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Abstract

A man-made environment is characterized by many parallel lines and orthogonal
edges. In this article, a new method for detecting the three mutually orthogonal
directions of such an environment is presented. Since real-time performance is not
necessary for architectural applications, such as building reconstruction, a compu-
tationally intensive approach was chosen. However, this enables us to avoid one
fundamental error of most other existing techniques. Compared to theirs, our ap-
proach is furthermore more rigorous, since all conditions given by three mutually
orthogonal directions are identified and utilized. We assume a partly calibrated
camera with unknown focal length and unknown principal point. By examine these
camera parameters, which can be determined from orthogonal directions, falsely
detected vanishing points may be rejected.

Key words: Vanishing points, vanishing lines, geometric constraints, architecture,
camera calibration

1 Introduction

The analysis of vanishing points provides strong cues for inferring information
about the 3D structure of a scene. With the assumption of perfect projection,
e.g. with a pin-hole camera, a set of parallel lines in the scene is projected
onto a set of lines in the image that meet in a common point. This point
of intersection, perhaps at infinity, is called the vanishing point. Vanishing
points which lie on the same plane in the scene define a line in the image,
the so-called the vanishing line. Figure 1 shows the three vanishing points and
vanishing lines of a cube, where a finite vanishing point is defined by a point
on the image plane and a vanishing point at infinity is defined by a direction
on the image plane. If the camera geometry is known, each vanishing point
corresponds to an orientation in the scene and vice versa.
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Fig. 1. The three vanishing points and vanishing lines of a cube.

The understanding and interpretation of a man-made environment can be
significantly simplified by the detection of vanishing points. For instance, this
has been done in the field of navigation of robots and autonomous vehicles
[16], in the field of object reconstruction [5,15] or for the calibration of cameras
[4,9,17]. A man-made environment has two characteristic properties: Many
lines in the scene are parallel and various edges in the scene are orthogonal.
In an indoor environment this is true for e.g. shelves, doors, windows and
corridor boundaries. In an outdoor environment e.g. streets, buildings and
pavements satisfy this assumption. On the basis of these properties the task of
detecting the three mutually orthogonal directions of a man-made environment
has raised considerable interest [6,8,16].

After a discussion of existing vanishing point detection methods in Section 2,
our method is presented in Section 3. Section 4 demonstrates the performance
of our method on real image data.

2 Previous Work

The majority of vanishing point detection methods rely on line segments de-
tected in the image. A different approach is to consider the intensity gradients
of the pixel units in the image directly [6,18]. Since we base our method on line
segments, these approaches will be considered in more detail in the following.

The task of detecting those vanishing points that correspond to the dominant
directions of a scene is traditionally solved in two steps. Firstly, line segments
are clustered together on the condition that a cluster of line segments shares
a common vanishing point. We denote this step as the accumulation step. In
the second step, the dominant clusters of line segments are searched for. We
refer to this step as the search step.
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Let us consider the accumulation step first. In order to reduce the computa-
tional complexity of the clustering process, the unbounded image R2 is mapped
onto a bounded space. This has the additional advantage that infinite and fi-
nite vanishing points can be treated in the same way. The bounded space, also
denoted as accumulator space, can then be partitioned into a finite number of
cells, so-called accumulator cells. Barnard [2] suggested the Gaussian sphere
centred on the optical centre of the camera as an accumulator space (see fig.
2). A great circle on the Gaussian sphere represents a line segment in the
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Fig. 2. The Gaussian sphere as an accumulator space.

image and a point on the Gaussian sphere corresponds to a vanishing point
in the image. Figure 2 shows that the great circles of two line segments in
the image plane always intersect in one point, their vanishing point. For the
accumulation of line segments, the Gaussian sphere is tessellated into accumu-
lator cells, and each cell is increased by the number of great circles which pass
through it. This approach was then enhanced in other works. Since Barnard
chose an irregular and quite ad hoc tessellation of the Gaussian sphere, this
was improved by Quan and Mohr [14]. Lutton et al. [12] investigated the in-
fluence of different error types, e.g. error due to the finite extension of the
image, in the accumulation process on the Gaussian sphere. Magee and Ag-
garwal [13] accumulated the projection of the intersection points of all pairs
of line segments in the image onto the Gaussian sphere. This approach is
computationally more intensive but on the other hand more accurate. Alter-
native accumulator spaces were introduced in [16,3]. Brillault [3] established
an uncertainty model for a line segment. According to this model an accumu-
lator space is introduced, in which the expected uncertainty of a line segment
remains constant in the accumulator space. A different approach to reduc-
ing the computational complexity of the accumulation step is to apply the
Hough transformation by mapping the parameters of the line segments into a
bounded Hough space [1,18]. Tuytelaars et al. [18] applied the Hough trans-
formation three times (Cascade Hough transformation). At different levels of
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the Cascade Hough transformation a peak in the Hough space corresponds to
a vanishing point and a vanishing line respectively.

