
Parametric Markov Chains:
PCTL Complexity and Fraction-free Gaussian Elimination

Christel Baiera,1, Christian Henselc,2, Lisa Hutschenreiterb,1, Sebastian Jungesc,2, Joost-Pieter Katoenc,2,
Joachim Kleina,1

aTechnische Universität Dresden, Dresden, Germany
bHeidelberg University, Heidelberg, Germany

cRWTH Aachen University, Aachen, Germany

Abstract

Parametric Markov chains have been introduced as a model for families of stochastic systems that rely on
the same graph structure, but differ in the concrete transition probabilities. The latter are specified by
polynomial constraints over a finite set of parameters. Important tasks in the analysis of parametric Markov
chains are (1) computing closed-form solutions for reachability probabilities and other quantitative measures
and (2) finding symbolic representations of the set of parameter valuations for which a given temporal logical
formula holds as well as (3) the decision variant of (2) that asks whether there exists a parameter valuation
where a temporal logical formula holds. Our contribution to (1) is to show that existing implementations for
computing rational functions for reachability probabilities or expected costs in parametric Markov chains
can be improved by using fraction-free Gaussian elimination, a long-known technique for linear equation
systems with parametric coefficients. Our contribution to (2) and (3) is a complexity-theoretic discussion of
the model-checking problem for parametric Markov chains and probabilistic computation tree logic (PCTL)
formulas. We present an exponential-time algorithm for (2) and a PSPACE upper bound for (3). Moreover,
we identify fragments of PCTL and subclasses of parametric Markov chains where (1) and (3) are solvable in
polynomial time and establish NP-hardness for other PCTL fragments.

Keywords: parametric Markov chain, parametric model checking, Gaussian elimination, PCTL, complexity

1. Introduction

Finite-state Markovian models are widely used as an operational model for the quantitative analysis of
systems with probabilistic behavior. In many cases only estimates of the transition probabilities are available.
This, for instance, applies to fault-tolerant systems where the transition probabilities are derived from error
models obtained using statistical methods. Other examples are systems operating with resource-management
protocols that depend on stochastic assumptions on the future workload, or cyber-physical systems where
the interaction with its environment is represented stochastically. Furthermore, the transition probabilities
of Markovian models often depend on configurable system parameters that can be adjusted at design-time.
The task of the designer is to find a parameter setting that is optimal with respect to a given objective.

Email addresses: Christel.Baier@tu-dresden.de (Christel Baier), dehnert@cs.rwth-aachen.de (Christian Hensel),
lisa.kruse@iwr.uni-heidelberg.de (Lisa Hutschenreiter), sebastian.junges@cs.rwth-aachen.de (Sebastian Junges),
katoen@cs.rwth-aachen.de (Joost-Pieter Katoen), Joachim.Klein@tu-dresden.de (Joachim Klein)

1The authors are supported by the DFG through the Collaborative Research Center SFB 912 – HAEC, the CRC/TR 248 –
Foundations of Perspicuous Software Systems, the Excellence Initiative by the German Federal and State Governments (clusters
of excellence cfaed and CeTI), the Research Training Group QuantLA (GRK 1763) and the DFG-projects BA-1679/11-1 and
BA-1679/12-1.

2The authors are supported by the Research Training Group UnRAVeL (GRK 2236) and the CDZ project CAP (GZ 1023).

Preprint submitted to Elsevier December 9, 2018

The possible change of transition probabilities motivated the investigation of interval Markov chains
(IMCs) [1]. The transitions of IMCs are equipped with intervals of transition probabilities rather than
concrete probability values. The model of parametric Markov chains (pMCs) has been been introduced
independently by Daws [2] and Lanotte et al. [3]. pMCs are more general than IMCs as their transition
probabilities are given by polynomials with rational coefficients over a fixed set of real-valued parameters
x1, . . . , xk, and allow for expressing dependencies between transition probabilities. These concepts can
be further generalized to accommodate rational functions, that is, quotients of polynomials, as transition
probabilities (see, e. g., [4]).

It is well-known that the probabilities ps for reachability conditions ♦Goal in pMCs with a finite state
space S and a fixed underlying graph structure can be characterized as the unique solution of a linear
equation system A · p = b where p = (ps)s∈S is the solution vector, and A = A(x1, . . . , xk) is a matrix
where the coefficients are rational functions. Likewise, b = b(x1, . . . , xk) is a vector whose coefficients are
rational functions. Note that it is no limitation to assume that the entries in A and b are polynomials,
as rational function entries can be converted to a common denominator, which can then be removed. By
construction, the denominator is never 0. Now, A · p = b can be viewed as a linear equation system over the
field Q(x1, . . . , xk) of rational functions with rational coefficients. As a consequence, the probabilities for
reachability conditions are rational functions. This has been observed independently by Daws [2] and Lanotte
et al. [3]. Daws [2] describes a computation scheme that relies on a state-elimination algorithm inspired by
the state-elimination algorithm for computing regular expressions for nondeterministic finite automata. This,
however, is fairly the same as Gaussian elimination for matrices over the field of rational functions.

As observed by Hahn et al. [4], the näıve implementation of Gaussian elimination for pMCs, which
treats the polynomials in A and b as syntactic atoms, leads to a representation of the rational functions
ps = ps(x1, . . . , xk) as the quotient of extremely (exponentially) large polynomials. In their implementation
PARAM [5] (as well as in the re-implementation within PRISM [6]), the authors of [4] use computer-algebra
tools to simplify rational functions in each step of Gaussian elimination by identifying the greatest common
divisor (gcd) of the numerator and the denominator polynomial. Together with polynomial-time algorithms
for the gcd-computation of univariate polynomials (k=1), this approach yields a polynomial-time algorithm for
computing the rational functions for reachability probabilities in pMCs with a single parameter. Unfortunately,
gcd-computations are known to be expensive for the multivariate case (i. e., k > 2) [7]. To mitigate the cost
of the gcd-computations, the model checker Storm [8] successfully uses techniques proposed in [9] such as
caching and the representation of the polynomials in partially factorized form during the elimination steps.

However, it is possible to completely avoid gcd-computations by using one-step fraction-free Gaussian
elimination. Surprisingly, this has not yet been investigated in the context of pMCs, although it is a
well-known technique in mathematics. According to Bareiss [10], this variant of Gaussian elimination goes
at least back to Camille Jordan (1838–1922), and has been rediscovered several times since. Like standard
Gaussian elimination it relies on the triangulation of the matrix, and finally obtains the solution by back
substitution. Applied to matrices over polynomial rings the approach generates matrices with polynomial
coefficients (rather than rational functions) and ensures that the degree of the polynomials in all intermediate
matrices grows at most linearly. This is achieved by dividing, in each elimination step, by a factor known by
construction. Thus, when applied to a pMC with linear expressions for the transition probabilities, the degree
of all polynomials in the solution vector is bounded by the number of states. So for any fixed number of
parameters k, one-step fraction-free Gaussian elimination yields an alternative polynomial-time algorithm for
computing the rational functions for reachability probabilities. Analogous statements hold for expectations
of random variables that are computable via linear equation systems, such as the expected accumulated
weights until reaching a goal, and the expected mean payoff.

Contribution and paper structure. The purpose of this paper is to study the complexity of the
model-checking problem for pMCs and probabilistic computation tree logic (PCTL) [11], and its extensions
by expectation operators for pMCs augmented by weights for its states. In the first part of the paper (Section
3), we discuss the use of Bareiss’ one-step fraction-free Gaussian elimination for computing reachability
probabilities and expected accumulated rewards. The main advantage of the one-step fraction-free Gaussian
elimination is that it both avoids a blow-up of the intermediate equations, and the use of the costly gcd-

2

Table 1: Complexity results in a nutshell with references to the crucial theorems.

Univariate / Fixed Multivariate
PCTL
(no nesting)

in P [Thm.10]
NP-hard (conjunction [Thm.9] or augmented [Thm.8])

in PSPACE [Thm.7]

PCTL NP-complete (cyclic) [Thm.11]
NP-hard [Thm.8,9]
in PSPACE [Thm.7]

PCTL+EC NP-complete (acyclic) [Thm.11]
NP-hard [Thm.8,9]
in PSPACE [Thm.7]

computations on multivariate polynomials. We implemented the fraction-free Gaussian elimination approach
as an alternative solver for parametrized linear equation systems within Storm [8], the state-of-the-art
probabilistic model checker for pMCs, and empirically evaluate its performance in comparison with the
standard approaches. The second part of the paper (Section 4) presents complexity-theoretic results for the
PCTL model-checking problem for pMCs.

• We describe an exponential-time algorithm for computing a symbolic representation of all parameter
valuations under which a given PCTL formula holds, and provide a PSPACE upper bound for the
decision variants that ask whether a given PCTL formula holds for some or all admissible parameter
valuations.

• The known NP-/coNP-hardness results for IMCs [12, 13] carry over to the parametric case. We
strengthen this result by showing that the existential PCTL model-checking problem remains NP-hard
even for acyclic pMCs and PCTL formulas with a single probability operator.

• For the univariate case, we prove NP-completeness for the existential PCTL model-checking problem,
and identify two fragments of PCTL where model checking is solvable in polynomial time: (1) Boolean
combinations of threshold constraints for reachability probabilities, expected accumulated weights until
reaching a goal, and expected mean payoffs, and (2) PCTL formulas in positive normal form with lower
probability thresholds interpreted over pMCs satisfying some monotonicity properties.

• Furthermore, we observe that the model-checking problem for PCTL with expectation operators for
reasoning about expected costs until reaching a goal is in P for non-parametric Markov chains where
the weights of the states are given as univariate polynomials, when restricting to Boolean combinations
of the expectation operators.

We summarize the main complexity results in Table 1. A preliminary conference version of this article
has appeared as [14]. This article extends the conference version with proofs omitted due to lack of space, a
stronger NP-hardness result for existential model checking, a significantly improved implementation and an
extended experimental evaluation.

Related work. Fraction-free Gaussian elimination is well-known in mathematics, and has been further
investigated in various directions for matrices over unique factorization domains (such as polynomial rings),
see e. g. [15, 16, 17, 18]. To the best of our knowledge, fraction-free Gaussian elimination has not yet been
studied in the context of parametric Markovian models.

Besides the above mentioned work [2, 5, 4, 9, 19] on the computation of the rational functions for
reachability probabilities in pMCs, [3] identifies instances where the parameter synthesis problem for pMCs
with one or two parameters and probabilistic reachability constraints is solvable in polynomial time. These
rely on the fact that there are closed-form representations of the (complex) zero’s for univariate polynomials
up to degree four and rather strong syntactic characterizations of pMCs. In Section 3, we provide an example
to illustrate that the number of monomials in the numerators of the rational functions for reachability
probabilities can grow exponentially in the number of states. We hereby reveal a flaw in [3] where the
polynomial-time computability of the rational functions for reachability probabilities has been stated even for

3

the multivariate case. [20] considers an approach for solving the parametric linear equation system obtained
from sparse pMCs via Laplace expansion.

Model-checking problems for IMCs and temporal logics have been studied by several authors. Most in
the spirit of our work on the complexity of the PCTL model-checking problem for pMCs is [12] which studies
the complexity of PCTL model checking in IMCs. Further complexity-theoretic results of the model-checking
problem for IMCs and temporal logics have been established in [13] for ω-PCTL (extending PCTL by Boolean
combinations of Büchi and co-Büchi conditions), and in [21] for linear temporal logic (LTL). Our results
of the second part can be seen as an extension of the work [12, 13] for the case of pMCs. The NP lower
bound for the multivariate case and a single threshold constraint for reachability probabilities strengthen the
NP-hardness results of [12]. In [22], NP-completeness of existential model checking for pMCs with changing
graph structure is shown. Additionally, that paper provides a proof for square-root-sum hardness.

There exist several approaches to check whether all valuations (in some defined region) of a pMC satisfy
a PCTL formula. PARAM [4, 5] employs a heuristic, sampling based approach, while PROPhESY [19] relies
on SMT solving via the existential theory of the reals. For the same problem, [23] uses a parameter lifting
technique that avoids having to solve the parametric equation system by obtaining lower and upper bounds
for the values in a given region by a reduction to non-parametric Markov decision processes. The existence
of some value that satisfies the property is also addressed in [24], which reduces the problem to a series of
geometric programs.

2. Preliminaries

The definitions in this section require a general understanding of Markov models, standard model checking,
and temporal logics. More details can be found, e. g., in [25, 26].

Discrete-time Markov chains. A (discrete-time) Markov chain (MC) M is a tuple (S, sinit, E, P) where
S is a non-empty, finite set of states containing the initial state sinit ∈ S, E ⊆ S × S is a transition relation,
and P : S × S → [0, 1] is the transition probability function satisfying P (s, t) = 0 if and only if (s, t) /∈ E, and∑
t∈S P (s, t) = 1 for all s ∈ S with Post(s)

def
= {t ∈ S : (s, t) ∈ E} nonempty. We refer to GM = (S,E) as

the graph of M. A state s ∈ S in which Post(s) = ∅ is called a trap (state) of M.
An infinite path in M is an infinite sequence s0s1 . . . ∈ Sω of states such that (si, si+1) ∈ E for i ∈ N.

Analogously, a finite path in M is a finite sequence s0s1 . . . sm ∈ S∗ of states in M such that (si, si+1) ∈ E
for i = 0, 1, . . . ,m−1. A path is called maximal if it is infinite or ends in a trap. Let Paths(s) denote the
set of all maximal paths in M starting in s. Relying on standard techniques, every MC induces a unique
probability measure PrMs on the set of all paths.

Furthermore, we can extend an MC with a weight function wgt : S → Q. The value assigned to a specific
state s ∈ S is called the weight of s. It is sometimes also referred to as the reward of s.

Steady-state probabilities and mean payoff. Given a strongly connected MC M = (S, sinit, E, P), the
steady-state probability ζt for a state t ∈ S is the long-run frequency of visiting t along infinite paths. It is
well-known that in finite-state strongly connected MC, the steady-state probabilities do not depend on the
starting state and can be obtained as the unique solution of the linear equations∑

t∈S
ζt = 1 and ζt =

∑
s∈S

P (s, t) · ζs for each state s ∈ S.

In matrix notations, ζ = (ζt)t∈S is the unique (row) vector satisfying ζ ·A = b, where the matrix A arises
from I − P by replacing the column of one state t with the column vector (1, 1, . . . , 1), and where b is the
row vector (0, 0, . . . , 0, 1).

Given an MCM = (S, sinit, E, P) without traps that is augmented with a weight function wgt : S → Q, and
T ⊆ S, the mean payoff along an infinite path inM with respect to T is the mean weight accumulated along
the path when setting all weights assigned to states not in T to zero. Formally, if π = s0s1s2 . . . ∈ Paths(s0)
then

mp(T)(π) = lim sup
n→∞

1

n
·
n∑
i=0

wgtT (si),

4

where wgtT (s) = wgt(s) if s ∈ T , and wgtT (s) = 0 if s /∈ T . As almost all such paths will end up in a bottom
strongly connected component (BSCC) of M, i. e., a subgraph of GM from which no states in S outside this
subgraph can be reached, within finitely many steps, it suffices to consider their behavior within this BSCC.

It is known that for almost all paths π eventually entering a BSCC B, the mean payoff is

mp(T)(π) =
∑
s∈B

ζs · wgtT (s)
def
= mp(T)(B)

where ζs is the steady-state probability. Note that the value mp(T)(B) only depends on B.
EMs (mp(T)) denotes the expectation of the random variable mp(T) when starting from state s. With the

above observation we obtain:

EMs (mp(T)) =
∑
B∈B

mp(T)(B) · PrMs (♦B)

where PrMs (♦B) stands for PrMs
{
π = s0s1s2 . . . ∈ Paths(s) : si ∈ B for some i

}
and B denotes the set of

BSCCs in M. Thus, the expected mean payoffs EMs (mp(T)) are computable by solving the linear equation
systems for the steady-state probabilities for each BSCC of M (see above) and the linear equation systems
for the reachability probabilities for the BSCCs.

