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Abstract. For state-of-the-art semantic segmentation task, training con-
volutional neural networks (CNNs) requires dense pixelwise ground truth
(GT) labeling, which is expensive and involves extensive human effort.
In this work, we study the possibility of using auxiliary ground truth,
so-called pseudo ground truth (PGT) to improve the performance. The
PGT is obtained by propagating the labels of a GT frame to its sub-
sequent frames in the video using a simple CRF-based, cue integration
framework. Our main contribution is to demonstrate the use of noisy
PGT along with GT to improve the performance of a CNN. We perform
a systematic analysis to find the right kind of PGT that needs to be
added along with the GT for training a CNN. In this regard, we explore
three aspects of PGT which influence the learning of a CNN: i) the PGT
labeling has to be of good quality; ii) the PGT images have to be different
compared to the GT images; iii) the PGT has to be trusted differently
than GT. We conclude that PGT which is diverse from GT images and
has good quality of labeling can indeed help improve the performance of
a CNN. Also, when PGT is multiple folds larger than GT, weighing down
the trust on PGT helps in improving the accuracy. Finally, We show that
using PGT along with GT, the performance of Fully Convolutional Net-
work (FCN) on Camvid data is increased by 2.7% on IoU accuracy. We
believe such an approach can be used to train CNNs for semantic video
segmentation where sequentially labeled image frames are needed. To
this end, we provide recommendations for using PGT strategically for
semantic segmentation and hence bypass the need for extensive human
efforts in labeling.

1 Introduction

Semantic segmentation is an extensively studied problem which has been widely
addressed using convolutional neural networks (CNNs) recently. CNNs have been
shown to perform extremely well on datasets such as Pascal VOC [9], NYU-D
[33], CityScapes [7], etc. For efficient performance of CNNs, there are certain
characteristics of training data which are required: i) the ground truth (GT)
training data needs dense pixelwise annotations which requires an enormous
amount of human effort. For instance, an image in the Cityscapes dataset takes
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about 1.5h for dense annotation [7], ii) the training data has to be diverse in the
sense that highly similar images do not add much information to the network.
Such diversity in training data helps better modelling of the distribution of test
scenarios.

For semantic video segmentation, continuous annotation of consecutive frames
is helpful rather than annotations of discrete and temporally separated frames.
In such a case it is again extremely expensive to obtain dense pixelwise anno-
tation of consecutive images in the video. To this end, we arrive at an impor-
tant question: can auxiliary ground truth training data obtained by using label
propagation help in better performance of a CNN-based semantic segmentation
framework?

In this work, we explore the possibility of using auxiliary GT, to produce
more training data for CNN training. We use the CamVid dataset [5] as an
example, which contains video sequences of outdoor driving scenarios. But the
methodology can be easily applied to other relevant datasets. The CamVid has
training images picked at 1fps from a 30fps video, leading to one GT training
frame for every 30 frames. We propagate the GT labels from these images to
the subsequent images using a simple CRF-based, cue integration framework
leading to pseudo ground truth (PGT) training images. It can be expected that
the new PGT is noisy and has lower quality compared to the actual GT labeling
as a result of automaitc label propagation. We train the semantic segmentation
network FCN [24] using this data. In this regard, we explore three factors of how
the PGT has to be used to enhance the performance of a CNN.

1. Quality - The PGT labeling has to be of good quality in the sense that there
should not be too much of wrong labeling.

2. Diversity - The PGT training images have to be different compared to the
GT images, in order to match the potential diverse test data distribution.

3. Trust - During the error propagation, the PGT has to be weighted with a
trust factor in the loss function while training.

Further, we systematically analyze the aforementioned dimensions through
extensive experimentation to find the most influential dimension which improves
the performance of the CNN. We perform experiments with two main settings.
First, where equal number of PGT and GT training samples are present. Second,
the number of samples of PGT is multiple folds larger than GT training samples.
Our baseline is obtained by training the FCN only on the GT training images
which stands at 49.6%. From our experiments, we have found that adding PGT
to the GT data and training the FCN helps in enhancing the accuracy by 2.7%
to 52.3%.