A fundamental drawback of all techniques [1–3,12–14,16,18] that transfer in-
formation from the image into a bounded space is that the original distances
between lines and points are not preserved. Let us consider the two great cir-
cles of the two line segments in fig. 2. Due to the perspective effect of the
projection from the image plane onto the Gaussian sphere the distance be-
tween these two great circles differs when the two line segments undergo the
same movement on the image plane. Therefore, the distance between a line
segment and a vanishing point depends on their location on the image plane,
i.e. the distances between points and line segments on the image plane are
not translationally and rotationally invariant. From an abstract point of view,
the transformation simplifies the space of information, i.e. the detected line
segments, which effects the relation between information, i.e. relative location
of geometrical entities. This drawback can be avoided if no transformation
is carried out, i.e. the image plane itself is chosen as the accumulator space.
Apart from this drawback the advantages of a bounded space in contrast to an
unbounded space are: A finite partition of the space is simpler and a distance
function between geometrical entities is easier to formulate.

In the past, more effort has been spent on the accumulation step than on the
search step. One of the reasons for this is that the directions in the scene of
the searched dominant vanishing points do not have to be orthogonal. This
means that the orthogonality of the direction of vanishing points was not
treated as an additional criterion of the search step. In [13,14] the search step
was designed in a straight forward manner. Firstly, the dominant vanishing
point, which corresponds to the accumulator cell with most line segments, is
detected. After removing the line segments which correspond to this vanishing
point the search for a maximum in the accumulator space is repeated. The iter-
ating process stops when the number of line segments of a dominant vanishing
point is below a certain threshold. This approach is characterized by a mini-
mal computational effort. Recently, van den Heuvel [8] developed a method for
detecting the three mutually orthogonal directions in the scene. The orthogo-
nality criterion was explicitly used, which means that all combinations of three
possible vanishing points have to be considered. This method requires higher
computational effort than the approach mentioned above. However, in con-
trast to this work van den Heuvel assumes a calibrated camera. Coughlan and
Yuille [6] searched for two orthogonal directions in the scene using Bayesian
inference based on statistics which have been learnt in a specific domain.
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3 Detection of Three Mutually Orthogonal Directions

With increased computing power and without the condition of real-time per-
formance an approach with higher computational effort is reasonable and will
here be pursued. As accumulator space we choose the unbounded image plane
itself. This has in contrast to [1–3,12–14,16,18] the advantages which was de-
scribed in the previous section. We will show that, despite the fact that the
image plane is unbounded, infinite and finite vanishing points can be treated
in the same way. As accumulator cells we choose (like [13]) the intersection
points of all pairs of line segments. For the search step we will establish all
criteria, which vanishing points with mutually orthogonal directions have to
satisfy. We assume, in contrast to [8], a partly calibrated camera with unknown
focal length and unknown principal point. It is known that such a camera can
be fully calibrated on the basis of three orthogonal vanishing points [4]. By
restricting the range of the focal length and the location of the principal point,
falsely detected vanishing points can be rejected. Since this implies that each
triplet of potential mutually orthogonal vanishing points have to be considered
separately, this method requires more computations than other approaches,
such as [13,14].