Accumulated weight. Given an MC M with weights, and T ⊆ S, the accumulated weight along a path
in M until reaching a state in T is the sum of weights assigned to states before the first state in T . For a
finite path s0s1 . . . sm, let

wgt(s0s1 . . . sm) = wgt(s0) + wgt(s1) + . . .+ wgt(sm).

We now define ♦T as a random variable that maps maximal paths to values in R∪{±∞}. Let π = s0s1s2 . . .
be a maximal path, i. e., π is infinite, or finite and ending in a trap. If π visits T , i.e., there is some i with
si ∈ T , then

(♦T)M(π) = wgt(s0 s1 . . . sn−1)

where n is the smallest index with sn ∈ T . Note that (♦T)(π) = 0 if s0 ∈ T . If π does not visit T ,
then (♦T)M(π) = 0. The expected accumulated weight for T in s, denoted by EMs (♦T

)
, is defined as the

expectation of the random variable ♦T . In this article, we consider the case that almost all paths reach
T , i.e., that PrMs (♦T) = 1 for all states s ∈ S. In this case, the value assigned by (♦T)M(π) to paths not
visiting T is irrelevant, as the probability mass of the set of those paths is zero.

If PrMs (♦T) = 1 for all states s ∈ S, then the expected accumulated weight can be computed by solving
the linear equation system resulting from the equations

EMs (♦T)−
∑
t∈S

P (s, t) · EMt (♦T) = wgt(s)

for s ∈ S \ T , with EMt (♦T) = 0 for all t ∈ T in mind.

Parameters, polynomials, and rational functions. Let x1, . . . , xk be parameters that can assume any
real value, x = (x1, . . . , xk). We write Q[x] for the polynomial ring over the rationals with variables x1, . . . , xk.
Each polynomial f ∈ Q[x] can be written as a sum of monomials, i. e., f =

∑
(i1,...,ik)∈I αi1,...,ik ·x

i1
1 ·x

i2
2 ·. . .·x

ik
k

where I is a finite subset of Nk and αi1,...,ik ∈ Q. If I is empty, or αi1,...,ik = 0 for all tuples (i1, . . . , ik) ∈ I,
then f is the null function, generally denoted by 0. The degree of f is defined as deg(f) = max

{
i1 + . . .+ ik :

(i1, . . . , ik) ∈ I, αi1,...,ik 6= 0
}

where max(∅) = 0.
A linear function is a function f ∈ Q[x] with deg(f) 6 1. A rational function is a function of the form

f/g with f, g ∈ Q[x], g 6= 0. The field of all rational functions is denoted by Q(x). We write Constr [x] for
the set of all polynomial constraints of the form f ./ g where f, g ∈ Q[x], and ./∈ {<,6, >,>,=}.

Parametric Markov chains. A parametric Markov chain on x, pMC for short, is a tuple M = (S, sinit, E,P)
where S, sinit, and E are defined as for MCs, and P : S × S → Q(x) is the transition probability function

5

with P(s, t) = 0, i. e., the null function, if and only if (s, t) /∈ E. Intuitively, a pMC defines the family of
Markov chains arising by plugging in concrete values for the parameters. As for Markov chains, we can
extend pMCs with weight functions. In addition to assigning rational values, i.e., a weight function of the
form wgt : S → Q, we also consider parametric weight functions wgt : S → Q(x).

A parameter valuation ξ = (ξ1, . . . , ξk) ∈ Rk is said to be admissible for M if for each state s ∈ S we have∑
t∈S Pξ(s, t) = 1 if Post(s) nonempty, and Pξ(s, t) > 0 if and only if (s, t) ∈ E, where Pξ(s, t) = P(s, t)(ξ)

for all (s, t) ∈ S × S. Let XM, or briefly X, denote the set of admissible parameter valuations for M.
Given ξ ∈ X the Markov chain associated with ξ is Mξ = M(ξ) = (S, sinit, E, Pξ). The semantics of the
pMC M is then defined as the family of Markov chains induced by admissible parameter valuations, that
is, JMK =

{
M(ξ) : ξ ∈ X

}
. The admissibility constraints ensure that all of the Markov chains JMK

share the same underlying graph-structure GM and that qualitative reachability probabilities (e. g. “can
be reached with positive probability”, “can be reached with probability 1”) do not depend on the concrete
parameter valuations. This property can be used in a graph-based preprocessing step to identify states where
a reachability probability is always 0 and remove those during the construction of the linear equation system,
ensuring the uniqueness of the solution.

An augmented pMC is a tuple M = (S, sinit, E,P,C) where S, sinit, E, and P are defined as for pMCs,
and C ⊂ Constr [x] is a finite set of polynomial constraints. A parameter valuation ξ is admissible for an
augmented pMC if it is admissible for the induced plain pMC (S, sinit, E,P), and satisfies all polynomial
constraints in C. As for plain pMC, we denote the set of admissible parameter valuations of an augmented
pMC by XM, or briefly X.

A, possibly augmented, pMC M is called linear, or polynomial, if all transition probability functions and
constraints are linear functions in x, or polynomials in x, respectively.

Interval Markov chains. An interval Markov chain (IMC) [12] can be seen as a special case of a linear
augmented pMC with one parameter xs,t for each edge (s, t) ∈ E, and linear constraints αs,t E1 xs,t E2 βs,t
for each edge with αs,t, βs,t ∈ Q ∩ [0, 1] and E1,E2 ∈ {<,6}. According to the terminology introduced in
[12], this interpretation of the intervals corresponds to the semantics of IMC as an “uncertain Markov chain”.
The alternative semantics of IMC as a Markov decision process will not be considered in this paper.

Labellings. Each of these types of Markov chain, whether MC, (augmented) pMC, or IMC, can be equipped
with a labelling function L : S → 2AP, where AP is a finite set of atomic propositions. If not explicitly stated,
we assume the implicit labelling of the Markov chain defined by using the state names as atomic propositions
and assigning each name to the respective state.

Probabilistic computation tree logic. We augment the standard notion of probabilistic computation
tree logic (PCTL) [11] with operators E./r

(
ρ
)

for the expected accumulated weight and mean payoff, and
CPr(ϕ, ./, ϕ),CE(ρ, ./, ρ) for comparison. Let AP be a finite set of atomic propositions with a ∈ AP, and let
./ denote 6,>, <,>, or =, c ∈ [0, 1], and r ∈ Q. Then

Φ ::= true | a | Φ ∧ Φ | ¬Φ | P./c
(
ϕ
)
| E./r

(
ρ
)
| CPr(ϕ, ./, ϕ) | CE(ρ, ./, ρ) state formula

ϕ ::= ©Φ | Φ U Φ path formula ρ ::= ♦Φp | mp(Φ) terms for random variables

Here, the Φp in ♦Φp denotes the propositional fragment using only atomic propositions (i.e., Φp ::= true |
a | Φp ∧ Φp | ¬Φp). Below, we will impose further restrictions on the Φp in ♦Φp to ensure the existence of
the expected accumulated weight.

The basic temporal modalities are © (next) and U (until). The usual derived temporal modalities ♦
(eventually), R (release) and � (always) are as usual defined by ♦Φ

def
= true U Φ, and P./c(Φ1 R Φ2)

def
=

P./1−c((¬Φ1) U (¬Φ2)), where, e. g., 6 is > and < is >, and �Φ
def
= false R Φ.

We use PCTL to refer to unaugmented probabilistic computation tree logic. If we add only the
expectation operator we write PCTL+E, and, analogously, PCTL+C if we only add the comparison operator
for probabilities. PCTL+EC denotes the full logic defined above.

For an MC M with states labelled by L : S → AP we use the standard semantics [26], with SatM(Φ)
denoting the set of states that satisfy state formula Φ. We only recap the semantics of the probability,

6

expectation, and comparison operators here. For each state s ∈ S, s |=M P./c(ϕ) iff PrMs (ϕ) ./ c, and
s |=M CPr(ϕ1, ./, ϕ2) iff PrMs (ϕ1) ./ PrMs (ϕ2). Here PrMs (ϕ) is short for PrMs {π ∈ Paths(s) : π |=M ϕ }.

For the expectation operators, the semantics ρM of the terms ρ = ♦Φp or ρ = mp(Φ), given an MCM, are
random variables. For the mean-payoff operator, we suppose that M has no traps. This assumption ensures
that all maximal paths inM are infinite and the well-definedness of the mean payoff function mp(T) for each
T ⊆ S. The random variable mp(Φ)M assigned to the term mp(Φ) in M is given by mp(Φ)M = mp(T) for
T = SatM(Φ). The semantics of the term ♦Φp is the random variable ♦T where T = SatM(Φp). We assume

here that, for every state s ∈ S, almost all paths reach T , i.e., that PrMs (♦T) = 1. Whether this assumption
holds for an MCM solely depends on the underlying graph-structure GM of the MC and not on the concrete
probabilities. The semantics of the expectation operator E./r and the comparison operator CE(ρ1, ./, ρ2) is
then defined by s |=M E./r(ρ) iff EMs

(
ρM
)
./ r and s |=M CE(ρ1, ./, ρ2) iff EMs

(
ρM1
)
./ EMs

(
ρM2
)
, where

EMs (ρM) denotes the expectation of random variable ρM (if existent).
We write M |= Φ iff sinit |=M Φ. Throughout the paper, we shall use LTL-like notations to specify

temporal properties for maximal paths and identify them with the corresponding set of maximal paths. Thus,
e. g., if T ⊆ S then (♦T) denotes the set of maximal paths π that eventually visit a T -state.

DAG-representation and length of formulas. We consider for any PCTL+EC state formula the
directed acyclic graph (DAG) representing its syntactic structure. Each node of the DAG represents one of the
sub-state formulas. The use of a DAG rather than the syntax tree allows the representation of subformulas
that occur several times in the formula Φ by a single node. The leaves of the DAG can be the Boolean
constant true and atomic propositions. For instance, the inner nodes of the DAG of a PCTL formula
are labelled with one of the operators ∧, ¬, P./c(· U ·), P./c(© ·). Nodes labelled with ¬ and P./c(© ·)
have a single outgoing edge, while nodes labelled with ∧ or P./c(· U ·) have two outgoing edges. For the
above-mentioned extensions of PCTL the set of possible inner node labels is extended accordingly. So, for
example, a node v representing the PCTL+C formula CPr(©Φ1, ./,Φ2 U Φ3) has three outgoing edges. If
Φ1 = Φ2, then there are two edges from v to a node representing Φ1. The length of a PCTL+EC formula is
defined as the number of nodes in its DAG.

3. Fraction-free Gaussian elimination

Given a pMC M as in Section 2, the probabilities PrM(x)
s (♦a) for reachability conditions are rational

functions and computable via Gaussian elimination [2, 3]. Algorithms based on this observation are realised
in, e. g., the tools PARAM [5] and Storm [8, 19] together with techniques based on gcd-computations on
multivariate polynomials. In this section, we discuss the potential of fraction-free Gaussian elimination as
an alternative, which is well-known in mathematics [10, 7], but to the best of our knowledge, has not yet
been considered in the context of pMCs.

While the given definitions allow for rational functions in the transition probability functions of (augmented)
pMCs, we focus on polynomial (augmented) pMCs throughout the remainder of the paper. Generally, a
linear equation system containing rational functions as coefficients can be rearranged to one containing only
polynomials by multiplying each equation with the common denominator of the respective rational functions.
Due to the multiplications this involves the risk of a blow-up in the coefficient size. We avoid this blowup by
adding variables in the following way. Let M = (S, sinit, E,P,C) be an (augmented) pMC. For all (s, t) ∈ E
introduce a fresh variable xs,t. By definition P(s, t) =

fs,t
gs,t

for some fs,t, gs,t ∈ Q[x]. Let P′(s, t) = fs,t · xs,t
if (s, t) ∈ E, P′(s, t) = 0 if (s, t) /∈ E, C′ = C ∪ {gs,t · xs,t = 1 : (s, t) ∈ E}. Then M′ = (S, sinit, E,P

′,C′) is a
polynomial augmented pMC.

3.1. Linear equation systems with polynomial coefficients

Let x1, . . . , xk be parameters, x = (x1, . . . , xk). We consider linear equation systems of the form A · p = b,
where A = (ai,j)i,j=1,...,n is a non-singular n× n-matrix with ai,j = ai,j(x) ∈ Q[x]. Likewise, b = (bi)i=1,...,n

is a vector of length n with bi = bi(x) ∈ Q[x]. The solution vector p = (pi)i=1,...,n is a vector of rational

functions pi = fi/gi with fi, gi ∈ Q[x]. By Cramer’s rule, we obtain pi = det(Ai)
det(A) , where det(A) is the

7

determinant of A, and det(Ai) is the determinant of the matrix obtained when substituting the i-th column
of A by b. If the coefficients of A and b have at most degree d, the Leibniz formula implies that fi and gi
have at most degree n · d.

We first consider upper and lower bounds on the number of monomials in the solution for the case where
the degree of the polynomials is at most one, that is, all coefficients of the matrix A and the vector b have
the form β + α1x1 + . . .+ αkxk with β, α1, . . . , αk ∈ Q.

Lemma 1. If d = 1, where d is the maximum degree of the coefficients in A and b, then the number of
monomials of the polynomials fi and gi in the rational functions pi = fi/gi, i = 1, . . . , n, obtained as solutions
of A · p = b, is at most

(
n+k
k

)
, where k is the number of parameters and n the number of rows in A.

Proof. As observed above, if the coefficients of A and b have at most degree d, the Leibniz formula implies
that fi and gi have at most degree n · d. Thus, if d = 1 the polynomials fi and gi have degree at most n.
The upper bound on the number of monomials is now obtained by simple combinatorics.

Furthermore, an estimate for this upper bound is
(
2nk
)k
6
(
n+k
k

)
6
(
3n+k

k

)k
. So the number of monomials

is at most exponential in k.

Lemma 2. There is a family (Mk)k>2 of acyclic linear pMCs where Mk has k parameters and n = |S| = k+3

states, including distinguished states s0 and goal , such that PrM(x)
s0 (♦goal) is a polynomial for which even the

shortest sum-of-monomial representation has 2k monomials.

Proof. Let M = (S, sinit, E,P) be a pMC on (x1, . . . , xk) with S =
{
s0, . . . , sk, fail , goal

}
, sinit = s0, and

P(s, t) =

1
k+2 if s = s0, t 6= s0,

xi if s = si, t = goal , 0 < i 6 k,
1−xi
k−i+1 if s = si, t = sj with 0 < i < j 6 k, or s = si, t = fail , 0 < i 6 k,

0 otherwise,

whose graph G = (S,E) is depicted in Figure 1. The probability of reaching goal from the initial state is:

PrM(x)
sinit (♦ goal) =

1

k + 2
+

1

k + 2
·
∑

16m6k
i1<...<im6k

xim ·
m−1∏
j=1

1− xij
k − ij + 1

For any combination of indices (i1, . . . , im) the highest order monomial in each summand contains the
parameters in the form

∏m
j=1 xij . Therefore, any combination of parameters occurs as highest order

monomial in one of the summands.
Two summands corresponding to the index combinations (i1, . . . , im) and (j1, . . . , jm′) can only have

common non-zero monomials if im = jm′ . Observe that any common monomials consisting of k parameters
have to have the same sign, namely (−1)k−1. So they cannot cancel out. Thus, the rational function for

PrM(x)
sinit (♦ goal) has the form

∑
I⊆{1,...,k} αI ·

∏
i∈I xi with non-zero coefficients αI ∈ Q. The number of

monomials with non-zero coefficients is therefore in O(2k), that is, exponential in the number of parameters.