The main contributions of this work are:

– We perform exhaustive analysis to find the influential factors among Quality,
Diversity and Trust which affect the learning in the presence of PGT data.
We conclude that PGT images have to be diverse from the GT images in
addition to their labeling to be of good quality. Trust on PGT data should
be sufficiently low when there is multiple folds of PGT than GT data.
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– We provide application specific recommendations to use PGT data, taking
the above factors into account. In the case of semantic video segmentation,
when PGT is multiple folds larger than GT, it is advisable to have a low
trust on PGT data. In case of image semantic segmentation, diverse high
quality PGT data helps in improving the performance.

Detailed discussions are further presented in experiments section (sec. 4).

2 Related Work

Semantic video segmentation has received growing interest in the last few years,
as is witnessed by its increasing number of works both in foreground/background
segmentation [26, 10, 13, 21, 22, 27, 30, 34, 40, 16, 11, 36, 38] and multi-class seman-
tic segmentation [4, 3, 2, 23]. We will focus our review on the later.

The influential label propagation method in [4] jointly models appearance and
semantic labels using a coupled-HMM model in video sequences. This method
was extended to include correlations between non-successive frames using tree
structured graphical models in [2]. [3] presents a mixture of temporal trees model
for video segmentation, where each component in the mixture connects super-
pixels from the start to the end of a video sequence in a tree structured manner.
While [2, 3] adopt semi-supervised learning fashion for learning the pixel unaries,
our method is principally different to their approach. In [2, 3], they first set the
pixel unaries to uniform distributions, use inference technique to estimate the
pixel marginal posteriors, and then do iterative inference. We first generate PGT
to train a neural network using combined GT and PGT data and perform the
forward pass for the inference. Furthermore, since dynamic objects are ignored
in the evaluation of [2, 3], we don’t know how good their approach applies to
these object classes. While it has been shown experimentally in [2, 3] that unar-
ies learned in semi-supervised manner can help improve segmentation accuracy,
we have performed thorough analysis of using PGT. [15] proposes to learn spa-
tiotemporal object models, with minimal supervision, from large quantities of
weakly and noisily tagged videos. In [20], the authors propose a higher order
CRF model for joint inference of 3D structure and semantic labeling in a 3D
volumetric model. [23] proposes an object-aware dense CRF model for multi-
class semantic video segmentation, which jointly infers supervoxel labels, object
activation and their occlusion relationship. Unlike aforementioned methods, we
use PGT data for learning the CNN model to perform the inference.

Recently, CNNs are driving advances in computer vision, such as image clas-
sification [19], detection [41, 14], recognition [1, 28], semantic segmentation [12,
24], pose estimation [35], and depth estimation [8]. The success of CNNs is
attributed to their ability to learn rich feature representations as opposed to
hand-designed features used in previous methods. In [25], the authors propose
to use CNN for object recognition exploiting the temporal coherence in video.
Video acts as a pseudo-supervisory signal that improves the internal representa-
tion of images by preserving translations in consecutive frames. [17] proposes a
semi-supervised CNN framework for text categorization that learns embeddings
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of text regions with unlabeled data and labeled data. A number of recent ap-
proaches, including Recurrent CNN [32] and FCN [24], have shown a significant
boost in accuracy by adapting state-of-the-art CNN based image classifiers to
the semantic segmentation problem. In [29] the authors propose to build their
model on FCN and develop EM algorithms for semantic image segmentation
model training under weakly supervised and semi-supervised settings. The au-
thors show that their approach achieves good performance when combining a
small number of pixel-level annotated images with a large number of image-level
or bounding box annotated images. This has been confirmed by [31, 37], where
[37] addresses the problem of training a CNN classifier with a massive amount
of noisy labeled training data and a small amount of clean annotations for the
image classification task, and [31] propose to use image-level tags to constrain
the output semantic labeling of a CNN classifier in weakly supervised learning
fashion. For semantic video segmentation, since obtaining a massive amount of
densely labeled GT data is very expensive and time consuming, we analyze the
usefulness of auxiliary training data. In [39], the authors propose an interesting
approach that takes into account both the local and global temporal structure of
videos to produce descriptions, which incorporates a spatial temporal 3D CNN
representation of the short temporal dynamics. One could extend current 2D
CNN model to 3D temporal CNN for video segmentation, but this is out of the
scope of this paper.

3 Our Approach

In this section we discuss the details of our approach to generate PGT data,
sorting schemes of PGT data and training the CNN.

