v , x〉+ min

x∈Xw

〈θ
∆→

u
w , x〉

]

−

(

min
x∈Xu

〈θu, x〉+
∑

u→v∈
Emove ∩ out(u)

min
x∈Xv

〈θv, x〉+
∑

u⇒v/w∈
Ediv ∩ out(u)

[

min
x∈Xv

〈θv, x〉+ min
x∈Xw

〈θw, x〉
]
)

= min
x∈Xu

[

〈θu, x〉−
∑

e∈out(u)∩Emove

∆→u (e) · xout(e)−
∑

e=u⇒v/w∈
out(u)∩Ediv

[
(∆→u)v(e) + (∆→u)w(e)

]
· xout(e)

]

+
∑

e=u→v∈
Emove ∩ out(u)

min
x∈Xv

[

〈θv, x〉+∆→u (e) · xin(e)

]

+
∑

e=u⇒v/w∈
Ediv ∩ out(u)

[

min
x∈Xv

(

〈θv, x〉+ (∆→u)v(e) · xin(e)

)

+ min
x∈Xw

(

〈θw, x〉+ (∆→u)w(e) · xin(e)

)]

−

(

min
x∈Xu

〈θu, x〉+
∑

u→v∈
Emove ∩ out(u)

min
x∈Xv

〈θv, x〉+
∑

u⇒v/w∈
Ediv ∩ out(u)

[

min
x∈Xv

〈θv, x〉+ min
x∈Xw

〈θw, x〉
]
)

proof continues on next page

A Primal-Dual Solver for Large-Scale Tracking-by-Assignment

For convenience, we set Bout :=
1
2

[
〈θu, x

⋆
u〉+ θu(1, x

⋆
u,in, y

⋆
u,out)]. Observe Bout ≥ 〈θu, x

⋆
u〉. With this we get:

D(∆→u)−D(0)

= min
x∈Xu

[

〈θu, x〉 −
∑

e∈out(u)

(

min
y∈Xu :
yout(e)=1

〈θu, y〉 −min{0, Bout}

)

· xout(e)

]

+
∑

e=u→v∈
Emove ∩ out(u)

min
x∈Xv

[

〈θv, x〉+

(

min
y∈Xu :
yout(e)=1

〈θu, y〉 −min{0, Bout}

)

· xin(e)

]

+
∑

e=u⇒v/w∈
Ediv ∩ out(u)

[

min
x∈Xv

(

〈θv, x〉+
1

2

[

min
y∈Xu :
yout(e)=1

〈θu, y〉 −min{0, Bout}

]

· xin(e)

)

+ min
x∈Xw

(

〈θw, x〉+
1

2

[

min
y∈Xu :
yout(e)=1

〈θu, y〉 −min{0, Bout}

]

· xin(e)

)]

−

(

min
x∈Xu

〈θu, x〉+
∑

u→v∈
Emove ∩ out(u)

min
x∈Xv

〈θv, x〉+
∑

u⇒v/w∈
Ediv ∩ out(u)

[

min
x∈Xv

〈θv, x〉+ min
x∈Xw

〈θw, x〉
])

≥ min

{

0, min
e∈out(u)

[

min
x∈Xu :
xout(e)=1

〈θu, x〉 − min
y∈Xu :
yout(e)=1

〈θu, y〉+min{0, Bout}

]}

+
∑

u→v∈
Emove ∩ out(u)

min
x∈Xv

〈θv, x〉+
∑

u⇒v/w∈
Ediv ∩ out(u)

[

min
x∈Xv

〈θv, x〉+ min
x∈Xw

〈θw, x〉

]

+
∑

e∈out(u)

min
{

0, min
y∈Xu,

yout(e)=1

〈θu, y〉 −min{0, Bout}
}

−

(

min
x∈Xu

〈θu, x〉+
∑

u→v∈
Emove ∩ out(u)

min
x∈Xv

〈θv, x〉+
∑

u⇒v/w∈
Ediv ∩ out(u)

[

min
x∈Xv

〈θv, x〉+ min
x∈Xw

〈θw, x〉
])

= min{0, Bout}+
∑

e∈out(u)

min
{

0, min
y∈Xu,

yout(e)=1

〈θu, y〉 −min{0, Bout}
}

− min
x∈Xu

〈θu, x〉

= min{0, Bout}+min
{

0, 〈θu, x
⋆
u〉 −min{0, Bout}

}

−min{0, 〈θu, x
⋆
u〉} = 0

Hence, D(∆→u)−D(0) ≥ 0.

Case 4: Let ∆ = ∆←u , u ∈ Vdet arbitrary but fixed. In this case the argument is completely analogous to 3.

Proposition 4. The maximization of the dual (11) yields the same value as the natural LP relaxation of (10),
more precisely

max
λ∈Λ

[

D(λ) =
∑

v∈Vdet

min
xv∈Xv

〈θλv , xv〉+
∑

c∈Vconf

min
xc∈Xc

〈θλc , xc〉
]

= min
x∈[0,1]

st. (9) hold

[

E(θ, x) =
∑

v∈Vdet

〈θv, xv〉+
∑

c∈Vconf

〈θc, xc〉
]

. (34)

Proof. Instead of showing this result directly we will reference the corresponding general results in the literature
as this property is not special to the Lagrange decomposition at hand. We refer to the excellent survey by
Guignard [6] that summarizes the Lagrange decomposition technique and gives a number of mathematical and
applied insights. Generally, it is known that the Lagrange decomposition is always at at least as good as the LP
relaxation [6], i. e. using “≤” instead of “=” in (34). If the relaxed solutions for all subproblems of the Lagrange
decomposition are integer (i. e. the LP relaxation of all subproblems is tight) then the Lagrange decomposition
dual is not stronger than the LP relaxation, i. e. they have the same optimal value [6, Corallary 5.1].

In our decomposition we have dualized all coupling constraints (9) which leads us to the dual function

D(λ) =
∑

v∈Vdet

min
xv∈Xv

〈θλv , xv〉+
∑

c∈Vconf

min
xc∈Xc

〈θλc , xc〉 . (11)

All subproblems in our dual D(λ) consists of minimizing simple inner products. Hence it is trivial to see that the
the LP relaxation of all subproblems are tight.

	Introduction
	Standard tracking as ILP
	Our decomposable representation
	Dual block-coordinate ascent (BCA)
	Primal heuristics
	Experimental evaluation
	Supplementary Material
	Project website
	Tracking-by-Assignment formulation and cost computation
	Source code of our cell-tracking solver
	Detailed information about the datasets
	Detailed convergence plots
	Proofs of mathematical statements