3.2. One-step fraction-free Gaussian elimination

Fraction-free Gaussian elimination strives to avoid a fractional representation of the intermediate matrix
values during matrix triangulation. For example, when starting with an integer matrix it ensures that the
intermediate values are integers as well. Now, when using (näıve) fraction-free Gaussian elimination the new
coefficients after the m-th step, m = 1, . . . , n− 1, are computed as

a
(m)
i,j = a

(m−1)
i,j a(m−1)

m,m − a(m−1)
i,m a

(m−1)
m,j

8

s0 s1 s2 sk.

goal

fail

Figure 1 – Graph structure of an acyclic parametric Markov chain on parameters x1, . . . , xk, with transition
probabilities 1

k+2
for transitions from s0 to any other state, xi for transitions from state si, i = 1, . . . , k, to goal ,

1
k−i+1

· (1− xi) for transitions from si to either fail or sj with j > i.

Algorithm 1 One-step fraction-free Gaussian elimination [10]

1: procedure FractionFreeGauss(A = (aij)i,j=1,...,n, b = (bi)i=1,...,n)
2: a0,0 = 1
3: for m = 1, . . . , n−1 do . triangulation, assuming am,m 6= 0

4: for i = m+1, . . . , n do
5: for j = m+1, . . . , n do
6: ai,j =

(
am,m · ai,j − ai,m · am,j

)
/am−1,m−1 . exploit exact divisibility by am−1,m−1

7: bi =
(
am,m · bi − ai,m · bm

)
/am−1,m−1 . exploit exact divisibility by am−1,m−1

8: ai,m = 0

9: for m = n−1, . . . , 1 do . back substitution

10: bm =
(
an,n · bm −

∑n
i=m+1 am,i · bi

)
/am,m . exploit exact divisibility by am,m

11: return
(
bi/an,n

)
i=1,...,n

. rational solution functions

for i, j = m+ 1, . . . , n, where a
(0)
i,j = ai,j . The bi are updated analogously. When applied to systems with

polynomial coefficients this results in doubling the degree in each step, so the degree grows exponentially.
In one-step fraction-free Gaussian elimination [10] (see Algorithm 1), the computation of the coefficients

in step m changes to

a
(m)
i,j =

(
a

(m−1)
i,j a(m−1)

m,m − a(m−1)
i,m a

(m−1)
m,j

)
/a

(m−1)
m−1,m−1

with a
(0)
0,0 = 1, analogously for the bi. Using Sylvester’s identity one can prove that a

(m)
i,j is again a polynomial,

and that a
(m−1)
m−1,m−1 is in general the maximal possible divisor of a

(m−1)
i,j a

(m−1)
m,m − a(m−1)

i,m a
(m−1)
m,j . Here, the

application of division limits the growth of the polynomials, and, as an exact divisor is known by construction,
the costly computation of the greatest common divisor, which is otherwise used in practice to limit this
growth by keeping numerator and denominator of the rational functions in the matrix coprime, is avoided.

Lemma 3. Let M = (S, sinit, E,P) be a polynomial pMC on x1, . . . , xk, and T ⊆ S. Let n = |S|, and
d = maxs,t∈S deg(P(s, t)). The rational functions for the reachability probabilities for reaching T , PrMs (♦T),

the expected accumulated weight until reaching T , EM
s

(
♦T
)
, if PrMs (♦T) = 1 for all s ∈ S, and the expected

mean payoff for T , EM
s

(
mp(T)

)
are all computable in O

(
poly(n, d)k

)
.

9

Note that PrMs (♦T) = 1 denotes here that PrMs (♦T) = 1 for all MCs M∈ JMK, i.e., for all MCs that arise
from admissible parameter valuations. All those Markov chains share the same underlying graph structure
GM and qualitative reachability does not depend on the parameter valuations but only on the graph structure.
This assumption can thus be checked using graph algorithms in polynomial time (e.g., cf. [26]).

Proof. The result is obtained via one-step fraction-free Gaussian elimination (Algorithm 1). The calculation
of the reachability probabilities as well as the expected accumulated weight can always be done by solving
a linear equation system with the transition probabilities in the coefficient matrix A and the appropriate
vector b, or, when considering the expected mean payoff, two such systems. Thus, they all fall into the same
complexity class. Here, we only consider the reachability probabilities.

If the maximal degree of the initial coefficients of A and b is d, this technique therefore guarantees
that after m steps the degree of the coefficients is at most (m+1) · d, i. e., it grows linear in d during the

procedure. For polynomials, the division by a
(m−1)
m−1,m−1 can be done using standard polynomial division. The

time-complexity of the exact multivariate polynomial division in this case is in each step O
(
poly(m, d)k

)
, so

for the full one-step fraction-free Gaussian elimination it is O
(
poly(n, d)k

)
.

In particular, the degree and representation size of the final polynomials fs = b
(n)
s and gs = a

(n)
s,s for the

rational functions PrMs (♦goal) = fs/gs is in O(n · d).
Proposition 4.3 in [3] states that the rational functions fi/gi for reachability probabilities in pMC with a

representation of the polynomials fi, gi as sums of monomials (called normal form in [3]) are computable
in polynomial time. The statement contradicts Lemma 2 which shows that the number of monomials in
the representation of a reachability probability as a sum of monomials can be exponential in the number of
parameters. However, [3, Proposition 4.3] is correct for any fixed number of variables:

Corollary 4. Let M be a polynomial pMC over k parameters and T ⊆ S. The rational functions for
the reachability probabilities for reaching T , PrMs (♦T), the expected accumulated weight until reaching T ,
EM
s

(
♦T
)
, if PrMs (♦T) = 1 for all s ∈ S, and the expected mean payoff for T , EM

s

(
mp(T)

)
are all computable

in polynomial time.

Another observation concerns the case where only the right-hand side of the linear equation system is
parametric. Systems of this form occur, for example, when considering expectation properties for (non-
parametric) MCs with parametric weights.

Lemma 5. Let A · p = b be a parametric linear equation system as defined above where A is parameter-free.
Then the solution vector p = (pi)i=1,...,n consists of polynomials of the form pi =

∑n
j=1 βj · bj with βj ∈ Q

and can be computed in polynomial time.

Proof. Using one-step fraction-free Gaussian elimination, the only interesting step in the algorithm (cf.

Algorithm 1) concerns the calculation of b
(m)
i in step m. All other computations are done with rationals only,

for which Gaussian elimination is known to be in P.
Since

b
(m)
i =

(
b
(m−1)
i a(m−1)

m,m − a(m−1)
i,m b(m−1)

m

)
/a

(m−1)
m−1,m−1,

b
(m)
i is a linear combination of the previous b

(m−1)
j , and each step can be performed in polynomial time.

Therefore, at the end of the triangulation, all b
(n−1)
i are of the form b

(n−1)
i =

∑n
j=1 σj · bj with σj ∈ Q,

j = 1, . . . , n.
The same argument applies to the back substitution. So the right-hand side of the equation system

after diagonalisation contains only linear combinations of the original bi. As there are only rationals on the
left-hand side, the results that are returned are also of the form pi =

∑n
j=1 βj · bj with βj ∈ Q, j = 1, . . . , n.

As Gaussian elimination without parameters is in P, and the computations for the right-hand side can also
be done in polynomial time, the pi can be computed in polynomial time.

10

3.3. Stratification via SCC-decomposition

It is well known (e. g., [27, 9]) that for probabilistic/parametric model checking a decomposition into
strongly-connected components (SCCs) can yield significant performance benefits due to the structure
of the underlying models. We have adapted the one-step fraction-free Gaussian elimination approach by
a preprocessing step that permutes the matrix according to the topological ordering of the SCCs. The
topological ordering ensures that the coefficient matrix already has a stair-like form at the start of the
algorithm. In the triangulation part of the algorithm, each SCC can now be considered separately, as non-zero
entries below the main diagonal only occur within each SCC. While the back-substitution in the general
one-step fraction-free elimination will result in each entry on the main diagonal being equal to the last, this
property is now only maintained within the SCCs. Formally, this means that the back substitution step in
Algorithm 1 is replaced by the following:

bm =
(
a∗(current SCC) · bm −

n∑
i=m+1

am,i · bi ·
a∗(current SCC)

a∗(SCC at i)

)
/ am,m

where a∗(SCC at n) = an,n, and, for i = 1, . . . , n−1, a∗(SCC at i) = a∗(SCC at i+1) if the i-th and (i+1)-st
state belong to the same SCC and a∗(SCC at i) = ai,i · a∗(SCC at i+1) otherwise. Intuitively, a∗(SCC at i)
is the product of the a’s on the diagonal corresponding to the last states in the current SCC and the SCCs
below. Of course, the return statement also has to be adjusted accordingly. The advantage of this approach is
that the polynomials in the rational functions aside from the ones in the first strongly connected component
will have an even lower degree.

Figure 2 provides an illustration of the behaviour and resulting maximal degrees of the polynomials, both
for the one-step fraction-free approach and for the one additionally relying on an SCC decomposition and
topological sorting.

3.4. Implementation and Experiments

To perform an experimental evaluation of the one-step fraction-free Gaussian elimination (GE-ff) approach
in the context of probabilistic model checking, we have implemented this method (including the SCC
decomposition and topological ordering described above)3 as an alternative solver for parametric linear
equation systems in the state-of-the-art probabilistic model checker Storm [8], building upon version 1.2.1.

We compare GE-ff against the two solvers provided by Storm for solving parametric equation systems,
i. e., the solver based on the eigen linear algebra library [28], and on state elimination (state-elim) [4]. Both
of Storm’s solvers use partially factorized representations of the rational functions provided by the CArL
library4. In this representation, all factors in the numerator polynomial and all factors in the denominator
polynomial are guaranteed to share no common divisor. This representation, together with caching, is often
beneficial [9], due to improved performance of the gcd-computations during the simplification steps.

In addition to the fraction-free approach, our solver can also be instantiated to perform a straightforward
Gaussian elimination (GE), using any of the representations for rational functions provided by the CArL
library. We consider here the Gaussian elimination with the (partially) factorized representation (Storm’s
default, which is also used by the other standard solvers) and with a plain representation using fully expanded
polynomials for numerator and denominator, using gcd computations to ensure that those are coprime.

Experimental studies.5 For benchmarking, we used a machine with two Intel Xeon E5-2680 8-core CPUs
at 2.70GHz and with 384GB RAM, a time out of 30 minutes and a memory limit of 30GB. All the considered

3In contrast to our implementation used for the experiments reported in [14], the implementation here has been improved by
switching to a sparse instead of a dense matrix representation, which speeds up the processing especially for large systems. In
particular, for the benchmarks reported in [14], the GE-ff implementation ran into the memory limit of 30GB for several of the
instances, while our sparse implementation now stays within the memory limit for all considered instances. In addition, the
implementation in [14] was based on version 1.0.1 of Storm. We have observed that, on the same hardware as used in [14], the
standard equation solvers in version 1.2.1 of Storm showed some speed-ups over version 1.0.1, likely due to some optimizations
in the underlying math library. The statistics for those solvers presented here thus differ from those presented in [14].

4https://github.com/smtrat/carl
5The source code of our extension of Storm and the artifacts of the experiments are available at

https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/Fraction-Free-Gauss/

11

https://github.com/smtrat/carl
https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/Fraction-Free-Gauss/

0 0
0

1st step 2nd step
. . .

(a) One-step fraction-free elimination without topological ordering of SCCs.

0 0 0 0

01st step 2nd step
. . .

(b) Back substitution for one-step fraction-free elimination.

0 0 0 0

1st step

in all
SCCs

2nd step

in all
SCCs

. . .

(c) One-step fraction-free elimination with topological ordering of strongly connected components as a preprocessing
step.

0 0 0 0

0
1st SCC 2nd SCC

. . .

(d) Back substitution for one-step fraction-free elimination with topological ordering of SCCs.

Figure 2 – General form of coefficient matrix and vector without and with topological ordering of strongly connected
components, and behaviour when applying one-step fraction-free elimination. The intensity of the background colour
indicates the maximum total degree of the polynomials, with darker colours representing higher degree.

solvers run single-threaded. We report the time actually spent for solving the parametric equation system by
the different solvers. Other parts of model checking (model building, preprocessing) are independent of the
chosen solver. We have compared the solutions obtained by the different solvers and verified that they are
the same.

As the ordering of rows and columns in the matrix, respectively the order in which the equation system
is processed, can play a significant role in the performance of the solution algorithm, we consider multiple
variants for the four major approaches (eigen, state-elim, GE , GE-ff). We considered the following variants
and denote each with a number that allows us to refer to them from the statistics tables: For the eigen
solver, we consider the default ordering (1) and a variant, where the matrix has been topologically sorted
(2). For the state-elim solver we consider each of the following elimination order variants (without/with
preceding topological ordering of the matrix): “fw” (3/4), “fwRev” (5/6), “bw” (7/8), “bwRev” (9/10),
which implement ordering based on the distance between a state and the initial state or the state and the
target state, “regex” (11/12), based on the ordering proposed by [2], and “dpen” (13/14) and “spen” (15/16),
which employ dynamic or static penalities to determine the ordering. By default, Storm uses the eigen solver
(variant 1), the default order for the state-elim solver is “fwRev”, i.e., variant 5.

For the newly implemented “normal” Gaussian elimination solver GE , we consider the variant with
(partially) factorized representation of the rational functions (17) and with fully expanded, coprime polynomials
(18), both with preceding topological ordering.

For our fraction-free Gaussian elimination (GE-ff) implementation, we consider a standard variant as
described above (19), where topological sorting and separate handling of the SCCs is performed. Another
variant (20) uses a single, global denominator for the back substitution step, instead of using per-SCC

12

Table 2: Statistics for “complete pMC”. Matrix rows and number of distinct parameters, as well as best-case/worst-case times
for solving the parametric equation system per solver. For n = 7, all solvers timed out (30min).

n rows param. eigen state-elim GE GE-ff red(GE-ff)
4 4 20 10.43 s 40.64 s 170.53 s 210.00 s 0.01 s

20.44 s 60.66 s timeout 200.01 s 0.01 s

5 5 30 143.33 s 1239.81 s 1759.15 s 210.12 s 1.62 s
244.76 s 742.29 s timeout 190.37 s 1.64 s

6 6 42 timeout timeout timeout 2118.65 s 24.15 s
1992.59 s 23.60 s

denominators as explained in Sec. 3.3. A third variant (21) does not perform any SCC stratification, while a
fourth variant (22) does not perform any SCC stratification and does not reorder the matrix topologically. The
last variant thus represents a straightforward implementation of one-step fraction-free Gaussian elimination.

In the following tables we report model and timing statistics for the various model instances. First, we
report the number of rows of the parametric equation system (matrix) that is passed on to the equation
system solvers, as well as the number of distinct parameter variables in the polynomials in the matrix.
We then report the best-case run times for solving the equation system, i.e., obtaining a rational function
for all states, grouped by the four approaches (eigen, state-elim, GE , GE-ff). With a super-script, we
report the identifier of the fastest variant (see above). For fraction-free Gaussian elimination, we first report
the time until a closed-form solution for all states is obtained, i.e., rational functions with fully expanded
numerator and denominator polynomials. As the numerator and denominator of these rational functions are
not necessarily coprime, we list as well the time needed for simplification red(GE-ff) via division by the gcd.
Depending on the use-case, the non-simplified solution might be sufficient, allowing to avoid this additional
step relying on potentially costly gcd-computations. The time in the red(GE-ff) column is reported for the
same GE-ff variant as reported in the GE-ff column.

We are also interested in the dependency on the chosen configuration, i.e., a sense of the variability of the
run times for each approach. In a second row (in gray and italics), we report the run times (and variant
identifier) of the variant that terminated last (within the timeout), or timeout if at most one configuration
terminated. A small † indicates that there were other variants that had a timeout.

