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Abstract

This paper presents a linear algorithm for the simulta-
neous computation of 3D points and camera positions from
multiple perspective views, based on having four points on a
reference plane visible in all views. The reconstruction and
camera recovery is achieved, in a single step, by finding
the null-space of a matrix using singular value decompo-
sition. Unlike factorization algorithms, the presented algo-
rithm does not require all points to be visible in all views. By
simultaneously reconstructing points and views the numer-
ically stabilizing effect of having wide spread cameras with
large mutual baselines is exploited. Experimental results
are presented for both finite and infinite reference planes.
An especially interesting application of this method is the
reconstruction of architectural scenes with the reference
plane taken as the plane at infinity which is visible via three
orthogonal vanishing points. This is demonstrated by re-
constructing the outside and inside (courtyard) of a build-
ing on the basis of 35 views in one single SVD.

1 Introduction

The efficient computation of 3D structure and camera in-
formation from multiple views has been a subject of consid-
erable interest in recent years [7]. The problem can be for-
mulated, most generally, as a bilinear inverse problem for
finding camera and 3D information from image data. Con-
trary to the case of parallel projection [25], no algorithm for
direct factorization of camera parameters and 3D structure
has been produced for perspective projection cameras. The
perspective factorization algorithm suggested in [23] relies
on the pre-computation of scale factors “projective depths”
in order to cast the problem into the same form as in [25].
Approaches have been invented for efficient combination of
groups of views [5, 13], or iterative methods exploiting all
views [9]. The approach in [18] using “shape constraints”
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dual to epipolar constraints [1, 2, 27] can in principle be
exploited for computing projective structure using arbitrary
number of views [6, 22]. It is, however, limited to a re-
stricted number of points at a time.

Ideally an algorithm for computing multiple view recon-
struction and camera information should exploit all points
and views simultaneously as in [25]. Inevitably points be-
come occluded as the camera view changes. Therefore, a
certain point is only visible in a certain set of views. An
efficient algorithm should be able to deal with this problem.
Note that this problem is not handled by any suggested gen-
eral reconstruction algorithm so far, although it has been
given some attention [12, 17, 19].

In this paper, we will show that by adding the simple as-
sumption of having four points on a reference plane visible
in all views [14], the problem of reconstruction and camera
recovery can be formulated and solved very efficiently as a
linear null-space problem. It is based on the fact that having
areference plane in arbitrary position in 3D, the problem is
transformed into the equivalent problem of reconstructing a
set of translating calibrated cameras. Variations of this have
been observed and discussed [4, 7, 8, 16, 26], but it seems
that its full potential for reconstruction and camera recov-
ery has not yet been exploited. The advantage that the con-
straints, given by the 2, 3 or 4 view tensors, become linear
if a plane is visible in all views has been exploited in [7, 8].
However, structure and camera motion cannot be recovered
simultaneously.

The crucial observation exploited in this paper is that,
with the reference plane, the projection relations between
image points, scene points, and cameras become linear in
3D points and camera positions as opposed to being bilin-
ear in the general case. We will show how this relation can
be derived for general reference planes and also how it re-
lates to general perspective projection. In particular, we will
demonstrate the relation between general shape-viewpoint
duality [1, 2, 27], and the dual structures that arise with a
reference plane, [3, 10, 11]. This linear relationship en-
ables us to simultaneously reconstruct points and camera
positions even when not all points are visible in all views.



A potential problem for numerical calculations is the fact
that the reference plane will be at infinity in the representa-
tion that linearizes the problem. We will demonstrate, how-
ever, that this problem can be dealt with both from a theo-
retical and practical point of view.

An especially interesting case is when the reference
plane actually is at infinity. We will show that the knowl-
edge of three orthogonal vanishing points, which span the
plane at infinity, together with some simple natural assump-
tions about the camera parameters result in the same lin-
ear reconstruction problem as with four points on an arbi-
trary reference plane. As a practical demonstration we will
simultaneously reconstruct architectural structures together
with the camera positions based on multiple points which
are viewed with only partial overlap.