3.1 Pseudo Ground Truth Generation using Label Propagation

CamVid Dataset. The CamVid [5] dataset consists of video sequences of outdoor
driving scenarios which is the most suitable dataset for our setting. It consists
of 11 semantic classes namely Building, Tree, Sky, Car, Sign, Road, Pedestrian,
Fence, Pole, Sidewalk, Bicycle. The video sequences in this dataset are recorded
at 30fps. We use these sequences to extract individual image frames at the same
rate for Pseudo Ground Truth Generation. The Ground Truth labeling exists for
1 frame of every 30 frames per second. This frame can be leveraged to propagate
the GT labels of that frame to the following frame using the approach described
below (Fig. 1). The training set for CamVid contains M images (M = 367).

Pseudo Ground Truth generation. Given a Ground Truth labeling St for a frame
It in the training set, we propagate the semantic labels St+1 of that frame to the
next frame It+1 in the sequence. The labeling of this new subsequent frame in the
sequence, St+1 is called Pseudo Ground Truth (PGT). We follow an approach
similar to [6], but use additional smoothness terms and a different inference
scheme. A graphical model is formulated using optical flow and texture cues.
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Fig. 1. Illustration of generating Pseudo Ground Truth data.

The labeling with optimal energy corresponds to the PGT St+1 of the considered
subsequent frame It+1. The energy of the graphical model is defined as follows,

E(St+1 | St, It, It+1) =

UM (St+1, St, It, It+1) + λ1U
C(St+1, It+1) + λ2V

s(St+1, It+1) (1)
where U and V denote the unary and pairwise potentials in the model. The
motion unary term UM defines the potential when a pixel zn

t+1 in It+1 takes a
label from one of the incoming flow pixels zn′ t from It whose flow terminates at
zn

t+1. The motion unary is defined as

UM (St+1, St, It, It+1) =
∑
n

∑
n′|zn′ t∈f(zn

t+1)

w(zn′
t, zn

t+1)(1− δ(Sn
t+1, Sn′

t))

where δ is the Kronecker delta and f(zn
t+1) is the set of pixels in It which have a

forward optical flow terminating at zn
t+1. The function w defines the similarity

of RGB histograms between two small image patches around zn
t+1 and zn′ t,

measured using KL-Divergence. The appearance unary term UC computes the
log probability of a pixel zn

t+1 belonging to one of the label classes. We learn
a Gaussian Mixture Model for the texture of each semantic class using only the
GT labeling of the first image(I0) of that particular sequence. UC is defined as

UC(St+1 | I0, S0) =
∑
n

− logP (zn
t+1 | µ0,

∑
0)

where µ0 is the mean and
∑

0 is the variance of the GMM over I0. P gives the
likelihood of zn

t+1 belonging to a certain class. The pairwise term V s is a generic
contrast sensitive Potts model. V s is given by

V s(St+1, It+1) =
∑

zm,zn∈c
dis(m,n)−1[szm 6= szn ] exp(−β(hzm − hzn)2)

where zm, zn are two connected pixels, dis(.) gives the euclidean distance be-
tween m and n, [φ] is an indicator function which takes values 0, 1 depending
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on the predicate φ, szm is the label of zm and hzm is the color vector of zm.
β is a constant chosen empirically. The inference is performed using mean-field
approximation [18].

We start the label propagation using the reference frame as I0, which is
the Ground Truth training frame, and S0, its corresponding semantic labeling.
The labels are propagated till the 5th frame in the sequence. Figure 1 gives
an illustration of the label propagation. The labeling St+1 obtained after the
inference is the so-called Pseudo Ground Truth labeling for the frame It+1 using
the reference labeling for It. In this way, for every GT labeled frame in the
367 image training set, we propagate the labeling to the next 5 consecutive
frames obtained from the sequence. To this end, the total number of PGT frame
labelings obtained is 1835. We can as well propagate the labels to the backward
frames. We assume that we get similar kind of PGT and experimental results in
such a case as well.

Fig. 2. Quality of some PGT labelings. (a), (c) are sequence of images. (b), (d) are
corresponding labelings. (b) shows an example of good quality PGT label propagation
for a sequence, while (d) shows a case where there is much noisy labeling in the PGT.
A zoomed-in version of the last image in the sequence (d) illustrates the noisy labeling.