3.1 The Accumulation Step

Due to various reasons, e.g. noise and lens imperfections, the perspective pro-
jection of a line segment from the 3D scene onto the 2D image is not congruent
with the line segment detected in the image. We denote this perfect projec-
tion of a line segment as the projected line segment. Hence, all vanishing point
detection methods have to formulate either implicitly or explicitly a distance
function between a vanishing point and a detected line segment. In this con-
text the basic question is: How close is a projected line segment s′ with the
vanishing point vp to its corresponding, detected line segment s? In order to
answer the question we represent a line segment with the midpoint represen-
tation (mx, my, l, αs) (see fig. 3 (b)). Compared to other representations, e.g.
endpoint representation, it has the advantage that the length of a line segment
is treated explicitly. We define: The perfect line segment s′ of a line segment
s has the same midpoint as s and has vp as vanishing point. On the basis of
this definition a distance function d(vp, s) between a vanishing point vp and
a line segment s can be defined as the angle α between the corresponding line
segments s′ and s. Figure 3 (a) gives an example for a finite vanishing point.
Since we need as well a distance function d(l, s) between a line l and a line
segment s in the search step, we define this distance as the tuple (d, α), where
d is the distance between l and the midpoint of s and α is the angle between
s′ and l (see fig. 3 (b)).
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Fig. 3. Explanation for the distance function d(vp, s) between a line segment s and
a finite vanishing point vp (a) and for the distance function d(l, s) between a line l
and a line segment s (b).

These distance functions fulfill the requirements we state above: Finite and
infinite vanishing points are treated in the same way and the distances be-
tween points, lines and line segments are independent of their location on the
image plane. Note, with this simple approach we disregard the error of a de-
tected line segment and of a potential vanishing point. The modeling of these
errors would lead towards a more complex and probabilistic framework. In
[10,11] it is assumed that the error in the detected line segment can be mod-
eled by isotropic mean zero Gaussian noise on the endpoints. On the basis of
this assumption the maximum likelihood estimate of the corresponding line
segment can be explicitly computed by minimizing the sum of squared orthog-
onal distances from the endpoints of the detected line segment. However, it is
questionable if this noise model represents the “true” noise of a line segment
in a good way.

On the basis of this framework, we can both formulate and fill the accu-
mulator space. The intersection points, perhaps at infinity, of all pairs of
non-collinear line segments are considered as accumulator cells, i.e. poten-
tial vanishing points 1 . Since a vanishing point in the 3D scene is a point
at infinity, the corresponding vanishing point in the 2D image cannot lie on
a line segment, i.e. between the two endpoints of a line segment, with this
vanishing point. Therefore, all potential vanishing points which do not satisfy
this condition are removed. In order to fill the accumulator space, we state
that a line segment s votes for an accumulator cell a if the distance d(a, s) is
below a certain threshold ta. Since we have to compare different accumulator
cells in the search step, we are interested in the total vote of an accumulator
cell. This vote depends on the length of a line segment as well as on the dis-
tance between accepted line segments and the accumulator cell. Thereby, we

1 In the following we do not distinguish between an accumulator cell and a vanishing
point.
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assume that longer line segments are more reliable than shorter line segments.
Therefore, we define

vote(a) =
∑

all s vote for a
w1

(
1− d(a, s)

ta

)
+ w2

(
length of s

max length of s

)
(1)

as the total vote of an accumulator cell a, where the weights w1 and w2 estab-
lish this trade off.

A brute force version of the accumulation algorithm checks the acceptance of
each line segment for each accumulator cell. Afterwards the total vote of each
accumulator cell is determined. The computational effort of this algorithm is
O(an) = O(n3), where a = O(n2) is the amount of accumulator cells and n
the amount of line segments.

A similar voting scheme, based on line segments, has been suggested in [10,11].
The vote consists of the sum of all squared orthogonal distances between
the endpoints of the detected line segments and the corresponding lines. On
the basis of this vote, i.e. cost function, a maximum likelihood estimation of
a vanishing point can be established from the line segments voting for this
vanishing point.

3.2 The Search Step

The task of the search step is to determine the vanishing points, which cor-
respond to the three mutually orthogonal directions of the scene. Due to this
constraint on the vanishing points, three different criteria for the vanishing
points can be identified: The orthogonality criterion, the camera criterion and
the vanishing line criterion. The first two criteria are related to each other
and we consider them first.