2 Duality, symmetry and linearity of projec-
tion relations

General perspective projection to an image point with
homogeneous coordinates p can be described as:

p~H(I|-QP~H(P Q). (1)

Where P and P are the homogeneous and non-
homogeneous cartesian coordinates of the 3D-points re-
spectively and () are cartesian coordinates of the camera
centres. In a general projective representation the homog-
raphy H will be factored out and we are left with relations
between 3-D points and camera centres. Already from eqn.
(1) we see that these quantities are symmetrically related.
The symmetry relations in a complete projective descrip-
tion will be somewhat different depending on whether we
exploit the presence of four points on a reference plane in
3D.

With five points P, ... P; as basis, any point P and cam-
era centre () in 3D can be expressed using projective coor-
dinates:

P~ XP + YP} + ZP} + WP}
Q ~ AP; + BP; + CP; + DP}. )

Similarly, four image points can be used as a basis for ex-
pressing image coordinates

p ~ ap; + yps + wps. 3)

The normalizations P* and p* are chosen so that points
Ps and p4 have projective coordinates (1,1,1,1)7 and
(1,1,1)7 respectively.

The mapping

M:(X,Y, Z, W)T — (2, y, w)" )

can be computed for the general case and for the case of
having four points on a reference plane.

(b)
Figure 1. Projective 3D basis points P; . .. P5 and image

basis points p; ... p4 for general configurations (a) and
reference plane configurations (b).

2.1 General point configurations

This case was treated in [1]. The image basis
points p1, ps, p3, p4 are projections of the 3D basis points
Py, Py, P53, Py (see Fig. 1 (a)), which constrains the map-
ping M:
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These relations make explicit the duality of space points and
camera centres in the sense that the homogeneous projective
coordinates of a 3D point (X,Y, Z, W)T and inverse co-
ordinates of a camera centre (A=, B=1,C~1, D=1 are
bilinearly related in a symmetric way.

2.2 Four points on a reference plane

If four points P;, P», P53, P, on a reference plane are vis-
ible in all views, their images can be used as a four point
basis for image coordinates (see Fig. 1 (b)). This has sim-
ilar consequences leading to a similar but non-equivalent
duality or symmetry between space points and camera cen-
tres. Since a projective basis in 3D cannot be formed from
four coplanar points, only points P;, P», P3 can be used in



the 3D basis. Points P, and Ps of the 3D basis will be as-
sumed to lie outside the reference plane. The situation is
summarized as:

Projective 3D basis points: Py, P, Ps, Py, Ps

3D points on reference plane: Py, Ps, Ps, P,

Projective image basis points: p1, p2, ps, P4.
If (X,,Y,, Z,.,0)T are the projective coordinates of the ref-
erence point P, in the 3D basis, the constraints on the map-
ping M becomes:
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Comparing this to the general projection relations in eqn.
(6) we see that the symmetry of points and cameras
still remains. The symmetry now relates to the sub-
stitutions (X,Y,Z, W) « (A,B,C,D). The factors
X1yl Z-! are common to all points and views so
they do not affect the symmetry. More importantly, the
relations are linear in the non-homogeneous projective co-
ordinates for points (X/W etc.) and cameras (A/D etc.).
This means that the projection relations only apply to non-
homogeneous points and cameras which are outside the
plane at infinity (specified by W = 0). The fact that the ref-
erence plane is the plane at infinity, in this projective basis,
was noted in [26] as a fundamental requirement for obtain-
ing this simple structure, which is mathematically equiva-
lent to purely translating calibrated cameras.

The projection relations can be rewritten as linear con-
straint equations:
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using the notation: X’ = X! X etc. for points and A’ =
X! Aetc. for cameras.