3.2 PGT Data

The focus of this work is to determine the right kind of PGT data that needs to
be added to the GT to enhance the performance of CNN. As mentioned before,
there are three factors of considering a PGT labeling while learning the CNN.

1. The quality of the labeling should be good. As it can be seen from Fig. 2(d),
the PGT labeling for an image can be erroneous. On the other hand, labeling
can also be reliable enough (Fig. 2(b)). This presents a situation where the
right kind of high quality PGT must be chosen.

2. An important requirement in the learning of CNNs is that the data should
be as diverse as possible. This aids in better modeling of the distribution of
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test images, which we assume are diverse. Hence, the images appearing in
the later part of the sequence can be expected to enhance the performance
of the network.

3. Because of the noise in the PGT labeling, the data may not be completely
trusted when training a CNN for semantic segmentation. Hence, the gradient
obtained during back propagation for a PGT has to be scaled appropriately.

The above mentioned criteria form the basis for sorting the PGT data using
various schemes as mentioned below.

Visual rating based on labeling quality. The quality and the noise in the PGT
labeling differs from image to image (Fig. 2) and we would like to choose the PGT
data with high label quality. To achieve this, the PGT labelings are manually
rated, based on their visual quality, ranging from 1 to 9. The labelings are
checked for class label consistency, e.g label drift from one semantic region to
another. We observed that the labeling quality goes down as we move away
from the GT labeling. All the GT image labelings are rated as 10 which serve
as the baseline. Further, all the PGT labelings are sorted according to their
rating and distributed into 5 different sets (PGT R1 to PGT R5) each containing
367 labelings. For instance the first set, PGT R1 contains the highest quality
367 labelings and PGT R2 contains the next best high quality 367 labelings. It
could be expected that the first set PGT R1 majorly contains the first images
in the sequence since they are generally of higher quality. Figure 3 shows the
distribution of chronological images in each set. We call these as visually sorted
sets for future reference. Rating 1835 images took about about 2h (4-5 sec/image)
for a human. Dense labelling of 1835 images would take about 1000h which is
extremely expensive. We believe that the performance enhancement achieved at
the expense of minimal human effort here is valuable.

Fig. 3. Distribution of sequence of images in each visually sorted set.

Sequential Grouping. In this scheme, we group all the PGT labelings by their
chronological order (PGT S1-PGT S5). For instance, PGT S1 contains all the
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1st labelings in the sequence and PGT S2 contains all the 2nd labelings in the
sequence. We call these as sequential sets. In this case PGT S4, PGT S5 can
be expected to contain the most diverse images compared to the GT images
because they appear later in the sequence.

3.3 Trust on PGT while learning

As mentioned in Sec. 3.2, the PGT data cannot be completely trusted when
it is being learnt. To address this, we scale the gradient obtained while back
propagating the error through the CNN by a trust factor less than 1. Let the
trust factor for a PGT labeling be tf . The new update rule for the Stochastic
Gradient Descent is then

θ′ := θ − ηtfOJ(θ) if S ∈ PGT (2)

θ′ := θ − ηOJ(θ) if S ∈ GT (3)

where θ are the weights of the network, η is the learning rate and OJ(θ) is
derivative of the loss function and S is the semantic labeling upon which the
loss is being computed. Effectively, the trust factor scales the magnitude of the
gradient because the direction of the gradient cannot be completely relied upon,
when learning a PGT image. In the experiments, we used trust factors varying
from 0.5 to 1. A value of tf = 1 means that the PGT is trusted completely.
All the GT labelings have a trust factor of 1 by default. We also tried using a
separate trust factor for each class by scaling the trust factor by the number of
pixels of a certain object label. Since, it did not show any improvement in our
experiments, we decided to use a single constant.

Training We use the standard implementation of FCN [24] in all the experi-
ments. We train the FCN using SGD with momentum and our modified update
rule. We use a batch size of 1, with learning rate of 1−9 with a momentum 0.99
and weight decay of 5−4. We initialize the FCN with weights of VGG-16 network.
For the whole set of experiments, we need 60 GPUs for about 210h. Requirement
of such resources is a major hindrance and hence we limit to experiments using
only 5 consecutive frames.