It is well-known that bisimulation quotienting (with strong or weak bisimulation) can have a significant
impact on the performance of model checking, in particular for parametric model checking. Where bisimulation
quotienting proved to yield beneficial reductions, we note where it has been applied and sometimes report
statistics for both the original and the quotiented model.

We have considered different classes of case studies for experiments.

Complete pMC. As a first experiment to gauge the efficiency in the presence of a high ratio of parameters
to states, we considered a family of pMCs with a complete graph structure (over n states) and one parameter
per transition, resulting in n · (n+ 1) parameters.

This family of pMCs Mn = (S, sinit, E,P) has n regular states and a goal and fail state, i.e., the state
space S =

{
s1, . . . , sn, fail , goal

}
, and has initial state sinit = s1. The graph structure for the regular states is

complete and the probability for going from state si to sj is given by a parameter xi,j , i. e., P(si, sj) = xi,j
for 1 6 i, j 6 n. The probability of going to the goal state is similarly encoded using a parameter xi,goal , i. e.,
P(si, goal) = xi,goal for 1 6 i 6 n, and P(si, fail) = 1−P(si, goal)−

∑
16j6n P(si, sj). Overall, the pMC is

defined on parameters (x1,1, . . . , x1,n, x1,goal , . . . , xn,1, . . . , xn,n, xn,goal), i. e., on n · (n+ 1) parameters. For

Mn, we computed the probability of reaching the goal state from the initial state, i. e., PrMn
sinit(♦goal).

Table 2 summarizes statistics for the corresponding computations. As can be seen, the fraction-free
approach significantly outperforms all of Storm’s standard solvers, as well as normal Gaussian elimination,
and scales to a higher number of parameters. Using profiling of the invocations of the gcd-computations we
have determined that the eigen, state-elim and GE solvers spent more than 99% of their computation time
for these instances in gcd-computations. For n = 5, the reported best-case variant for eigen (1) invoked the

13

Table 3: Statistics for “Israeli-Jalfon”, with strong bisimulation quotienting. Matrix rows and number of distinct parameters, as
well as best-case/worst-case times for solving the parametric equation system per solver.

N K rows param. eigen state-elim GE GE-ff red(GE-ff)
4 2 11 4 20.13 s 120.16 s 170.27 s 210.01 s 0.02 s

10.13 s 80.57 s 180.97 s 220.09 s 0.02 s

4 3 21 4 20.43 s 120.52 s 170.54 s 190.04 s 0.19 s
10.86 s 94.50 s 181.66 s 228.89 s 0.24 s

4 4 15 4 20.36 s 120.39 s 170.47 s 190.04 s 0.12 s
10.78 s 81.64 s 181.48 s 221.65 s 0.16 s

5 2 16 5 115.11 s 1517.55 s 1723.65 s 211.77 s 0.35 s
223.84 s 866.55 s 18737.59 s 202.15 s 0.35 s

5 3 36 5 2210.40 s 11606.64 s 17126.10 s 19135.18 s 85.00 s
1271.33 s †61081.62 s timeout †20144.06 s 104.42 s

5 4 51 5 2242.02 s 11444.22 s 17214.79 s 19175.52 s 667.34 s
1361.73 s †51239.27 s timeout †20520.08 s 1240.72 s

5 5 31 5 2217.15 s 61019.55 s 17177.33 s 19172.61 s 390.15 s
1279.58 s †121762.25 s timeout †20523.92 s 752.15 s

6 2 22 6 timeout timeout timeout 22565.33 s 70.25 s
20894.81 s 69.44 s

6 3 57 6 timeout timeout timeout timeout timeout

gcd-computation 139 times, while state-elim(12) had 148 and GE (17) had 124 gcd-invocations. The maximal
time spent for a single gcd-invocation was between 9 and 16 seconds, depending on the solver, indicating
that for this model individual gcd-computations are expensive.

Multi-parameter Israeli-Jalfon self-stabilizing. The benchmarks used to evaluate parametric model
checking implementations in previous papers tend to be scalable in the number of components but use a fixed
number of parameters, usually two. To allow further experiments with an increasing number of parameters,
we considered a pMC-variant of the Israeli-Jalfon self-stabilizing protocol [29].

In the Israeli-Jalfon self-stabilizing protocol, with the model taken from the PRISM case study repository,6

multiple processes in a ring can send tokens to each other, with the protocol ensuring that almost surely
eventually a stable situation is reached, i. e., a single token remains. We consider a variant with N processes
and an initial number K of tokens, where non-deterministic scheduling is replaced by uniform scheduling to
obtain a pMC. The uniform probabilistic choice between sending the token to the left or right neighbor of a
process in the original model is replaced by a biased, parametrized choice, i. e., there are N parameters xi
specifying the probability for process i of sending to the right instead of the left neighbor. An initial gadget
ensures that the K initial tokens are distributed uniformly between the processes. We then compute the
expected number of steps until reaching a stable situation.

Table 3 depicts the statistics for computing the rational functions for several instances. As can be seen,
the fraction-free approach is competitive against the standard solvers of Storm (eigen and state-elim). For
the larger instances with N = 5, the “normal” Gaussian elimination implementation is competitive as well,
with slightly better performance for N = 5,K = 3. It should be noted that, for N = 5, if one is interested in
a simplified, coprime representation of the solutions, the simplification step for the GE-ff result is quite costly
compared to a direct computation of the simplified representation with one of the other methods. However,
for N = 6,K = 2, fraction-free Gaussian elimination is the only method that succeeded in computing a
solution within the time bound of 30 minutes.

Benchmark case studies from [19]. Furthermore, we considered several case study instances that were

6http://www.prismmodelchecker.org/casestudies/self-stabilisation.php#ij

14

http://www.prismmodelchecker.org/casestudies/self-stabilisation.php#ij

Table 4: Statistics for the “crowds” (reachability probability) and “zeroconf” (expected accumulated reward) benchmarks of
[19]. Matrix rows and number of distinct parameters, as well as best-case/worst-case times for solving the parametric equation
system per solver.

model rows param. eigen state-elim GE GE-ff red(GE-ff)
Crowds (3,5) 715 2 10.82 s 50.67 s 171.05 s 192.59 s 65.18 s

20.87 s 449.66 s 183.02 s †202.98 s 81.58 s

Crowds (5,5) 2928 2 25.43 s 54.95 s 176.15 s 19342.49 s timeout
15.51 s 4533.03 s 1817.48 s †20347.82 s timeout

Crowds (10,5) 25103 2 2118.39 s 5158.14 s 17120.56 s timeout timeout
1126.93 s †161735.32 s 18417.97 s

Crowds (3,5), w-bisim 40 2 10.06 s 120.04 s 170.07 s 190.00 s 0.12 s
20.08 s 40.95 s 180.17 s 220.31 s 0.32 s

Crowds (5,5), w-bisim 40 2 10.06 s 120.04 s 170.07 s 190.01 s 0.10 s
20.08 s 40.86 s 180.18 s 220.31 s 0.31 s

Crowds (10,5), w-bisim 40 2 10.06 s 120.04 s 170.07 s 190.01 s 0.10 s
20.08 s 30.86 s 180.18 s 210.29 s 0.32 s

Zeroconf (1000) 1002 2 239.33 s 1433.52 s 17128.72 s 206.39 s 12.20 s
177.77 s †7479.45 s 18320.84 s 2217.88 s 11.46 s

Zeroconf (10000) 10002 2 timeout timeout timeout timeout timeout

used in [19] to benchmark parametric model checkers, namely the brp, crowds, egl, nand, zeroconf models.
Of those, brp, egl and nand are acyclic models. As those models are polynomial parametric Markov chains,
the rational function solutions (as well as the intermediate results) have denominator polynomials of degree
zero, making the occuring gcd-computations very efficient. Solving time differences between the various
approaches are thus mostly influenced by the order of processing of the rows in the matrix and the size of
the intermediate rational functions.

The crowds and zeroconf case studies, however, are cyclic, as they contain non-trivial strongly connected
components. Table 4 depicts statistics for instances of both case studies. For crowds, bisimulation quotienting
(weak bisimulation, marked with “w-bisim”) was particularly effective, with all considered instances having
a very small state space and negligible solving times. For the non-quotiented crowds instances, Storm’s
standard solvers as well as the “normal” Gaussian elimination outperform the fraction-free GE-ff variants.
For the smaller zeroconf instance in Table 4, GE-ff significantly outperforms the standard approaches, while
the larger benchmark instance could not be solved by any of the variants within the allotted time frame.

In the same vein as the case studies considered in [19], we also consider a parametrized variant of Herman’s
self-stabilizing protocol [30, 31], herman with the model obtained from [32]. Here, the uniform coin flips
in the model are replaced with a biased coin, i.e., with a single parameter that represents the probability
of the coin flip succeeding. In an initial phase, each configuration (every process can either start with or
without a token) is chosen uniformly. We then compute the expected number of steps of the protocol (with N
processes) until a stable token configuration is reached. We report here on the model with weak bisimulation
applied. As can be seen from Table 5, our fraction-free Gaussian elimination implementation significantly
outperforms Storm’s standard solvers, as well as the “normal” Gaussian elimination implementation. This
result is a bit surprising, as these instances lead to a univariate equation system, where the gcd-computations
are generally not as expensive as those for the multivariate case. Profiling of the gcd-invocations showed that
the overhead indeed can be largely attributed to the gcd-computations. E.g., for the N = 9 instance, the
reported three best-performing solvers using eigen, state-elim and GE spent 85% to 90% of the computation
time within gcd-computations. For this instance and eigen(1), the gcd-computations were invoked 35440
times, for state-elim(16) there were 28494 and for GE (17) there were 28929 gcd-invocations. The maximal
time spent during a single gcd-invocation was between 75ms and 130ms, i.e., the computation time was spent
computing a large number of relatively simple gcd-computations.

15

Table 5: Statistics for “herman” (expected accumulated reward), with weak bisimulation. Matrix rows and number of distinct
parameters, as well as best-case/worst-case times for solving the parametric equation system per solver.

N rows param. eigen state-elim GE GE-ff red(GE-ff)
7 15 1 10.36 s 160.81 s 170.43 s 200.03 s 0.06 s

20.41 s 141.45 s 180.87 s 210.15 s 0.06 s

9 54 1 1472.22 s 16204.90 s 17203.36 s 2028.23 s 4.22 s
2484.64 s 5376.70 s 18788.63 s 22150.60 s 4.19 s

11 181 1 timeout timeout timeout timeout timeout

For the sake of completeness, we provide statistics for the other, acyclic models of the benchmarks
in [19] as well. As noted above, due to their acyclic nature, we cannot expect significant benefits from
the fration-free approach for those models. For the “egl” instances (marked with “s-bisim” where strong
bisimulation quotienting was applied), GE-ff is competitive with the standard approaches. For the largest
considered instance (8,4), the Gaussian elimination processing strategy (GE as well as GE-ff) outperforms
the standard approaches of Storm. However, bisimulation quotienting is highly effective for this model, with
all approaches having neglible computation times in the equation system of the quotiented model. For the
“brp” instances, bisimulation (weak bisimulation, marked with “w-bisim”) again yields significant reductions
in the size of the matrix and thus allows more efficient solving. Here, GE-ff is comparable to the standard
approaches.

For the “nand” case study, we consider the computation of a reachability probability and an expected
accumulated reward (Table 7). For the probability computation, we also applied weak bisimulation (marked
with “w-bisim”), for the expected reward strong bisimulation (marked with “s-bisim”). GE-ff ’s performance
is again in the range of the standard variants, but can – due to the acyclic nature of the model – not
demonstrate its strengths.

Overall, the experiments have shown that there are instances where the fraction-free approach can indeed
have a positive impact on performance, in some cases quite dramatically. In several cases, the fraction-free
implementation provided the only approach that was able to solve the equation system at all within the given
time bound. It thus can be seen as a beneficial addition to the standard approaches. We still see several
avenues for additional optimizations, in particular in the interplay between acyclic and cyclic parts of the
models. Likewise, it might be beneficial to perform additional preprocessing steps on the parametric model
to reduce its size. Additionally, as can be seen in particular in the performance of the different variants
of the state-elim solver, the order of processing plays a paramount role in the computation times. Here,
additional heuristics and support for different order variants in GE-ff seem to be a promising avenue for
further research.

16

Table 6: Statistics for the benchmarks of [19], “egl” (expected accumulated reward) and “brp” (reachability probability). Matrix
rows and number of distinct parameters, as well as best-case/worst-case times for solving the parametric equation system per
solver.

model rows param. eigen state-elim GE GE-ff red(GE-ff)
EGL(5,2) 33789 1 20.25 s 50.04 s 180.01 s 200.02 s 0.01 s

10.26 s 38.90 s 170.01 s †199.86 s 0.01 s

EGL(5,4) 74749 1 20.51 s 50.07 s 180.03 s 200.05 s 0.03 s
10.52 s 420.46 s 170.03 s †1948.52 s 0.03 s

EGL(8,2) 3342333 1 225.16 s 53.52 s 171.50 s 202.45 s 1.18 s
127.01 s †13791.12 s 181.54 s timeout

EGL(8,4) 7536637 1 252.56 s 1210.37 s 173.09 s 205.75 s 2.73 s
156.90 s †131087.59 s 183.39 s timeout

EGL(5,2), s-bisim 238 1 10.00 s 50.00 s 170.00 s 190.00 s 0.00 s
20.00 s 40.02 s 180.00 s 220.07 s 0.00 s

EGL(5,4), s-bisim 478 1 10.00 s 50.00 s 170.00 s 200.00 s 0.00 s
20.00 s 40.04 s 180.00 s 220.30 s 0.00 s

EGL(8,2), s-bisim 466 1 10.00 s 50.00 s 170.00 s 200.00 s 0.00 s
20.00 s 40.05 s 180.00 s 220.40 s 0.00 s

EGL(8,4), s-bisim 946 1 10.00 s 50.00 s 170.00 s 200.00 s 0.00 s
20.00 s 40.11 s 180.00 s 221.68 s 0.00 s

BRP(128,2) 3964 2 11.76 s 110.71 s 170.95 s 200.67 s 0.20 s
21.77 s †101316.94 s 181.20 s 2218.45 s 0.21 s

BRP(128,5) 8950 2 116.30 s 114.88 s 176.81 s 204.89 s 1.50 s
248.62 s †161201.16 s 188.58 s 22150.64 s 1.73 s

BRP(256,2) 7932 2 17.78 s 113.15 s 174.38 s 203.11 s 0.97 s
27.83 s †1416.24 s 185.56 s 2275.07 s 1.04 s

BRP(256,5) 17910 2 176.98 s 1123.68 s 1734.90 s 2025.04 s 8.50 s
2362.40 s †13217.95 s 1842.85 s 22654.95 s 9.68 s

BRP(128,2), w-bisim 768 2 20.43 s 120.27 s 170.32 s 200.19 s 0.03 s
10.43 s 3443.20 s 180.33 s 221.37 s 0.04 s

BRP(128,5), w-bisim 1536 2 12.42 s 111.69 s 172.13 s 201.22 s 0.21 s
22.43 s †9147.24 s 182.14 s 2210.41 s 0.21 s

BRP(256,2), w-bisim 1536 2 21.92 s 121.20 s 171.46 s 200.86 s 0.16 s
11.93 s †10242.88 s 181.51 s 228.28 s 0.16 s

BRP(256,5), w-bisim 3072 2 211.61 s 128.20 s 1810.37 s 206.02 s 1.13 s
111.63 s †91333.13 s 1710.87 s 2284.06 s 1.08 s

17

Table 7: Statistics for the benchmarks of [19], “NAND”, for a reachability probability (above) and an expected accumulated
reward (below).

model rows param. eigen state-elim GE GE-ff red(GE-ff)
NAND (10,1) 4660 2 20.44 s 90.19 s 180.21 s 200.17 s 0.03 s

10.47 s 879.33 s 170.22 s 22187.04 s 0.03 s

NAND (10,3) 18520 2 23.21 s 51.29 s 171.55 s 201.80 s 0.26 s
13.29 s †13124.51 s 181.93 s †194.81 s 0.25 s