In [4,9,17] was shown that knowledge of the camera geometry can be deduced
from the vanishing points of three mutually orthogonal directions. This knowl-
edge differs in the three different cases, in which none, one or two vanishing
points are at infinity. Since these different cases are algebraically discussed in
terms of the imaged absolute conic in [9], we illustrate and summarize them
here. In order to formulate the orthogonality criterion we have to establish the
geometry between the image plane and the camera. We use the same camera
model as in [9,17], which deviates from the general perspective camera model
in the respect that both image axes are assumed to be orthogonal with the
same scale factor. Most real world cameras approximately satisfy this con-
dition. Therefore, the only unknowns of the camera geometry are the focal
length f and the principal point u0 (see fig. 4).
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Fig. 4. Explanation for the camera geometry and the orthogonality criterion.

We denote the three vanishing points on the image plane by v1, v2 and v3.
Since the vector cvi from the camera centre c to the vanishing point vi has the
vanishing point vi, we can formulate the orthogonality criterion as:

〈cv1, cv2〉 = 0, 〈cv1, cv3〉 = 0 and 〈cv2, cv3〉 = 0, (2)

where 〈·, ·〉 is the scalar product. The question for the orthogonality criterion
is: Do the vanishing points v1, v2 and v3 satisfy these three equations (2) with
reasonable values for u0 and f , i.e. f ∈ [0,∞). We discuss the three different
cases with none, one or two vanishing points at infinity separately:

(1) Three finite vanishing points v1, v2 and v3:
The triangle (v1, v2, v3) forms together with the principal point an ortho-
centric system (see fig. 4). Therefore, the intersection point of the heights
of this triangle defines the principal point. The size of this triangle defines
the focal length uniquely. The orthogonality criterion can be defined as
the condition that each angle of this triangle is smaller than 90o.

(2) Two finite vanishing points v1, v2 and one infinite vanishing point v3:
The principal point lies on the line segment, which is defined by the two
endpoints v1 and v2. For real world cameras the principal point is more
likely positioned in the centre of the image. Therefore, we choose the
principal point as the point which lies on the line segment and is closest
to the midpoint of the image. By determining the principal point, the
focal length is uniquely defined. In this case the orthogonality criterion is
defined by the condition that the direction of the infinite vanishing point
v3 is orthogonal to the line defined by v1 and v2.

(3) One finite vanishing point v1 and two infinite vanishing points v2, v3:
In this case the principal point is identical with the vanishing point v1.
The focal length cannot be determined. The orthogonality criterion is
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Fig. 5. Two close located vanishing points v1, v2 which do not fulfill the vanishing
line criterion.

defined by the condition that the directions of v2 and v3 are orthogonal.

We can now specify the camera criterion. This criterion is fulfilled if the prin-
cipal point and the focal length are inside a certain range, in case they are
calculable.

Let us consider the vanishing line criterion. Two different vanishing points v1

and v2 have a finite vanishing line if not both vanishing points are at infinity
(see fig. 1). Therefore, a line segment which lies on the vanishing line does
vote for the two accumulator cells which correspond to v1 and v2. Hence, we
define that two accumulator cells fulfill the vanishing line criterion if each
line segment which votes for both accumulator cells lies on the corresponding
vanishing line. Figure 5 shows a case where a line segment supports two close
located, finite vanishing points but does not lie on the vanishing line. In case
both vanishing points are at infinity, the two sets of line segments of the
corresponding accumulator cells have to be disjoint. With the distance function
d(l, s) we can check if a line segment s lies on a vanishing line l. Since d(l, s)
returns a tuple (d, α), we check if d and α are below certain thresholds td and tα
respectively. The two vanishing points in fig. 5 do not fulfill the criterion with
the threshold tα < 90o since α = 90o. Note, the lower the threshold ta (see sec.
3.1) is chosen, i.e. the closer a line segment has to be to an accumulator cell
in order to vote for it, the more pairs of accumulator cells fulfill the criterion.
Furthermore, if the orthogonality and the camera criterion restrict the camera
geometry “considerably”, the vanishing line criterion could be omitted since
vanishing points which fulfill the vanishing line criterion should fulfill the other
two criteria as well.