4 Experiments

In this section, we evaluate our approach using various experiments and further
present a discussion of the results. As explained above, we consider two schemes
for sorting PGT data, i.e. through visual sorting and sequential sorting. Below
we discuss two different experimental setups, when adding the 5 sets individually
to the GT, and when accumulating the 5 sets with the GT.
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4.1 Overall Performance

We first train the FCN only using the GT Training data, consisting of 367
images. This gives an average class IoU accuracy of 49.6%. We consider this
as the reference baseline. Table 1 gives a detailed comparison of all the class
IoU accuracies and the average IoU. From Table 1, it can be seen that the
FCN trained with extra PGT outperforms the FCN trained only on GT in all
the classes. In this case, the PGT set is PGT S4 with trust factor = 0.9. The
average IoU accuracy is 52.3% which is higher compared to 49.6% in case of
baseline FCN. For classes like Bicycle, Sidewalk, Fence, Car our model provides
a commendable performance boost. Figure 5 shows some qualitative results of
labeling obtained on test frames by our trained model.

Table 1. Semantic segmentation performance of our approach compared to an FCN
trained only on GT data.

Approach
Build
ing

Tree Sky Car Sign Road
Pedes
trian

Fence Pole
Side
walk

Bicy
cle

Avg
IoU

FCN
(Only GT)

70.5 63.1 84.8 61.9 19.1 89.8 19.8 30.9 6.5 70.1 29.3 49.6

Ours
(GT+PGT S4

tf = 0.9)
72 65.6 84.6 64.6 20.8 90.6 24.9 38.8 8.0 71.8 33.9 52.3

4.2 Effect of ambiguous labeling of images

In this experiment we want to analyze the effect of ambiguity in the semantic labeling of
extremely similar images. We performed a preliminary experiment in which the PGT
is produced just by using the labels of the first frame directly for all the successive
frames. This is the most naive way of propagating labels from the base frame to the
next 5 frames. We trained the FCN with GT and PGT containing either all the first
frames or all second frames etc. We observed the the accuracy sharply decreases as
we move away from GT image in the following manner - 50.7 (GT+1st frames), 50.6
(GT+2nd frames), 50.2, 49.9, 49.7 (GT+ 5th frames). This is because the labeling that
comes from the first frame GT is more erroneous when applied to the later frames.

Further, we performed another experiment where the labels of the first image are
jittered and applied to the same image again. Unlike the above experiment, jittered
labels are applied to the same image. To achieve this, we dilate the object labels along
their borders by a very small amount followed by a minor random shift of 2-4 pixels.
This simple technique creates an ambiguous labeling along the borders, effectively
leading to a jitter of all semantic object labels. Effectively, such ambiguous labels mimic
the labels that are a result of label propagation where they are generally erroneous, at
the borders of the semantic objects. For each image-labels pair In-Sn in the GT set, we
create 3 such ambiguous labelings (In-S1

n, In-S2
n, In-S3

n). Further, three training sets
are created (AGT 1, AGT 1-2, AGT 1-3). AGT 1 contains the GT training data and
the set of all first ambiguous labelings for each image. Likewise, AGT 1-3 contains the
GT data, and all the ambiguous labelings for each image. Essentially, we are trying to



10 Mustikovela et al.

analyse the effect of ambiguous labeling for a set of extremely similar images. We train
the FCN using various trust factors for PGT data ranging from 0.5 to 1. From this
experiment (last column of Table 2), it can be observed that the addition of multiple
folds of ambiguous labels for a set of extremely similar images reduces the accuracy
(AGT 1 to AGT 1-3). This is because of the addition of extremely similar images to the
CNN with more ambiguous labeling which corrupts the learning of CNN. This effect
would further be useful in explaining certain phenomena in the experiments below. The
average accuracies are marginally more than 49.6% (baseline) for AGT 1, AGT 1-2.
The reason is that, effectively, we are increasing the number of epochs for which the
CNN is trained when we are using the same image set repeatedly.

Table 2. Accuracies for various FCNs trained on ambiguously labeled data.

Trust Factor/
Tr. Set

0.5 0.6 0.7 0.8 0.9 1
Avg.
Acc.