NAND (10,5) 32380 2 18.14 s 53.13 s 173.80 s 206.34 s 0.69 s
28.58 s †13330.74 s 185.64 s †1915.70 s 0.67 s

NAND (20,1) 49040 2 110.71 s 53.54 s 174.14 s 204.05 s 0.61 s
210.76 s †103.72 s 184.36 s †1924.95 s 0.60 s

NAND (20,3) 202260 2 293.42 s 526.43 s 1732.03 s 2060.21 s 6.15 s
197.51 s †1229.10 s 1849.31 s †19434.74 s 6.27 s

NAND (20,5) 355480 2 2249.46 s 968.43 s 1785.56 s 20198.86 s 16.97 s
1372.04 s †1174.34 s 18145.66 s †191350.30 s 16.25 s

NAND (10,1), w-bisim 1610 2 20.22 s 120.11 s 180.11 s 200.09 s 0.01 s
10.24 s 452.36 s 170.13 s 2221.21 s 0.01 s

NAND (10,3), w-bisim 6050 2 21.64 s 120.75 s 170.83 s 200.93 s 0.09 s
11.68 s †81481.40 s 181.02 s †21145.13 s 0.09 s

NAND (10,5), w-bisim 10490 2 14.39 s 121.82 s 171.97 s 203.25 s 0.23 s
25.12 s †1441.48 s 182.95 s †21449.85 s 0.23 s

NAND (20,1), w-bisim 20870 2 26.56 s 112.37 s 182.68 s 202.36 s 0.27 s
17.57 s †16730.47 s 172.72 s †196.21 s 0.28 s

NAND (20,3), w-bisim 84550 2 259.39 s 1118.02 s 1720.42 s 2036.31 s 2.50 s
166.61 s †141487.06 s 1830.73 s †1998.87 s 2.53 s

NAND (20,5), w-bisim 148230 2 2188.31 s 1146.07 s 1753.06 s 20126.13 s 7.07 s
1191.44 s †5445.97 s 1891.87 s †19325.24 s 6.91 s

NAND (10,1) 7381 2 20.50 s 90.13 s 180.09 s 200.06 s 0.02 s
10.53 s 8454.52 s 170.14 s 22519.03 s 0.02 s

NAND (10,3) 21241 2 22.26 s 50.74 s 170.85 s 200.77 s 0.14 s
12.28 s †14109.65 s 180.91 s †194.74 s 0.15 s

NAND (10,5) 35101 2 15.99 s 52.17 s 172.56 s 203.76 s 0.45 s
26.32 s †14294.63 s 183.56 s †1914.60 s 0.45 s

NAND (20,1) 78311 2 110.36 s 91.45 s 180.92 s 200.59 s 0.23 s
210.49 s †121.66 s 171.48 s †1953.77 s 0.23 s

NAND (20,3) 231531 2 250.01 s 99.79 s 1711.82 s 2014.11 s 2.06 s
152.67 s †1211.03 s 1814.15 s †19506.92 s 2.20 s

NAND (20,5) 384751 2 1150.25 s 935.05 s 1744.04 s 2090.07 s 8.60 s
2152.39 s †1239.43 s 1868.19 s †191421.21 s 8.25 s

NAND (10,1), s-bisim 5381 2 10.32 s 90.09 s 180.06 s 200.04 s 0.01 s
20.33 s 8170.46 s 170.09 s 22274.14 s 0.02 s

NAND (10,3), s-bisim 15461 2 11.57 s 50.51 s 170.58 s 200.52 s 0.11 s
21.98 s †1427.68 s 180.64 s †211045.39 s 0.10 s

NAND (10,5), s-bisim 25541 2 24.10 s 51.46 s 171.75 s 202.59 s 0.34 s
14.31 s †1466.60 s 182.48 s †198.38 s 0.35 s

NAND (20,1), s-bisim 63311 2 27.19 s 91.15 s 180.71 s 200.43 s 0.19 s
18.39 s †14351.69 s 171.13 s †1935.20 s 0.19 s

NAND (20,3), s-bisim 187371 2 237.58 s 57.69 s 179.32 s 2010.69 s 1.68 s
138.57 s †128.49 s 1810.87 s †19332.94 s 1.72 s

NAND (20,5), s-bisim 311431 2 1143.16 s 927.24 s 1733.79 s 2068.68 s 7.00 s
2250.48 s †1230.03 s 1852.88 s †19950.92 s 6.97 s

18

4. Complexity of the PCTL+EC model-checking problem

We now study the complexity of the following variants of the PCTL+EC model-checking problem. Given
an augmented pMC M = (S, sinit, E,P,C) and a PCTL+EC (state) formula Φ:

(All) Compute a representation of the set of all satisfying parameter valuations,

i. e., the set of all admissible parameter valuations ξ ∈ X such that M(ξ) |= Φ.

(MC-E) Does there exist a valuation ξ ∈ X such that M(ξ) |= Φ?

(MC-U) Does M(ξ) |= Φ hold for all admissible valuations ξ ∈ X?

(MC-E) and (MC-U) are essentially dual to each other, i.e., the answer for the universal variant (MC-U) is
obtained by negating the answer for (MC-E) with formula ¬Φ, and vice versa. We concentrate on (All) in
Section 4.1 and the existential model-checking problem (MC-E) for general pMCs and PCTL, and subclasses
thereof, in Sections 4.2 through 4.4, respectively.

The results primarily rely upon the following result from [33]: The existential theory of the reals is known
to be in PSPACE and NP-hard, and the upper bound on its time-complexity is `k+1 · dO(k), where ` is the
number of constraints, d the maximum degree of the polynomials in the constraints, and k the number of
parameters.

4.1. Computing all satisfying parameter valuations (All)

As before, let X = XM denote the set of admissible valuations. In what follows, let χ be the conjunction
of the polynomial constraints in C as well as the constraints

∑
t∈S P(s, t) = 1 for each non-trap state s ∈ S,

and 0 < P(s, t) for each edge (s, t) ∈ E. We then have ξ |= χ if and only if ξ is admissible, i. e., ξ ∈ X.
Let Φ be a PCTL+EC formula. The satisfaction function SatM(Φ): X → 2S is defined by:

SatM(Φ)(ξ)
def
=
{
s ∈ S : s |=M(ξ) Φ

}
= SatM(ξ)(Φ).

We now present an algorithm to compute a symbolic representation of the satisfaction function that groups
valuations with the same corresponding satisfaction set together. More precisely, we represent the satisfaction
function SatM(Φ) by a finite set SatM(Φ) of pairs (γ, T) where γ is a Boolean combination of constraints
and T ⊆ S such that

T = SatM(Φ)(ξ) iff ξ |= γ for some (γ, T) ∈ SatM(Φ).

Given the DAG representation of the PCTL formula Φ, we follow the standard model checking procedure
for CTL-like branching-time logics, and compute SatM(Ψ) for the sub-formulas Ψ of Φ assigned to the nodes
in the DAG for Φ in a bottom-up manner. The base case is the treatment of the nodes in the DAG for Φ
labelled by an atomic proposition a or the formula true, that is, the leaf nodes of the DAG:

SatM(true) =
{

(χ, S)
}

SatM(a) =
{

(χ, {s ∈ S : a ∈ L(s)})
}
.

Consider now an inner node v of the DAG labelled by formula Ψ. Under the assumption that the children of
v have already been treated, i. e., the satisfaction sets of the proper subformulae of Ψ are known, we obtain
the following:

• If Ψ = ¬Ψ′ then SatM(Ψ) =
{

(γ, S \ T) : (γ, T) ∈ SatM(Ψ′)
}

.

• If Ψ = Ψ1 ∧Ψ2 then

SatM(Ψ) =
{

(γ1 ∧ γ2, T1 ∩ T2) : (γi, Ti) ∈ SatM(Ψi), i = 1, 2
}
.

• If Ψ = P./c(©Ψ′) then

SatM(Ψ) =
{

(γ ∧ δγ,T,R, R) : (γ, T) ∈ SatM(Ψ′), R ⊆ S′
}

where S′ denotes the set of states that are not traps and δγ,T,R is the conjunction of the following
constraints:

19

PrMs (©T) ./ c for each state s ∈ R,

PrMs (©T) 6./ c for each state s ∈ S′ \R.

• If Ψ = P./c(Ψ1 U Ψ2) then

SatM(Ψ) =
{

(γ1 ∧ γ2 ∧ δγ1,T1,γ2,T2
, R) : (γ1, T1) ∈ SatM(Ψ1), (γ2, T2) ∈ SatM(Ψ2), R ⊆ S

}
where δγ1,T1,γ2,T2

is the conjunction of the following constraints:

PrMs (T1 U T2) ./ c for each state s ∈ R,

PrMs (T1 U T2) 6./ c for each state s ∈ S \R.

Here, PrMs (T1 U T2) is the rational function that has been computed using (i) a graph analysis to
determine the set U of states s with s |= ∃(T1 U T2) and (ii) fraction-free Gaussian elimination (Section
3) to compute the rational functions PrNs (♦T2) in the pMC N resulting from M by turning the states in
(S \U)∪T2 into traps. If fs and gs are polynomials computed by the fraction-free Gaussian elimination
such that PrMs (T1 U T2) = fs/gs, then PrMs (T1 U T2) ./ c is a shorthand notation for(

gs > 0 ∧ fs − c · gs ./ 0
)
∨
(
gs < 0 ∧ 0 ./ fs − c · gs

)
. (1)

The case gs = 0 does not occur, as we consider only admissible valuations.

• If Ψ = CPr(ψ1, ./, ψ2) then the further computation depends on ψ1, and ψ2. Here, we only deal with
the case ψi =©Ψi, i = 1, 2. The cases for U, and combinations of both work similarly.

SatM(Ψ) =
{

(γ1 ∧ γ2 ∧ δγ1,T1,γ2,T2
, R) : (γ1, T1) ∈ SatM(Ψ1), (γ2, T2) ∈ SatM(Ψ2), R ⊆ S

}
where δγ1,T1,γ2,T2,R is the conjunction of the following constraints:

PrMs (©T1) ./ PrMs (©T2) for each state s ∈ R,

PrMs (©T1) 6./ PrMs (©T2) for each state s ∈ S \R,

where PrMs (©T) =
∑
t∈T P(s, t). Analogous to the probability operator, for cases where one of the

operands uses U, PrMs (ψ1) ./ PrMs (ψ2) is a shorthand form: We transform it to PrMs (ψ1)−PrMs (ψ2) ./ 0,
and then, as in (1), construct a case distinction based on the sign of the denominators to obtain a
polynomial constraint.

• The expectation and expectation comparison operators are dealt with in an analogous fashion to the
probability and probability comparison operator, using the solutions to the appropriate linear equation
systems.

We simplify the set SatM(Ψ) as follows. We first remove all pairs (γ, T) where the formula γ is not
satisfiable. This can be checked using algorithms for the existential theory of the reals. Furthermore, we
aggregate SatM(Ψ) by combining pairs with the same T -component: Instead of m pairs (γ1, T), . . . , (γm, T) ∈
SatM(Ψ), we consider a single pair (γ1 ∨ . . . ∨ γm, T). Finally, we simplify (1) whenever, for all ξ ∈ X, we
either have ξ |= gs > 0 or ξ |= gs < 0.

To answer question (All), the algorithm finally returns the disjunction of all formulas γ with sinit ∈ T for
(γ, T) ∈ SatM(Φ).

Recall from Section 3 that a known upper bound on the time-complexity of one-step fraction-free Gaussian
elimination is O

(
poly(n, d)k

)
, where n is the number of equations, d the maximum degree of the initial

coefficient polynomials, and k the number of parameters. Together with the algorithm above, and assuming
that the number of constraints in C is at most polynomial in the size of S, we obtain:

20

Theorem 6 (Exponential-time upper bound for problem (All)). Let Φ be a PCTL+EC formula. Given an
augmented polynomial pMC M, where the maximum degree of transition probabilities P(s, t), and polynomials
in the constraints in C is d, a symbolic representation of the satisfaction function SatM(Φ) is computable in

time O
(
|Φ| ·poly

(
size(M), d

)k·|Φ|P,E,C), where |Φ|P,E,C is the number of probability, expectation and comparison
operators in Φ.

4.2. Complexity bounds for (MC-E)

Combining both, the one-step fraction-free Gaussian elimination for solving linear equation systems
with polynomial coefficients, and the existential theory of the reals for treating satisfiability of conjunctions
of polynomial constraints, one directly obtains the following bound for the computational complexity of
PCTL+EC model checking on augmented polynomial pMCs.

Theorem 7 (PSPACE upper bound for problem (MC-E)). The existential PCTL+EC model-checking
problem (MC-E) for augmented pMC is in PSPACE.

Proof. As PSPACE = NPSPACE, it suffices to provide a nondeterministic polynomially space-bounded
algorithm for (MC-E). Given an augmented pMC M = (S, sinit, E,P,C) over parameters x1, . . . , xk, and a
PCTL+EC formula Φ, we process the DAG-representation of Φ in a bottom-up manner and assign to each
sub-formula Ψ a pair (γΨ, TΨ) consisting of a polynomial constraint γΨ and a subset TΨ of the state space S.
(Nodes of the DAG for Φ are identified with the corresponding sub-formula of Φ.) The computation of the
pairs (γΨ, TΨ) is similar as in the algorithm to compute SatM(Φ) in Section 4.1. The essential difference is
that we do not explore all alternative satisfaction sets for Φ and its subformulas. The treatment of the leaves
is trivial: the pair (χ, S) is assigned to true, while (χ, {s ∈ S : a ∈ L(s)}) is assigned to atomic proposition
a. Here, χ is – as before – a conjunction of polynomial constraints that characterizes the set X of admissible
parameter valuations. The treatment of the inner nodes is as follows:

• If Ψ = ¬Ψ′ then γΨ = γΨ′ and TΨ = S \ TΨ′ .

• If Ψ = Ψ1 ∧Ψ2 then γΨ = γΨ1
∧ γΨ2

and TΨ = TΨ1
∩ TΨ2

• Suppose now Ψ = P./c(©Ψ′). Let (γ, T) = (γΨ′ , TΨ′). Then, we nondeterministically guess a subset
R of S (in O(n) steps by guessing one bit per state where n = |S|) and put γΨ = δγ,T,R and TΨ = R
where δγ,T,R is obtained as in the algorithm to compute SatM(·).

• For Ψ = P./c(Ψ1 U Ψ2) and (γi, Ti) = (γΨi , TΨi), i = 1, 2, we nondeterministically guess a subset R of
S and assign γΨ = δγ1,T1,γ2,T2,R (defined as in the algorithm to compute SatM(·)), and TΨ = R.

• As above, we deal with the probability comparison, expectation, and expectation comparison operators
in an analogous fashion.

Finally, we check whether (i) sinit ∈ TΦ, and (ii) there is a parameter valuation ξ = (ξ1, . . . , ξk) for
x = (x1, . . . , xk) such that ξ |= γΦ using a polynomial space-bounded algorithm for the existential theory of
the reals. If so, then the algorithm returns “yes”. Otherwise, the algorithm returns “no”.

Note that γΦ logically implies γΨ for all sub-formulas Ψ of Φ, and that TΨ = SatM(Ψ)(ξ) for each
sub-formula Ψ of Φ and each parameter valuation ξ satisfying γΦ. Vice versa, if ξ is a parameter valuation
such that M(ξ) |= Φ then ξ |= γΦ provided that the guessed sets for the probability operator enjoy the
property TΨ = SatM(Ψ)(ξ). Thus, the sketched algorithm has a run returning the answer “yes” if and only
if there exists a parameter valuation ξ such that M(ξ) |= Φ. The memory requirements of the algorithm are
dominated by the space requirements of the called algorithm for the existential theory of the reals. Hence,
the algorithm is polynomially space-bounded.