With the criteria developed above we can define an algorithm for the search
step:

Take the accumulator cell a1 with the highest vote vote(a1) (see equation 1)
Go through all pairs of accumulator cells (ai, aj)
If the vanishing line criterion is fulfilled for (a1, ai), (a1, aj) and (ai, aj)
If the orthogonality and the camera criterion are fulfilled for (a1, ai, aj)
Calculate vote = vote(a1) + vote(ai) + vote(aj)

Take the accumulator cells ai, aj, with the highest vote vote
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The vanishing points which correspond to the accumulator cells a1, ai and aj

represent the three mutually orthogonal directions of the scene. The compu-
tational effort of the search step is O(a2n) = O(n5), where a = O(n2) is the
amount of accumulator cells and n the amount of line segments.

This exhaustive search for the best three orthogonal vanishing points might be
too time consuming for certain applications. It could be speed up by RANSAC
(see [7]). A RANSAC version of our algorithm would randomly choose pairs
of accumulator cells (ai, aj) and check if they fulfill the three criteria. The
algorithm terminates if the total vote of the cells a1, ai and aj is above a
certain threshold.

4 Experimental Results

For the experiments a standard, auto-focus, hand-held digital camera (KO-
DAK DC 120) was used. 16 images with size of 720 × 576 pixels were taken
of the Royal Palace of Stockholm (see fig. 6 (c)) and a residential house (see
fig. 6 (a)). The camera parameters remained fixed while the pictures were
taken. For the process of vanishing point detection the parameters were set
as: ta = 5o, tα = 5o, td = 30 pixel, w1 = 0.3 and w2 = 0.7. The maximal differ-
ence between the principal point and the midpoint of the image was set to 400
pixel, i.e. 43% of the image diagonal. The results of two different experiments
are summarized in Table 1.

Table 1
Classification of the results of two different experiments on 16 images.

Result good average poor

f ∈ [0,∞) 10 3 3

f ∈ (700, 1200) 13 2 1

Let us consider the first experiment, in which the acceptable range of the focal
length was not limited, i.e. f ∈ [0,∞). For 10 (out of 16) images all three
mutually orthogonal vanishing points were found correctly, i.e. classified as
good. Figures 6 (a-f) demonstrate examples of good results. We see that good
results were achieved for images with a cluttered environment (see fig. 6 (e,f))
or with a substantial amount of outliers (see fig. 6 (a,b)). A result was classified
as average if at least one of the vanishing points was not detected accurately.
This can occur if a considerable amount of line segments which have a different
vanishing point are additionally assigned to this vanishing point. Note, since
all points of the unbounded image plane represent the projection of vanishing
points from the 3D scene onto the image plane, every line segment on the image
plane passes through points, i.e. possible vanishing points which are not its
vanishing point, e.g. the two solid line segments in the left, down corner in fig.
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Fig. 6. Three results of the first experiment which were classified as good. The two
different types of line segments in the left images (a,c,e) and the solid line segments
in the right images (b,d,f) represent the three mutually orthogonal directions. The
dashed line segments in the right images (b,d,f) show the remaining line segments
which were not assigned to one of the three vanishing points. The principal point
of the camera is drawn as a cross.
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(a) (b)

            

(c)

            

(d)

Fig. 7. An average result (a,b) and a poor result (c,d) of the first experiment. The
line markings are as in fig. 6.

6 (d). Figure 7 (a,b) shows one of the three average results. In fig. 7 (a) the
solid line segments of the building and of the street in front of the building are
assigned to the same vanishing point. Indeed, the building is approximately
rotated about 20o relatively to the street. A result was classified as poor when
at least one of the vanishing points was detected incorrectly. Figure 7 (c,d)
and 8 (a,b) demonstrate poor results. The solid line segments in fig. 7 (d) and
8 (b) do not represent a vanishing point.

Let us consider the distribution of the determined camera parameters for the
16 images (see fig. 9). We see that the principal point of a good result can
deviate up to 251 pixel, i.e. 27% of the image diagonal, from the midpoint of the
image, which is presumably close to the true principal point. The image which
corresponds to this principal point is displayed in fig. 6 (c,d). Furthermore,
the principal points of average or poor results are close to the midpoint of
the image. Therefore, a further specification of the acceptable range of the
principal point in advance would not necessarily improve the results. However,
the distribution of the focal lengths (see fig. 9 (b)) shows that the focal lengths
of some average or poor results deviate more from the average focal length
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(a) (b)

(c) (d)

Fig. 8. A poor result of the first experiment (a,b) improved to a good result (c,d)
in the second experiment. The line markings are as in fig. 6.

than the focal lengths of good results. The maximal deviation of a focal length
of a good result from the average focal length, which is 953 pixel, is 173 pixel,
i.e. 18%.