AGT 1 50.1 50.1 50 50.2 50.3 49.2 50.0

AGT 1-2 50.1 50 50.3 50.1 50.1 49.9 50.0

AGT 1-3 48.5 48.7 49.2 49.1 49.4 49.2 49.0

4.3 FCN trained using separate PGT sets

(A) Sequentially sorted PGT sets. In this experiment, we train the FCN with
training sets containing 734 images which consist of GT (367 images) and one of the
PGT S training sets (367 images). As described in Sec. 3.2, there are 5 PGT sets in
this experiment, each consisting of 1st, 2nd, 3rd, 4th and 5th images in the sequence
starting from the GT image. We train the FCN using various trust factors for PGT
data ranging from 0.5 to 1. In all these experiments, the trust on the GT training set
is fixed to be 1. Table 3(a) outlines the accuracies for each training set over various
trust factors. Following are the observations of this experiment:

Trust Factors: From Table 3(a) it can be observed that there is no clear trend
in the effect of trust factors on the learning of CNN, particularly when a single set
of PGT is added to the training. For example, in the case of GT+PGT1, tf = 0.6
performs the best with an accuracy of 51.5, while tf = 0.5 performs the best in case
of GT+PGT2. In case of GT+PGT4, tf = 0.9 gives the highest accuracy of 52.3%
and the other trust factors lead to similar accuracies in the range of 51.3% to 51.5%.
This can be attributed to the extreme non-convexity of the function space of CNNs,
due to which the scaling of magnitude of the gradient could lead to a different local
minima. For this reason, to compare the effect of various training sets, we average the
accuracies due to various trust factors (see last column in each table).

PGT Sets: It can be seen that the accuracy for a training set averaged over trust
factors is the highest (51.5%) when the training set contains all the 4th images in the
sequence. Further, the average accuracy declines to 51.4% when the set of all the 5th

images is included in the training set. Fig. 4 shows the trend of average accuracy of the
network when different sequentially sorted PGT sets are added to the training data.
It can be clearly seen that the accuracy increases as the PGT images are farther away
from the GT images and further drops when set of 5th images is added. This can be
attributed to the fact that the PGT sets with 4th and 5th images are very different
compared to those in the GT images and the labeling in the 5th set is lower in quality.
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Effectively, the 4th set aids in providing diverse high quality data and adding more
information to the network. Effectively, if there is a better label propagation algorithm
which can reliably propagate labels to farther images in the sequence, we conjecture
that a later image would help in providing more information to the CNN and hence
further enhance the performance of CNN.

From the above observations, it can be concluded that, in learning a CNN, the
effect of using a high quality diverse PGT set (e.g. 4th set) is more prominent than the
effect of a trust factor on a PGT set, in a case where the number of PGT images is the
same as the number of GT images in the training data.

Table 3. Accuracies for various trust factors of training the FCN with GT images and
an additional set of equal number of PGT images.

(a)Accuracies for Sequential Sets (b)Accuracies for Rated Sets
Trust Fac./

Tr. Set
0.5 0.6 0.7 0.8 0.9 1

Avg.
Acc

0.5 0.6 0.7 0.8 0.9 1
Avg.
Acc

GT+PGT1 50.7 51.5 51.2 50.8 50.6 49.5 50.7 49.7 49.3 48 50.2 50.9 50.7 49.8
GT+PGT2 52.1 51.2 50.2 51.5 50.4 51.3 51.1 49.8 48.9 49.4 49.5 49.8 48.7 49.4
GT+PGT3 51.5 51.4 50.5 51.1 50.9 51.1 51.1 51.2 50.7 51.2 50.5 50.3 49.4 50.5
GT+PGT4 51.4 51.4 51.3 51.3 52.3 51.3 51.5 51.5 50.8 50.2 50.3 50.1 50.5 50.5
GT+PGT5 51.2 52.1 51.2 51.5 51.1 51.4 51.4 50.9 50.9 50.1 50.1 51.5 50.6 50.6

Fig. 4. Graph shows the average accuracy change upon varying the PGT set added to
training along with GT. Green curve indicates the accuracies in case of sequentially
sorted sets. Blue curve indicates the accuracies in case of visually sorted sets. Orange
curve indicates the accuracies for randomly sorted sets.