NP- and coNP-hardness of (MC-E) follow from results for IMCs [12, 13]. More precisely, [13] provides a
polynomial reduction from SAT to the (existential and universal) PCTL model-checking problem for IMCs.
In fact, the reduction of [13] does not require full PCTL, instead Boolean combinations of simple probabilistic

21

constraints P>ci(© ai) without nesting of the probability operators are sufficient. The following theorem
strengthens this result by stating NP-hardness of (MC-E) even for formulas P>c(♦a) consisting of a single
probability constraint for a reachability condition.

Theorem 8 (NP-hardness for single probabilistic operator, multivariate case). Given an augmented polyno-
mial pMC M on parameters x with initial state sinit and an atomic proposition a, and a probability threshold

c ∈ Q∩]0, 1[, the problem to decide whether there exists ξ ∈ X such that PrM(ξ)
sinit (♦a) > c is NP-hard, even

for acyclic pMCs with the transition probabilities being linear in one parameter, and where the polynomial
constraints for the parameters x1, . . . , xk are of the form f(xi) > 0 with f ∈ Q[xi], deg(f) 6 2.

The probabilities are linear in one parameter if P(s, t) ∈
⋃k
i=1 Q[xi], deg(P(s, t)) 6 1, for all (s, t) ∈ E.

Proof. We provide a polynomial reduction from 3SAT. Let

α =

m∧
i=1

(
Li,1 ∨ Li,2 ∨ Li,3

)
be a 3CNF formula where the Li,j ’s are literals, say Li,j ∈ {κh,¬κh : h = 1, . . . , k} for i = 1, . . . ,m, j = 1, 2, 3.
Consider the pMC M = (S, sinit, E,P,C) over the parameters x1, . . . , xk:

S = {si, si,1, si,2, si,3 : i = 1, . . . ,m} ∪ {sm+1, fail},
sinit = s1,

E =
{

(si, si,j), (si,j , si+1), (si,j , fail) : i = 1, . . . ,m, j = 1, 2, 3
}

∪
{

(fail , fail)
}
∪
{

(sm+1, sm+1)
}

P(s, t) =

1
3 if s = si, t = si,j , 1 6 i 6 m, j ∈ {1, 2, 3}
xh if s = si,j , t = si+1, 1 6 i 6 m, j ∈ {1, 2, 3}, Li,j = κh

1− xh if s = si,j , t = si+1, 1 6 i 6 m, j ∈ {1, 2, 3}, Li,j = ¬κh
xh if s = si,j , t = fail , 1 6 i 6 m, j ∈ {1, 2, 3}, Li,j = ¬κh
1− xh if s = si,j , t = fail , 1 6 i 6 m, j ∈ {1, 2, 3}, Li,j = κh

1 if s = t = sm+1 or s = t = fail

0 otherwise

,

C =
{
x2
h − xh +

1

3m
− 1

32m
> 0 : h = 1, . . . , k

}
The graph G = (S,E) of M is shown in Figure 3. We consider the PCTL formula Φ = P>c(♦ sm+1) with
c = 1

3m . Next, we prove the correctness of the construction. We will prove that

there exists an admissible parameter valuation ξ such that M(ξ) |= Φ if and only if
the 3CNF formula α is satisfiable.

(⇐=): Firstly, assume that there exists a satisfying assignment µ : {κ1 . . . , κk} → {0, 1} for α. We then
choose the following valuation ξ1, . . . , ξk for the parameters x1, . . . , xk where ℘ = 1− 1

3m :

ξh =

{
℘ if µ(κh) = 1

1− ℘ if µ(κh) = 0
.

This valuation is admissible as it satisfies the constraints, both for the transition probabilities and for C. In
the worst case, exactly one literal is satisfied in each clause of α. Thus, one obtains the following inequality
for the probability of reaching sm+1 from s1 in M:

PrM(ξ)
s1

(
♦ sm+1

)
>

(
1

3
℘+

2

3
(1−℘)

)m
=

1

3m
·
(
2−℘

)︸ ︷︷ ︸
>1

m
>

1

3m
= c

22

s1

s11

s12

s13

s2 sm

sm1

sm2

sm3

sm+1

fail

· · ·

Figure 3 – Graph of the pMC constructed for reduction of 3SAT to PCTL model checking on pMCs

Hence, M(ξ) |= Φ.
(=⇒): Suppose now that there exists an admissible valuation ξ with M(ξ) |= Φ. By admissibility and the set
of constraints C, for each h = 1, . . . , k either 0 < ξh 6 1−℘ or ℘ 6 ξh < 1. (As before, ℘ = 1− 1

3m .) Suppose
by contradiction that α is not satisfiable. Then, the assignment µ given by µ(κh) = 0 if 0 < ξh 6 1−℘ and
µ(κh) = 1 if ℘ 6 ξh < 1 is not satisfying for α. Therefore, there exists ι ∈ {1, . . . ,m} such that the ι-th
clause of α does not hold under µ. But then, P(sι,j , sι+1)(ξ) 6 1−℘ for j = 1, 2, 3. Hence:

c < PrM(ξ)
s1

(
♦ sm+1

)
= PrM(ξ)

s1

(
♦ sι

)
· PrM(ξ)

sι

(
♦ sι+1

)
· PrM(ξ)

sι+1

(
♦ sm+1

)
< PrM(ξ)

sι

(
♦ sι+1

)
6 3 · 1

3 · (1−℘) = 1−℘ = 1
3m = c

This is a contradiction. Thus, α is satisfiable.

The additional constraints in C in the pMC used in the proof above ensure that the valuation assigns
either very small or very large values to each parameter. The same effect can be obtained via an additional
reachability operator:

Theorem 9 (NP-hardness for two probabilistic operators, multivariate case). Given a polynomial pMC
M on parameters x with initial state sinit and atomic propositions a1 and a2, and probability thresholds
c1, c2 ∈ Q∩]0, 1[, the problem to decide whether there exists ξ ∈ X such that the PCTL formula

Φ = P>c1(♦ a1) ∧ P≥c2(♦ a2)

is satisfied is NP-hard, even for acyclic pMCs with the transition probabilities being linear in one parameter.

Proof. We provide a polynomial reduction from 3SAT. Let

α =

m∧
i=1

(
Li,1 ∨ Li,2 ∨ Li,3

)
be a 3CNF formula where the Li,j ’s are literals, say Li,j ∈ {κh,¬κh : h = 1, . . . , k} for i = 1, . . . ,m, j = 1, 2, 3.

We consider a pMC M with two structures, connected as depicted in Figure 4. We first define the blocks
and then their union. The blocks ensure the following:

• B1 encodes the 3SAT-formula, analogous to the proof for Theorem 8 and depicted in Figure 3. The
structure of B1 is relevant for the probability to reach states labelled a1, i.e., only state sm+1.

23

w B1 sm+1

B2 vk+1

0.5

0.5

Figure 4 – General structure for the pMC constructed for the reduction of 3SAT to PCTL model checking on pMCs
without additional constraints

• B2 restricts the values for each variable xi to ξi 6∈]l, u[. The restriction is deduced from a necessary
condition for the probability of reaching a2, i.e., only state vk+1.

We assume here u = 1− l, and in particular, we choose l = 1
3m .

Block B1 is as discussed before; formally consider the pMC M1 = (S1, s
1
init, E1,P1) over the parameters

x1, . . . , xk:

S1 = {si, si,1, si,2, si,3 : i = 1, . . . ,m} ∪ {sm+1, fail},
s1
init = s1,

E1 =
{

(si, si,j), (si,j , si+1), (si,j , fail) : i = 1, . . . ,m, j = 1, 2, 3
}

∪
{

(fail , fail)
}
∪
{

(sm+1, sm+1)
}

P1(s, t) =

1
3 if s = si, t = si,j , 1 6 i 6 m, j ∈ {1, 2, 3}
xh if s = si,j , t = si+1, 1 6 i 6 m, j ∈ {1, 2, 3}, Li,j = κh

1− xh if s = si,j , t = si+1, 1 6 i 6 m, j ∈ {1, 2, 3}, Li,j = ¬κh
xh if s = si,j , t = fail , 1 6 i 6 m, j ∈ {1, 2, 3}, Li,j = ¬κh
1− xh if s = si,j , t = fail , 1 6 i 6 m, j ∈ {1, 2, 3}, Li,j = κh

1 if s = t = sm+1 or s = t = fail

0 otherwise

,

The graph G = (S,E) of M1 is shown in Figure 3.
Block B2 is as in Figure 5. Formally, the pMC for B2 is given by M2 = (S2, s

2
init, E2,P2) over the

parameters x1, . . . , xk:

S2 = {vi, vli, vui : i = 1, . . . , k} ∪ {vk+1, fail},
s2
init = v1,

E2 =
{

(vi, v
d
i), (vdi , vi+1), (vdi , fail) : i = 1, . . . ,m, d ∈ {l, u}

}

P2(s, t) =

xi if s = vi, t = vui , 1 6 i 6 k

1− xi if s = vi, t = vli, 1 6 i 6 k

xi if s = vui , t = vi+1, 1 6 i 6 k

1− xi if s = vui , t = fail , 1 6 i 6 k

1− xi if s = vli, t = vi+1, 1 6 i 6 k

xi if s = vli, t = fail , 1 6 i 6 k

1 if s = t = vk+1

0 otherwise

,

24

v1

vl1

vu1

v2 vk

vlk

vuk

vk+1

fail

fail

· · ·
1−x1

x1

1−x1

x1

1−xk

xk

1

1

1−x1

1−xk

x1 x1

Figure 5 – Block B2, where fail is duplicated to avoid clutter.

Let f(x) describe the probability mass reaching vk+1, i.e,

f(x) := PrM(ξ)
v1

(
♦ vk+1

)
=

k∏
i=1

(
x2
i + (1− xi)2

)
Based on this definition of f(x), we observe:

• f(a) = f(1− a), and

• for l 6 a 6 0.5 (point-wise comparison) it holds that f(a) 6 f(l).

The pMC M is then given as M = (S1∪S2∪{w}, w,E1∪E2∪{(w, s1), (w, v1)},P) with P(s, t) = Pi(s, t)
if (s, t) ∈ Ei for some i, and P(s, t) = 0.5 if (s, t) ∈ {(w, s1), (w, v1)}.

Let Φ = P>c1(♦ a1) ∧ P≥c2(♦ a2), with c1 = 0.5 · 1
3m and c2 = 0.5 ·

(
(1

3m)2 + (1 − 1
3m)2

)
. State sm+1

is the only state labelled a1, and state vk+1 is the only state labelled a2. We can encode c1 and c2 with
polynomially many bits (in m and k). Next, we prove the correctness of the construction. We will prove that

there exists an admissible parameter valuation ξ such that M(ξ) |= Φ if and only if the 3CNF
formula α is satisfiable.

(⇐=): Firstly, assume that there exists a satisfying assignment µ : {κ1 . . . , κk} → {0, 1} for α. We then

choose the following valuation ξ1, . . . , ξk for the parameters x1, . . . , xk Let z = 6m

√
1− 1

3m .

ξh =

{
z if µ(κh) = 1

1− z if µ(κh) = 0
.

This valuation is admissible. The probability to reach vk+1 from v1 in M is given by f(ξ). Due to the
symmetry of f , f(ξ) is independent of the assignment µ. Due to the construction of block B2, the function f
is independent of α:

f(ξ) =
(
z2 + (1− z)2

)k
≥ (z2)k ≥ z6m ≥ 1− 1

3m
≥
(1

3m

)2

+
(

1− 1

3m

)2

.

We use that k 6 3m as there are at most 3m literals in formula α. v1 is reached from sinit with probability

0.5, vk+1 is reached only via v1 with probability greater than
(

(1
3m)2 + (1 − 1

3m)2
)

, thus vk+1 is reached

with probability at least c2 (∗).

25

For the probability to reach sm+1 from s1 in M, in the worst case, exactly one literal is satisfied in each
clause of α. Thus, one obtains the following inequality for the probability of reaching sm+1 from s1:

PrM(ξ)
s1

(
♦ sm+1

)
>

(
1

3
z +

2

3
(1− z)

)m
=

1

3m
· (z + (2−2z))m =

1

3m
·
(
2−z

)︸ ︷︷ ︸
>1

m
>

1

3m
= 2c1.

The probability to reach s1 from w is 0.5, and sm+1 is only reached via s1, thus sm+1 is reached with
probability larger than c1 (∗∗). (∗) and (∗∗) together yield M(ξ) |= Φ.
(=⇒): Suppose now that there exists an admissible valuation ξ1, . . . , ξk of x1, . . . , xk with M(ξ) |= Φ. We
first show that either 0 < ξi < l or u < ξi < 1.

For that, consider M(ξ) |= Φ implies M(ξ) |= P≥c2(♦ a2). As above, the probability to reach vk+1 from

v1 must be at least
(

1
3m

)2
+
(
1 − 1

3m

)2
. Towards a contradiction, assume ξj ∈]l, u[for some j. Due to

admissibility, ξi ∈ (0, 1) for all i. Now

f(ξ) =

k∏
i=1

(
x2
i +

(
1− xi

)2)
6 x2

j +
(
1− xj

)2
<
(1

3m

)2

+
(

1− 1

3m

)2

,

thus M(ξ) 6|= P≥c2(♦ a2), a contradiction. Hence, either 0 < ξi < l or u < ξi < 1.
Now, analogous to the proof of Theorem 8, suppose by contradiction that α is not satisfiable. Then, the

assignment µ given by µ(κh) = 0 if ξh < l and µ(κh) = 1 if ξh > u is not satisfying for α. Therefore, there
exists ι ∈ {1, . . . ,m} such that the ι-th clause of α does not hold under µ. But then, P(sι,j , sι+1)(ξ) 6 l for
j = 1, 2, 3. Hence:

c1 < PrM(ξ)
s1

(
♦ sm+1

)
= PrM(ξ)

s1

(
♦ sι

)
· PrM(ξ)

sι

(
♦ sι+1

)
· PrM(ξ)

sι+1

(
♦ sm+1

)
< PrM(ξ)

sι

(
♦ sι+1

)
6 3 · 1

3 · l = l = 1
3m = c1

This is a contradiction. Thus, α is satisfiable.

4.3. (MC-E) for PCTL on univariate pMCs

In many scenarios, the number of parameters is fixed, instead of increasing with the model size.

Theorem 10 (PCTL+EC model checking without nesting in P, fixed parameter case). Let Φ be a PCTL+EC
formula without nested probability, expectation or comparison operators, and let M be a polynomial pMC
with k parameters x1 . . . xk. The problem to decide whether there exists an admissible parameter valuation
ξ ∈ X such that M(ξ) |= Φ is in P.

Proof. We process the DAG-representation of Φ in a bottom-up manner to assign a Boolean combination of
polynomial constraints γΨ to each subformula Ψ of Φ (represented by a node in the DAG) such that for all
ξ ∈ R: ξ |= χ ∧ γΨ if and only if ξ ∈ X and sinit |=M(ξ) Ψ. We finally check the existence of a value ξ for the
parameter x such that ξ |= γΦ. This check can be done in polynomial time [33].

To compute the constraints γΨ for the subformulas Ψ of Φ, we use an analogous approach as in the
computation scheme for the satisfaction functions in multivariate pMCs in Section 4.1.

Theorem 11 (NP-completeness for full PCTL+EC, fixed parameter case). Let Φ be a PCTL+EC formula,
and let M be a polynomial pMC for a fixed set of parameters x. The PCTL+EC model-checking problem to
decide whether there exists an admissible parameter valuation ξ ∈ X such that M(ξ) |= Φ is NP-complete.

Proof. Membership to NP can be shown using a guess-and-check algorithm as in the proof of the PSPACE
upper bound for the multivariate case (see Theorem 7). We use that the polynomial constraint contains only
a fixed number of variables, and can therefore be checked in polynomial time [33]. NP-hardness follows from
Lemma 12, given below.

