Tracking Dataset

April 7, 2015

Abstract

All data regarding our ACCV 14 paper can be downloaded from our project page: http://cvlab-dresden.de/research/scene-understanding/ pose-estimation/\#ACCV14. If you run into problems contact: alexander $<$ dot $>$ krull $<a t>$ tu-dresden.de.

1 Overview

We recorded and annotated six sequences showing three different objects. For each frame in each sequence we provide: a depth image, a rgb image, and the pose of the object. Additionally we provide a 3D model of the objects.

We introduced this dataset in the our paper [1]. If you use this dataset, please cite the aforementioned paper.

2 Structure

The dataset is structured as follows: At the top level there are six folders corresponding to the six sequences. Each each sequence folder contains three subfolders named: rgb_noseq containing rgb images, depth_noseq containing depth images, and info containing the pose annotation. Additionally we provide in every sequence folder a mesh file as well as a point cloud file of the object.

3 RGB Images

The sub folders rgb_noseq contain rgb images. Each image is a 3 channel 8 bit (unsigned char) PNG file.

4 Depth Images

The sub folders depth noseq contain depth images. Each image is a single channel 16 bit (unsigned short) PNG file. The value at a pixel corresponds to the depth in millimetres. A depth value of 0 means missing depth.

5 Pose Annotation

The files in the info sub folders are named info_<image number>.txt.
Their contents looks like this:

```
image size
<iw> <ih>
<sequence name>
rotation:
<r1> <r2> <r3>
<r4> <r5> <r6>
<r7> <r8> <r9>
center:
<t1> <t2> <t3>
extent:
<ow> <oh> <od>
```

Image width <iw> and image height <ih> are measured in pixels, and are always 640 resp. 480. The rotation and center entries are combined into transformation $T_{o \rightarrow c}$ in the following way:

$$
T_{o \rightarrow c}=\left[\begin{array}{cccc}
r 1 & r 2 & r 3 & t 1 \tag{1}\\
r 4 & r 5 & r 6 & t 2 \\
r 7 & r 8 & r 9 & t 3 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$T_{o \rightarrow c}$ maps 3D coordinates in the object coordinate system (i.e. object coordinates) to 3D coordinates in the camera coordinate system. This is the object pose. All coordinates are assumed to be measured in meters. The last three entries <ow>, <oh> and <od> represent object width, object height and object depth, respectively. They are measured in meters.

5.1 Mesh File (.obj)

This Wavefront OBJ file contains a mesh of the object. The coordinates of the mesh file are measured in meters, and live in the object coordinate system.

5.2 Point Cloud File (.xyz)

This file contains a point cloud of the object. Each line contains <x> <y> <z> of one 3D point. The coordinates of the points are measured in meters and live in the object coordinate system.

6 Calculation of Additional Information

This section explains how to derive additional information from depth data.

6.1 Camera Coordinates

For each pixel of an RGB-D image you can calculate the X_{c}, Y_{c}, Z_{c}-coordinates of the pixel in the camera coordinate system in meters:

$$
\begin{gather*}
X_{c}=\left(x-\frac{w_{i}}{2}\right) \frac{d}{1000 f} \tag{2}\\
Y_{c}=-\left(y-\frac{h_{i}}{2}\right) \frac{d}{1000 f} \tag{3}\\
Z_{c}=\frac{-d}{1000} \tag{4}
\end{gather*}
$$

Where x and y are pixel coordinates measured from the top left image corner, and d is the associated depth in millimetres. Image width w_{i} and image height h_{i} are 640 and 480 , respectively. We use a focal length f of 575.816 px . The factor 1000 in all three equations converts millimetres in meters.

References

[1] Alexander Krull, Frank Michel, Eric Brachmann, , Stefan Gumhold, Stephan Ihrke, and Carsten Rother. 6-dof model based tracking via object coordinate regression. In Proceedings of the Asian Conference on Computer Vision, ACCV, 2014.