(B) Visually Rated PGT Sets. In this experiment, we train the FCN with
training sets containing 734 images which consist of GT (367 images) and a PGT R
training sets (367 images). PGT R1 contains the highest quality PGT labeling followed
by PGT R2 which contains the next highest quality PGT labeling, and so on. We train
the FCN using various trust factors for PGT data ranging from 0.5 to 1. The trust on
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the GT training set is fixed to be 1. Table 3(b) outlines the accuracies for each training
set over various trust factors. The following are the observations of this experiment.
It can be seen that all 30 FCN models trained on GT+PGT perform better than our
baseline which indicates that there is an improvement in performance of FCN when
PGT data is used.

Trust Factors: There is no clear trend in the effect of trust factors on the learning
of CNN. As mentioned above, the extreme non-convexity of the function space of CNN
may prevent us from explicitly analyzing the effect of trust factors.

PGT sets: The accuracy for a training sets averaged over trust factors increases
as we present the PGT sets PGT R1 to PGT R5. The PGT labeling in PGT R5 is
lower in quality compared to those in PGT R1, but the accuracy is higher for PGT R5
compared to that of PGT R1. This could seem to be counter intuitive, but upon further
analysis the trend is explicable. Consider Fig. 3 where the constitution of chronological
images in visually sorted sets is depicted. It can be observed that the sets starting from
the PGT R3 majorly consist of later images than the earlier images in the sequence.
Hence, the diversity of training data increases as we proceed to later sets.

Label ambiguity: It can be seen that the average accuracies for visually sorted
sets (Fig. 4) are lower than those of sequentially sorted sets. This might as well seem to
be unreasonable because the PGT labeling in visually sorted sets are of high quality.
However, there is an important detail to notice here. These initial images are extremely
correlated and similar. The presence of multiple highly correlated images and label
ambiguity for these brings down the accuracy. While in the case of sequentially sorted
images, only one of the highly correlated images in the sequence is present for each
image in the GT.

From the above observations, it can be clearly concluded that the presence of diverse
PGT images plays a stronger role in enhancing the accuracy of CNNs, rather than high
quality images, particularly when the label propagation is done for shorter sequences.
To this end, we conjecture that the quality of images could play a considerable role
when the label propagation is done for longer sequences. Such an effect can already be
seen in the case of sequentially sorted PGT sets where the accuracy for PGT S5 is less
than that of PGT S4. This can be clearly attributed to the fact that the label quality
in PGT S5 is less than that of PGT S4.

(C) Randomly selected sets. In this setting, we divide the set of all the PGT
data randomly into 5 sets each containing 367 images. An image-label sample belongs
to only one set in these five sets. As it can be seen in Fig. 5(orange plot), the average
accuracies do not majorly change when the PGT sets are changed. While in cases of
sets 3, 4, 5 of the sequential and visually sorted images, the accuracies are higher than
those of randomly selected sets. This again is for the reason that there is no major steer
of selection of diverse high quality labeling in a randomly assigned set. Clearly, this
experiment again reinforces the necessity of selection of diverse good quality labeling
to improve the performance of CNN.

4.4 FCN trained using accumulated PGT sets

In this section we describe the experiments where the PGT sets are accumulated for
training the FCN (Table 4). For instance, Set 1 contains the GT, first PGT set and the
second PGT set. The last set contains GT and all the PGT sets. Note that the ratio of
PGT samples to the GT samples goes up as we proceed. So the last set contains 5 times
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as many PGT samples as the GT samples. Similar to above section, we present two
experiments where we accumulate sequentially sorted sets (Table 4(a)) and visually
rated sets (Table 4(b)). We train the FCN using various trust factors for PGT data
ranging from 0.5 to 1. The trust on the GT training set is fixed to be 1.

Trust Factors: The last row in Table 4 contains the average accuracy over all the
datasets for a given trust factor. Unlike the earlier observation in Sec. 4.3 where the
trust factors analysis did not show a clear trend, here it can be seen that lower trust
factors help to produce better accuracies compared to higher trust factors. As seen
from the last row (Table 4(a)), the average accuracy constantly declines from 50.2% to
49.2% when the trust factor is varied from 0.5 to 1 for sequentially sorted sets. Also,
it can be seen from the last row (Table 4(b)), that the average accuracy constantly
declines from 50.6% to 48.6% when the trust factor is varied from 0.5 to 1 for visually
ranked sets. Note that even in the presence of multiple folds of noisy PGT samples in
the training set, the FCN performs at an average accuracy of 50.6% when the trust
factor is set to a sufficiently low value.