26

Lemma 12 (NP-hardness for full PCTL+EC, univariate case). Let Φ be a PCTL+EC formula, and let M
be a polynomial pMC on the single parameter x. The PCTL+EC model-checking problem to decide whether
there exists an admissible parameter valuation ξ ∈ X such that M(ξ) |= Φ is NP-hard.

The hardness even holds for (1) acyclic polynomial pMCs and the fragment of PCTL+C that uses the
comparison operator CPr, but not the probability operator P, as well as (2) for (cyclic) polynomial pMC in
combination with PCTL.

Proof. We prove NP-hardness by a reduction from 3SAT. Given a 3CNF formula α =
∧m
i=1

(
Li,1∨Li,2∨Li,3

)
with literals Li,j ∈ {κ1, . . . , κ`,¬κ1, . . . ,¬κ`}, we construct a PCTL formula Φα and a univariate pMC Mα

with parameter x such that α is satisfiable if and only if there is an admissible valuation ξ of x such that
Mα(ξ) |= Φα.

In what follows, we write ξ[i] to denote the i-th position of the fractional part of ξ’s binary encoding,
i. e., ξ[i] ∈ {0, 1} for all i and ξ =

∑∞
i=1 ξ[i]/2

i. The idea is that the Boolean variable κi stands for the
requirement ξ[i] = 1. The latter will be encoded by a PCTL formula Ψi. The PCTL formula Φα then has
the following form:

Φα = α[κ1/Ψ1, . . . , κ`/Ψ`]

In a first reduction (1), we reduce to the PCTL+C fragment of PCTL+EC that uses the comparison
operator CPr, but not the probability operator P, yielding NP-hardness for PCTL+EC:

NP-hardness for PCTL+C. We first provide definitions for the Ψi as PCTL+C formulas. The pMC M
has the state space

S =
{
vj , tj , uj , ok j , yesj ,noj : j = 1, . . . , `

}
The size of M is linear in the number ` of Boolean variables in the 3CNF formula α.

The initial state of M is sinit = v`. M has the following edges for mode j where j ∈ {1, . . . , `}:

• from state vj : (vj , tj), (vj , uj)

• from state uj : (uj , ok j), (uj ,noj)

• from state tj : (tj , yesj), (tj ,noj) and (tj , vk) for all k ∈ {1, . . . , j−1}
Note that state t1 has only two successors, namely yes1 and no1.

• States noj , yesj , ok j are traps.

Consequently, M is acyclic. The transition probabilities are defined as follows.

P(vj , tj) = P(vj , uj) = 1
2 for 1 6 j 6 l

P(tj , vk) = 1/2k for 1 6 k < j 6 l

P(tj , yesj) = P(tj ,noj) = 1/2j

P(uj ,noj) = 1−x and P(uj , ok j) = x

We use the names of the states as atomic propositions, i. e., AP = S with the obvious labelling function. For
W = {w1, . . . , wh} ⊆ S, we slightly abuse notation, and use W to refer to the formula w1 ∨ . . . ∨ wh.

Let ξ =
∞∑
j=1

ξ[j]/2j ∈]0, 1[. We define the index set Iξ by:

Iξ =
{
j ∈ {1, . . . , `} : ξ[j] = 1

}
Then, 1 ∈ Iξ iff ξ > 1

2 . For j = 2, . . . , `:

j ∈ Iξ iff ξ >
1

2j
+

j−1∑
k=1

Iξ(k)

2k

27

where Iξ(k) = 1 iff k ∈ Iξ (in which case ξ[k] = 1) and Iξ(k) = 0 iff k /∈ Iξ (in which case ξ[k] = 0).
We now establish some properties of the MC M(ξ). The only path from uj satisfying ♦ok j consists of

the edge (uj , ok j). Hence:

PrM(ξ)
uj (♦ok j) = P(uj , ok j)(ξ) = ξ

Therefore:

PrM(ξ)
vj

(
♦ok j

)
=

ξ

2
=

∞∑
k=1

ξ[k]

2k+1

Let Good j =
{

yesj
}
∪
{
vk : k < j, k ∈ Iξ

}
. The probability for reaching Good j from state vj is the sum of

the probabilities of the (cylinder sets of the) paths of vj tj s with s ∈ Good j :

PrM(ξ)
vj

(
♦Good j

)
=

1

2j+1
+

j−1∑
k=1

k∈Iξ

1

2k+1
=

1

2j+1
+

j−1∑
k=1

ξ[k]

2k+1

This value is less than or equal to ξ/2 if and only if ξ[j] = 1. This yields:

PrM(ξ)
vj

(
♦Good j

)
6 PrM(ξ)

vj

(
♦ok j

)
iff j ∈ Iξ iff ξ[j] = 1

This constraint is used to define PCTL+C formulas Ξj as follows. For j = 1 let

Ξ1 = v1 ∧ P>0.25(♦ok1),

and for j = 2, . . . , `:
Ξj = vj ∧ CPr

(
♦(yesj ∨ Ξ<j), 6, ♦ok j

)
where Ξ<j = Ξ1 ∨ Ξ2 ∨ . . . ∨ Ξj−1. This yields Good j = SatM(ξ)

(
yesj ∨ Ξ<j

)
, and

SatM(ξ)(Ξj) =

{
{vj} : if ξ[j] = 1
∅ : if ξ[j] = 0

We then have:
vj |=M(ξ) Ξj iff ξ[j] = 1.

We define the PCTL+C formulas Ψj by P=1(�(vj → Ξj)).
The length of the formulae Ψj is linear in j. Hence, the length of Φα is polynomial in the length of

the 3CNF formula α. Recall that the length of a state formula is defined by the number of nodes in its
DAG-representation. Thus, each of the formulas Ξj is represented by exactly one node in the DAG for Φα,
although Ξ1 has exponentially many occurrences in the string representation of Φα.

The 3CNF formula α is satisfiable if and only if there exists ξ ∈]0, 1[such that the constructed
PCTL+C formula Φα holds for the MC M(ξ). To see this, suppose first that α has a satisfying as-

signment µ : {κ1, . . . , κ`} → {0, 1}. Let ξ =
∑`
j=1 µ(κj)/2

j . Then, sinit |=M(ξ) Φα. Vice versa, if ξ ∈]0, 1[
such that sinit |=M(ξ) Φα, let µ be the assignment given by µ(κj) = ξ[j] for j ∈ {1, . . . , `}. Then µ |= α.

In a second reduction (2), we reduce to the PCTL fragment of PCTL+EC without the comparison
operator CPr:

NP-hardness for PCTL (without comparison operator). To replace the PCTL+C formulas Ξj with
a PCTL formula we switch from M to the pMC N that arises from M by adding reset edges from M’s trap
states noj , yesj , ok j to the initial state sinit = s`. The transition probabilities of the reset edges are 1, i. e.,
P(noj , s`) = P(yesj , s`) = P(ok j , s`) = 1. Obviously, N is strongly connected.

We now define PCTL formulas Υ1, . . . ,Υ` by:

Υ1 = v1 ∧ P>0.5((¬yes1) U ok1)

28

and for j = 2, . . . , `:
Υj = vj ∧ P>0.5

(
¬(yesj ∨Υ<j) U ok j

)
where Υ<j = Υ1 ∨Υ2 ∨ . . . ∨Υj−1. We then define Ψj = P=1

(
�(vj → Υj)

)
.

The length of the resulting formula Φα is polynomial in the length of α. The remaining task is to prove
that α is satisfiable if and only if there is some ξ ∈]0, 1[such that N(ξ) |= Φα.

To prove this, we first consider some fixed value ξ ∈]0, 1[. Let

Goal j =
{

yesj , ok j
}
∪
{
vk : k ∈ Iξ, k < j

}
Fail j =

{
noj
}
∪
{
vk : k /∈ Iξ

}
Then, we have:

PrN(ξ)
vj

(
(¬Goal j) U ok j

)
= PrM(ξ)

vj

(
♦ok j | ¬♦Fail j

)
=

PrM(ξ)
vj

(
♦ok j

)
PrM(ξ)

vj

(
¬♦Fail j

)
Let Good j be as above. That is, Good j = Goal j \ {ok j}. Then:

PrN(ξ)
vj

(
(¬Goal j) U Good j

)
= PrM(ξ)

vj

(
♦Good j | ¬♦Fail j

)
=

PrM(ξ)
vj

(
♦ok j

)
PrM(ξ)

vj

(
¬♦Fail j

)
Hence:

PrN(ξ)
vj

(
(¬Goal j) U ok j

)
> PrN(ξ)

vj

(
(¬Goal j) U Good j

)
iff PrM(ξ)

vj

(
♦ok j

)
> PrM(ξ)

vj

(
♦Good j

)
iff ξ[j] = 1

Moreover, we have:

PrN(ξ)
vj

(
(¬Goal j) U ok j

)
+ PrN(ξ)

vj

(
(¬Goal j) U Good j

)
= 1

The latter is based on the general observation that in each finite strongly connected MC M we have:
PrMs ((¬B) U b) + PrMs ((¬B) U (B \ {b})) = 1 where s is a state in M, B is a set of states in M, and
b ∈ B.

Putting things together we get:

PrN(ξ)
vj

(
(¬Goal j) U ok j

)
>

1

2
iff ξ[j] = 1

But then SatN(ξ)(Υj) = {vj} iff ξ[j] = 1, and SatN(ξ)(Υj) = ∅ iff ξ[j] = 0. The remaining arguments are the
same as for the reduction to the model-checking problem for PCTL+C.

4.4. (MC-E) for monotonic PCTL on univariate pMCs

The parameters in pMC typically have a fixed meaning, e. g., the probability for the occurrence of an
error, in which case the probability to reach a state where an error has occurred is increasing in x. This
observation motivates the consideration of univariate pMCs and PCTL formulas that are monotonic in the
following sense.

Given a univariate polynomial pMC M = (S, sinit, E,P) with variable x, let E+ denote the set of edges
(s, t) ∈ E such that the polynomial P(s, t) is monotonically increasing in X, i. e., whenever ξ1, ξ2 ∈ X
and ξ1(x) 6 ξ2(x) then P(s, t)(ξ1) 6 P(s, t)(ξ2). As (s, t) ∈ E+ iff there is no value ξ ∈ R such that
ξ |= χ ∧ (P(s, t)′ < 0), the set E+ is computable in polynomial time using a polynomial-time algorithm
for the univariate theory of the reals [34]. Here, χ is as before the Boolean combination of polynomial
constraints characterizing the set X of admissible parameter values, and P(s, t)′ is the first derivative of the
polynomial P(s, t). Thus, the set E+ is computable in polynomial time. Let S+ denote the set of states that

29

are reachable only via edges in E+. Formally, s ∈ S+ if for each finite path π = s0 s1 . . . sm with sm = s we
have (si, si+1) ∈ E+ for i = 0, 1, . . . ,m−1. The states in S+ are called monotonic states. Given the set E+,
the set S+ can be determined by simple graph algorithms (in polynomial time).

We observe that the probabilities for path formulas along monotonic states exhibit monotonic behavior:

Lemma 13. Let A,B ⊆ S+ and ϕ be one of the path formulas A UB, A RB, ♦B, �B, or ©B. Then, for
all ξ1, ξ2 ∈ X with ξ1(x) < ξ2(x) and all states s ∈ S:

PrM(ξ1)
s (ϕ) 6 PrM(ξ2)

s (ϕ)

Therefore, SatM(ξ1)

(
P>c(ϕ)

)
⊆ SatM(ξ2)

(
P>c(ϕ)

)
⊆ S+ for each c ∈]0, 1]. An analogous statement

holds for strict probability thresholds “> c”

Let PCTL (state) formula Φ be monotonic if it is obtained by the following grammar:

Φ ::= a ∈ S+ | Φ ∧ Φ | Φ ∨ Φ | P>c(ϕ) | P>c(ϕ)

ϕ ::= ©Φ | Φ U Φ | Φ R Φ | ♦Φ | �Φ

where c ∈ Q>0. The following lemma asserts the monotonicity of the satisfaction function SatM(Φ) : X → 2S

for monotonic formulas Φ. (Recall that SatM(Φ)(ξ) = SatM(ξ)(Φ).)

Lemma 14. Let M be a univariate polynomial pMC and Φ a monotonic PCTL formula. Then, SatM(ξ1)(Φ) ⊆
SatM(ξ2)(Φ) for any two valuations ξ1 and ξ2 of x with ξ1(x) < ξ2(x).

Proof. We prove the lemma by structural induction on Φ. Consider two arbitrary but fixed valuations ξ1
and ξ2 of x satisfying ξ1(x) < ξ2(x). The claim is obvious for the case where Φ is an atomic formula a ∈ S+.
In the induction step we consider a monotonic PCTL-formula Φ of the form Φ = Ψ1 ∧Ψ2, Φ = Ψ1 ∨Ψ2,
Φ = P>c(ϕ) or Φ = P>c(ϕ) where c > 0 and ϕ ∈ {©Ψ,Ψ1 U Ψ2,Ψ1 R Ψ2,♦Ψ,�Ψ}. The cases Φ = Ψ1 ∧Ψ2

and Φ = Ψ1∨Ψ2 are obvious consequences of the induction hypothesis. Let us now consider the case where Φ
has the form P>c(ϕ) where ϕ is one of the four formulas above. We now can rely on the following two facts:

(1) If A ⊆ A′, B ⊆ B′ and ξ ∈ X then PrM(ξ)
s (A UB) 6 PrM(ξ)

s (A′ UB′), and therefore,

SatM(ξ)

(
P>c

(
A UB

))
⊆ SatM(ξ)

(
P>c

(
A′ UB′

))
Analogous statements hold for strict probability thresholds “> c” and the release operator R, the next
operator © and the derived operators ♦ and �.

(2) If A,B ⊆ S+ and s is a state such that s |= ∃ϕ where ϕ is one of the formulas ©B, AUB, A RB, ♦B
or �B then s is a predecessor of a state in A ∪B ⊆ S+. Hence, s ∈ S+ (by definition of S+).

These observations together with Lemma 13 will now be used to establish the monotonicity property of the
satisfaction functions of monotonic formulas.

Consider the case Φ = P>c(ϕ) where ϕ = Ψ1UΨ2. Let ξ1, ξ2 ∈ X, ξ1(x) < ξ2(x) and let A = SatM(ξ1)(Ψ1),
A′ = SatM(ξ2)(Ψ1) and B = SatM(ξ1)(Ψ2), B′ = SatM(ξ2)(Ψ2), Then A ⊆ A′ ⊆ S+ and B ⊆ B′ ⊆ S+ by
induction hypothesis. Using (1) we get:

SatM(ξ1)(Φ) = SatM(ξ1)(P>c(AUB)) ⊆ SatM(ξ1)(P>c(A
′UB′)) ⊆ SatM(ξ2)(P>c(A

′UB′)) = SatM(ξ2)(Φ).

The other cases, i. e., ϕ ∈ {©Ψ,♦Ψ,�Ψ,Ψ1 R Ψ2} or monotonic PCTL with strict lower probability bounds,
are analogous and omitted here. Moreover, s |=M(ξ) Ψ for some ξ ∈ X implies s |= ∃ϕ. Thus, observation (2)
yields SatM(ξ)(Φ) ⊆ S+. So in particular, SatM(ξ1)(Φ) ⊆ SatM(ξ2)(Φ) ⊆ S+.

Hence, if Φ is monotonic then the satisfaction function X → 2S , ξ 7→ SatM(Φ)(ξ) = SatM(ξ)(Φ) is
monotonic, and we obtain:

Corollary 15. Let Φ be a monotonic PCTL formula. Then there exist ξΦ ∈ R and SΦ ⊆ S, called
the maximal satisfaction set of Φ, such that SatM(ξ)(Φ) = SΦ for all ξ ∈ X with ξ(x) > ξΦ(x), and
SatM(ξ)(Φ) ⊆ SΦ for all ξ ∈ X with ξ(x) < ξΦ(x).