On the basis of this investigation we carried out a second experiment, in
which the possible range of the focal length was limited to f ∈ [700, 1200].
The second line of tabular 1 shows that the number of good results improved.
The poor result in fig. 8 (a,b) improved to a good result (see fig. 8 (c,d)),
whereat the focal length changed from 658 pixel (first experiment) to 953 pixel
(second experiment). The only remaining poor result, with a focal length of
1654 pixel in the first experiment, is displayed in fig. 7 (c,d). In this case it
is not possible to obtain a better result, since the third orthogonal direction
(solid line segments in fig. 7 (d)) is only “supported” by one solid line segment.

Let us consider the processing time of the accumulation step and the search
step on an Ultra Sparc 10. For 77 line segments and 737 accumulator cells
the runtime was 3,50 sec for the accumulation step and 3,16 sec for the search
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Fig. 9. The determined principal points (a) and focal lengths (b) of the 16 images
of the first experiment. The principal points and focal lengths are classified with
respect to good, average and poor results. Diagram (a) corresponds to the image
size of 720× 576 pixel, where the dashed lines indicate the midpoint of the image.
Diagram (b) shows the frequency of focal lengths, where focal lengths with a differ-
ence of less than 15 pixel were accumulated. All focal lengths were in the range of
f ∈ [500, 1700].

step. A different run with 105 line segments and 1552 accumulator cells needed
9,17 sec for the accumulation step and 14,53 sec for the search step. There-
fore, our method, in its current version, is applicable if the number of line
segments is not large and no real-time conditions are required. Note, since low
processing time was not our main goal, the method was designed in a simple
and straightforward manner.

5 Discussion and Future Work

A new method for detecting the three mutually orthogonal directions of a
man-made environment has been presented. Since real-time performance is
not necessary for architectural application, such as building reconstruction, an
approach has been chosen which is computationally more intensive than other
methods, e.g. [13,14]. A simple and coherent framework for the accumulation
step and the search step has been introduced. By using the unbounded image
plane as accumulator space, the original distances between vanishing points
and line segments are preserved, in contrast to techniques which transfer the
line segments from the image plane into a bounded space [1–3,12–14,16,18]. In
the search step, all criteria for vanishing points of three mutually orthogonal
directions have been identified and utilized. We assume, in contrast to [8], a
partly calibrated camera with unknown focal length and unknown principal
point. By examine these camera parameters, which can be determined from
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orthogonal directions [4], falsely detected vanishing points may be rejected.

The experiments have shown that the method produces good results, even for
images with a cluttered environment and with a substantial amount of outliers.
Furthermore, we see that the performance can be improved by providing more
information about the camera, e.g. the acceptable range of the focal length.

In the simple framework for the accumulation step, two possible “sources of
error” were neglected, which were discussed in the literature. Firstly, we could
introduce an error model for a line segment, like in [3,10,11]. With this model
a probabilistic distance function between line segments, lines and vanishing
points could be derived, like the Mahalanobis distance for line segments. Fur-
thermore, on the basis of this error model, the uncertainty of a possible van-
ishing point can be propagated, like in [11]. Depending on the location and
uncertainty of the three mutually orthogonal vanishing points, the uncertainty
of the determined principal point and focal length can finally be propagate.
This would improve the specification of the acceptable range for the principal
point and the focal length. Secondly, due to image limitation the probability
of a line segment passing through a point in the centre of the image or at
infinity might be different (see Lutton et al. [12]). On the basis of the distance
function between line segments and vanishing points and of the distribution
of line segments inside the image borders, this bias could be predicted and
integrated in the accumulation step.

In our future task of building reconstruction we will see if the accuracy of the
detected vanishing points is sufficient. If not, the transition from our simple
framework to a more complex and probabilistic framework might be necessary.

Especially buildings have the property that in certain poses not enough – or
even none – of the detected line segments specify a searched for vanishing
point (see fig. 7 (d)). Therefore, we currently extend our method towards an
approach which detects all “visible”, mutually orthogonal directions of a scene.
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