From the above observations, we conclude that the trust factor for the PGT data
should be low enough when the number of PGT samples is considerably higher than
that of GT samples.

Table 4. Accuracies of various training experiments when the PGT data is accumu-
lated for each training. GT+(PGT1-5) contains all the PGT sets 1,2,3,4,5.

(a) Accuracies for
accumulated Sequential sets

(b) Accuracies for
accumulated Rated sets

Trust Factor/
Tr. Set

0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1

GT+PGT(1-2) 50.1 48.9 50.1 49.1 48.3 48.4 50.3 49.3 49.9 51 48 48.4
GT+PGT(1-3) 49.6 50.3 50 50.4 49.2 50.5 50.7 49.4 49.5 49.8 49.7 48.5
GT+PGT(1-4) 51.5 50 50 48.5 49.7 48.3 51.5 50.6 50.3 48.1 49.4 48
GT+PGT(1-5) 50.3 50.9 50.1 49.8 49.6 48.5 50.3 50.9 50.1 49.8 49.6 48.5
Average IoU 50.2 49.8 49.6 49.6 49.5 49.2 50.6 50.3 50.3 49.9 49.4 48.6

Visual Rating: The first columns of Tables 4(a,b) present an interesting observa-
tion. When the trust factor is sufficiently low (tf = 0.5), the accuracy for each set in
Visually Rated accumulation is in general higher than or equal to the accuracy in case
of Sequential accumulation. Fig. 6 illustrates this trend. The reason for lower accuracy
of sequentially sorted accumulated sets is again due to label ambiguity as discussed
before. For example, when the first and second sequentially sorted sets are added to
the GT, there is a high correlation among the 1st, 2nd and 3rd images of the sequence
and the effect of ambiguous labeling occurs (as discussed in Sec. 4.2). Of course such
kind of correlated images are present in the visually sorted sets as well and would
come up during accumulation. But in the initial sets, for some GT images, there are
no images of that sequence till PGT R3, PGT R4, PGT R5. This means there is no
ambiguous labeling effect due to these images. This brings us to a conclusion that vi-
sual rating helps when the PGT data is accumulated and the number of PGT images
is multiple folds higher than GT images. Evidently, accumulation does not explicitly
help to enhance the accuracy over training with separated sets. The maximum accuracy
achieved in both the cases is 51.5%. But clearly, this experiment suggests that such
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kind of accumulated training with sequences of images for semantic video segmentation
can help when there is usage of PGT data. Additionally, we conjecture that even better
results can be obtained by adapting the trust factors to individual images based on
label quality and other potential factors.

5 Conclusions

In this work, we have explored the possibility of using pseudo ground truth (PGT)
to generate more training data for CNN. The main contribution is to systematically
analyze three aspects of how the PGT has to be used to enhance the performance of
a CNN-based semantic segmentation framework. From our experiments, we make the
following conclusions: a) When the the number of PGT samples and GT samples is
comparable, it is important to use diverse PGT data compared to GT images which
also has good quality of labeling; b) When the number of PGT samples is multifold
compared with GT, the trust on the PGT samples should be sufficiently low; c) Ac-
cumulation of PGT data does not explicitly help in improving the performance of
semantic segmentation by a considerable amount. But it is important to note that in
cases such as video processing, sequential labeled data has to be presented to the CNN
and our experiments show that PGT can be used in such cases with a sufficiently low
trust factor and it does not worsen the performance. To this end, we recommend that
diverse high quality PGT should be used when one has to improve the performance of
semantic segmentation. In case PGT is being used for semantic video segmentation,
we recommend that the trust on PGT is kept to a low value. Additionally, there are
many exciting avenues for future research. One direction is to improve the PGT data
generation itself. As the experiments have shown, we believe that even better results
can be achieved when the so-called trust factors are individually adapted to the data
in case of PGT accumulation. For instance, each frame, or even each pixel, receives
a different trust factor, potentially also conditioned on the image content and other
information. Another direction of research is to compare and complement our approach
for data augmentation to other common strategies for data augmentation.

Fig. 5. Qualitative performance of our system. First row-Images. Second row-Output
of FCN trained with GT+PGT S4, trust factor = 0.9. Third row-ground truth.
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