30

To decide (MC-E) for a given monotonic formula Φ, it suffices to determine the sets SΨ for the sub-state
formulas Ψ of Φ. This can be done in polynomial time. Using this observation, we obtain:

Theorem 16 ((MC-E) for monotonic PCTL on univariate pMC). Let M = (S, sinit, E,P) be a univariate
polynomial pMC on x, and Φ a monotonic PCTL formula. Then the problem to decide whether there exists
an admissible parameter valuation ξ for x such that M(ξ) |= Φ is in P.

Proof. The idea of a polynomial time algorithm is to compute the maximal satisfaction sets SΨ of the
subformulas Ψ of Φ. Then, there exists ξ ∈ X with M(ξ) |= Φ if and only if sinit ∈ SΦ.

The sets SΨ can be computed in an inductive way by processing the nodes in the DAG representation of
Φ in a bottom-up manner. The treatment of atomic propositions a ∈ S+ is obvious, and so are the cases
Φ = Ψ1 ∨Ψ2, and Φ = Ψ1 ∧Ψ2. Note that SΨ1∨Ψ2

= SΨ1
∪ SΨ2

and SΨ1∧Ψ2
= SΨ1

∩ SΨ2
. Consider now

the case Ψ = P>c(Ψ1 U Ψ2). Let A = SΨ1 and B = SΨ2 . Using fraction-free Gaussian elimination, we

compute the rational functions ps = fs/gs representing the probabilities PrMs (A UB). Using a polynomial
time algorithm for the univariate theory of the reals [34], we check for each state s ∈ S whether there is some
ξ ∈ X with ps(ξ) > c. Then, SΨ = {s ∈ S : ∃ξ ∈ X s.t. ps(ξ) > c}. Again, the remaining cases are similar
and omitted here.

4.5. Model checking PCTL+EC on MCs with parametric weights

We finally consider the case where M is an ordinary Markov chain augmented with a parametric weight
function wgt : S → Q[x]. Given a set T ⊆ S such that PrMs (♦T) = 1 for all states s ∈ S, the vector
of the expected accumulated weights e = (EMs (♦T))s∈S is computable as the unique solution of a linear
equation system of the form A · e = b, where the matrix A is non-parametric, and only the vector b
depends on x. By Lemma 5, EMs (♦T) is a polynomial of the form

∑
t∈S βs,t · wgt(t) with βs,t ∈ Q for all

s ∈ S, and can be computed in polynomial time. The expected mean payoff for a given set T is given
by EMs (mp(T)) =

∑
BSCC B PrMs (♦B) ·mp(B)(T) where mp(B)(T) =

∑
t∈T ζt · wgtT (t) with ζt being the

steady-state probability for state t inside B (viewed as a strongly connected Markov chain), and wgtT (t) = 0
if t /∈ T , wgtT (t) = wgt(t) for t ∈ T . As the transition probabilities are non-parametric, the steady-state
probabilities are obtained as the unique solution of a non-parametric linear equation system. So both
types of expectations can be computed in polynomial time. Unfortunately, the treatment of formulas with
nested expectation operators is more involved. Using the standard computation scheme that processes the
DAG-representation of the given PCTL+EC formula in a bottom-up manner to treat inner subformulas first,
the combination of polynomial constraints after the consideration of an inner node is still as problematic as
in the pMC-case. Using known algorithms for the existential theory of the reals yields the following bound.

Theorem 17 (Time complexity of PCTL+EC model checking with parametric weights). Let M be an
MC with parametric weights over k parameters, and Φ a PCTL+EC formula. The problem (MC-E) is

solvable in time O
(
|Φ| ·poly

(
size(M), d

)k·|Φ|E,CE), where |Φ|E,CE is the number of expectation and expectation
comparison operators in Φ, and d the maximum degree of the polynomials assigned as weights in M.

If there is only one parameter, the model checking for MCs with parametric weights is solvable in
polynomial time for the fragment of PCTL+EC without nested formulas (cf. Theorem 10).

5. Conclusion

In this paper we revisited the model-checking problem for pMC and PCTL-like formulas. The purpose of
the first part is to draw attention to the fraction-free Gaussian elimination for computing rational functions
for reachability probabilities, expected accumulated weights and expected mean payoffs as an alternative to
the gcd-based algorithms that have been considered before and are known to suffer from the high complexity
of gcd-computations for multivariate polynomials. The experiments show that an implementation using
one-step fraction-free Gaussian elimination has superior performance for some benchmarks, and may be
beneficial in practice.

31

In the second part of the paper we studied the complexity of the model-checking problem for pMC and
PCTL and its extension PCTL+EC by expectation and comparison operators (cf. Table 1 in the introduction
for a summary). We identified instances where the model-checking problem is NP-hard as well as fragments
of PCTL+EC where the model checking problem is solvable in polynomial time. Furthermore, we have
shown that an exponential blow-up in the number of parameters for a closed-form representation cannot be
avoided in general, even for acyclic pMCs.

References

[1] B. Jonsson, K. G. Larsen, Specification and refinement of probabilistic processes, in: 6th Annual Symposium on Logic in
Computer Science (LICS), IEEE, 1991, pp. 266–277. doi:10.1109/LICS.1991.151651.

[2] C. Daws, Symbolic and parametric model checking of discrete-time Markov chains, in: 1st Int. Colloquium on Theoretical
Aspects of Computing (ICTAC), Vol. 3407 of LNCS, Springer, 2005, pp. 280–294. doi:10.1007/978-3-540-31862-0_21.

[3] R. Lanotte, A. Maggiolo-Schettini, A. Troina, Parametric probabilistic transition systems for system design and analysis,
Formal Aspects of Computing 19 (1) (2007) 93–109. doi:10.1007/s00165-006-0015-2.

[4] E. M. Hahn, H. Hermanns, L. Zhang, Probabilistic reachability for parametric Markov models, Int. Journal on Software
Tools for Technology Transfer 13 (1) (2011) 3–19. doi:10.1007/s10009-010-0146-x.

[5] E. M. Hahn, H. Hermanns, B. Wachter, L. Zhang, PARAM: A model checker for parametric Markov models, in:
22nd Int. Conference on Computer Aided Verification (CAV), Vol. 6174 of LNCS, Springer, 2010, pp. 660–664. doi:

10.1007/978-3-642-14295-6_56.
[6] M. Z. Kwiatkowska, G. Norman, D. Parker, PRISM 4.0: Verification of probabilistic real-time systems, in: 23rd Int.

Conference on Computer Aided Verification (CAV), Vol. 6806 of LNCS, Springer, 2011, pp. 585–591. doi:10.1007/

978-3-642-22110-1_47.
[7] K. O. Geddes, S. R. Czapor, G. Labahn, Algorithms for Computer Algebra, Kluwer, 1993.
[8] C. Dehnert, S. Junges, J. Katoen, M. Volk, A Storm is coming: A modern probabilistic model checker, in: 29th

Int. Conference on Computer Aided Verification (CAV), Vol. 10427 of LNCS, Springer, 2017, pp. 592–600. doi:10.1007/

978-3-319-63390-9_31.
[9] N. Jansen, F. Corzilius, M. Volk, R. Wimmer, E. Ábrahám, J. Katoen, B. Becker, Accelerating parametric probabilistic

verification, in: 11th Conference on Quantitative Evaluation of Systems (QEST), Vol. 8657 of LNCS, Springer, 2014, pp.
404–420. doi:10.1007/978-3-319-10696-0_31.

[10] E. H. Bareiss, Computational solutions of matrix problems over an integral domain, IMA Journal of Applied Mathematics
10 (1) (1972) 68–104. doi:10.1093/imamat/10.1.68.

[11] H. Hansson, B. Jonsson, A logic for reasoning about time and reliability, Formal Aspects of Computing 6 (5) (1994)
512–535. doi:10.1007/bf01211866.

[12] K. Sen, M. Viswanathan, G. Agha, Model-checking Markov chains in the presence of uncertainties, in: 12th Int. Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Vol. 3920 of LNCS, Springer, 2006, pp.
394–410. doi:10.1007/11691372_26.

[13] K. Chatterjee, K. Sen, T. A. Henzinger, Model-checking omega-regular properties of interval Markov chains, in: 11th
Int. Conference on Foundations of Software Science and Computational Structures (FoSSaCS), Vol. 4962 of LNCS, Springer,
2008, pp. 302–317. doi:10.1007/978-3-540-78499-9_22.

[14] L. Hutschenreiter, C. Baier, J. Klein, Parametric Markov chains: PCTL complexity and fraction-free Gaussian elimination,
in: 8th International Symposium on Games, Automata, Logics and Formal Verification (GandALF), Vol. 256 of EPTCS,
2017, pp. 16–30. doi:10.4204/EPTCS.256.2.

[15] M. T. McClellan, The exact solution of systems of linear equations with polynomial coefficients, Journal of the Association
for Computing Machinery 20 (4) (1973) 563–588. doi:10.1145/321784.321787.

[16] R. Kannan, Solving systems of linear equations over polynomials, Theoretical Computer Science 39 (1985) 69–88. doi:

10.1016/0304-3975(85)90131-8.
[17] W. Y. Sit, An algorithm for solving parametric linear systems, Journal of Symbolic Computation 13 (4) (1992) 353–394.

doi:10.1016/S0747-7171(08)80104-6.
[18] G. Nakos, P. R. Turner, R. M. Williams, Fraction-free algorithms for linear and polynomial equations, ACM SIGSAM

Bulletin 31 (3) (1997) 11–19. doi:10.1145/271130.271133.

[19] C. Dehnert, S. Junges, N. Jansen, F. Corzilius, M. Volk, H. Bruintjes, J. Katoen, E. Ábrahám, PROPhESY: A probabilistic
parameter synthesis tool, in: 27th Int. Conference on Computer Aided Verification (CAV), Vol. 9206 of LNCS, Springer,
2015, pp. 214–231. doi:10.1007/978-3-319-21690-4_13.

[20] A. Filieri, C. Ghezzi, G. Tamburrelli, Run-time efficient probabilistic model checking, in: 33rd Int. Conference on Software
Engineering (ICSE), ACM, 2011, pp. 341–350. doi:10.1145/1985793.1985840.

[21] M. Benedikt, R. Lenhardt, J. Worrell, LTL model checking of interval Markov chains, in: 19th Int. Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), Vol. 7795 of LNCS, Springer, 2013, pp. 32–46.
doi:10.1007/978-3-642-36742-7_3.

[22] V. Chonev, Reachability in augmented interval Markov chains, CoRR abs/1701.02996.
[23] T. Quatmann, C. Dehnert, N. Jansen, S. Junges, J. Katoen, Parameter synthesis for Markov models: Faster than ever, in:

14th Int. Symposium on Automated Technology for Verification and Analysis (ATVA), Vol. 9938 of LNCS, Springer, 2016,
pp. 50–67. doi:10.1007/978-3-319-46520-3_4.

32

http://dx.doi.org/10.1109/LICS.1991.151651
http://dx.doi.org/10.1007/978-3-540-31862-0_21
http://dx.doi.org/10.1007/s00165-006-0015-2
http://dx.doi.org/10.1007/s10009-010-0146-x
http://dx.doi.org/10.1007/978-3-642-14295-6_56
http://dx.doi.org/10.1007/978-3-642-14295-6_56
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-319-63390-9_31
http://dx.doi.org/10.1007/978-3-319-63390-9_31
http://dx.doi.org/10.1007/978-3-319-10696-0_31
http://dx.doi.org/10.1093/imamat/10.1.68
http://dx.doi.org/10.1007/bf01211866
http://dx.doi.org/10.1007/11691372_26
http://dx.doi.org/10.1007/978-3-540-78499-9_22
http://dx.doi.org/10.4204/EPTCS.256.2
http://dx.doi.org/10.1145/321784.321787
http://dx.doi.org/10.1016/0304-3975(85)90131-8
http://dx.doi.org/10.1016/0304-3975(85)90131-8
http://dx.doi.org/10.1016/S0747-7171(08)80104-6
http://dx.doi.org/10.1145/271130.271133
http://dx.doi.org/10.1007/978-3-319-21690-4_13
http://dx.doi.org/10.1145/1985793.1985840
http://dx.doi.org/10.1007/978-3-642-36742-7_3
http://dx.doi.org/10.1007/978-3-319-46520-3_4

[24] M. Cubuktepe, N. Jansen, S. Junges, J. Katoen, I. Papusha, H. A. Poonawala, U. Topcu, Sequential convex programming
for the efficient verification of parametric MDPs, in: TACAS (2), Vol. 10206 of LNCS, 2017, pp. 133–150. doi:10.1007/

978-3-662-54580-5_8.
[25] V. G. Kulkarni, Modeling and analysis of stochastic systems, Chapman & Hall, 1995.
[26] C. Baier, J.-P. Katoen, Principles of Model Checking, The MIT Press, 2008.
[27] F. Ciesinski, C. Baier, M. Größer, J. Klein, Reduction techniques for model checking Markov decision processes, in: 5th

Int. Conference on Quantitative Evaluation of Systems (QEST), IEEE, 2008, pp. 45–54. doi:10.1109/QEST.2008.45.
[28] G. Guennebaud, B. Jacob, et al., Eigen v3, http://eigen.tuxfamily.org (2010).
[29] A. Israeli, M. Jalfon, Token management schemes and random walks yield self-stabilizing mutual exclusion, in: 9th ACM

Symposium on Principles of Distributed Computing (PODC), ACM, 1990, pp. 119–131. doi:10.1145/93385.93409.
[30] T. Herman, Probabilistic self-stabilization, Information Processing Letters 35 (2) (1990) 63–67. doi:10.1016/0020-0190(90)

90107-9.
[31] M. Z. Kwiatkowska, G. Norman, D. Parker, Probabilistic verification of Herman’s self-stabilisation algorithm, Formal

Aspects of Computing 24 (4-6) (2012) 661–670. doi:10.1007/s00165-012-0227-6.
[32] S. Aflaki, M. Volk, B. Bonakdarpour, J. Katoen, A. Storjohann, Automated fine tuning of probabilistic self-stabilizing

algorithms, in: 36th IEEE Symposium on Reliable Distributed Systems (SRDS), IEEE Computer Society, 2017, pp. 94–103.
doi:10.1109/SRDS.2017.22.

[33] S. Basu, R. Pollack, M.-F. Roy, Algorithms in Real Algebraic Geometry, Springer, 2008.
[34] M. Ben-Or, D. Kozen, J. Reif, The complexity of elementary algebra and geometry, Journal of Computer and System

Sciences 32 (2) (1986) 251–264. doi:10.1016/0022-0000(86)90029-2.

33

http://dx.doi.org/10.1007/978-3-662-54580-5_8
http://dx.doi.org/10.1007/978-3-662-54580-5_8
http://dx.doi.org/10.1109/QEST.2008.45
http://dx.doi.org/10.1145/93385.93409
http://dx.doi.org/10.1016/0020-0190(90)90107-9
http://dx.doi.org/10.1016/0020-0190(90)90107-9
http://dx.doi.org/10.1007/s00165-012-0227-6
http://dx.doi.org/10.1109/SRDS.2017.22
http://dx.doi.org/10.1016/0022-0000(86)90029-2

	Introduction
	Preliminaries
	Fraction-free Gaussian elimination
	Linear equation systems with polynomial coefficients
	One-step fraction-free Gaussian elimination
	Stratification via SCC-decomposition
	Implementation and Experiments

	Complexity of the PCTL+EC model-checking problem
	Computing all satisfying parameter valuations (All)
	Complexity bounds for (MC-E)
	(MC-E) for PCTL on univariate pMCs
	(MC-E) for monotonic PCTL on univariate pMCs
	Model checking PCTL+EC on MCs with parametric weights

	Conclusion