The simple addition of a fourth coplanar point there-
fore implies that the general bilinear problem of reconstruc-
tion and camera recovery from multiple points and views
is transformed into a linear problem, i.e. finding the null-
space of a matrix with elements computed from the image
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coordinates in all available views. Arbitrary numbers of
points and views can be used to build this matrix as long
as all reference points are visible in all views. For n points
in m views the linear system takes the form
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for non-homogeneous projective points coordinates X' =
X'/W etc. and camera centres A’ = A’/ D etc. where
—wijo 0 @i
Sij = 0 —wij i, (12)
~Yij %y 0

are 3 x 3 matrices built up from image coordinates of point
1 visible in view j. In the case of missing data, e.g. point
1 not visible in view j, the three equations which corre-
spond to S;; are omitted in the system. Note, S;; contains
three linearly dependent equations since the two equations

in eqn. (10) are insufficient for special cases (w = 0 and
Z )
w_ D . .

Finding the 3D coordinates of points and camera cen-
tres directly from the null-space of the matrix eliminates
the problem of computing fundamental matrices [23] in or-
der to get depth scale factors or complete camera projection
matrices [5] before doing reconstruction.

The next section describes how to obtain the position in
the normalized projective basis of points and cameras which
lie both on and not on the reference plane.

3 Finite versus Infinite Reference Plane
3.1 Finite Reference Plane

Let us complete the reconstruction method for 4 copla-
nar reference points. Adding an arbitrary common scaling
and translation to all points and cameras leaves the equa-
tions in eqn. (10) unaltered. This is related to the fact that
the points P4 and P; of the normalized projective 3D basis
were not used for the derivation of eqn. (10). Therefore,
we fix one arbitrary point which does not lie on the ref-
erence plane, e.g. the first camera centre ()1, as the basis
point Py = (0,0,0,1)T = (A%, B},C},1)T. The camera
(1 can now be removed from the vector of unknowns in



eqn. (11), which implies that the null-space of the matrix in
eqn. (11) reduces to dimension one. In order to complete
the projective basis, we choose e.g. Qo = (A}, By, Cy, 1)T
as the basis point P5. This defines the reference point as:
P, = (XY, Z.,00T = (1/A,1/B},1/C5,0)T. As the
projective basis must not contain four coplanar points, Py
and P5 have to be selected carefully.

Finally, all points and cameras can be expressed in the
normalized projective 3D basis as:

(XTXJ, YTY:’, ZTZ,/’ 1)T for points and
(X, A" Y,.B', Z.C',1)T for cameras.

Since the reference plane is the plane at infinity in
the projective basis representation, points on the reference
plane cannot be reconstructed by the linear system in eqn.
(11). Therefore, those points have to be treated separately.
The projection relations (eqn. (9)) can be written

A
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(13)
to obtain for a point (X,Y, Z,0) on the plane at infinity
the projective relations

x XX
<y> ~ (Y;ly>. (14)
w z1z

This means that this point has the coordinates
(X,x,Y,y, Z,.2,0) in the projective basis.

In practice, points on the reference plane can be dealt
with separately. Consider the case of including such a point
into the system in eqn. (11). It can be shown that this results
in a two-dimensional null-space of the matrix, i.e. 2 singu-
lar values which are zero. Therefore, numerical instability
of the system can be expected for points on or “close” to
the reference plane. Firstly, due to errors in the image co-
ordinates the singular vector which does not represent the
correct solution for all points and cameras could have the
smallest singular value. Secondly, points which are closer
to the reference plane have larger values of coordinates in
the projective basis. Due to normalization, this potentially
increases the inaccuracy in all those points which are further
away of the reference plane. Therefore, we have to separate
points on and off the reference plane. The four reference
points Py, P, P; and P, induce a planar homography be-
tween each pair of views. For a certain world point, which
is visible in two views, the residual parallax vector, which
contains the relative distance of this world point to the ref-
erence plane [10, 4], can be determined. On the basis of the
magnitude of the parallax vector we can come to the deci-
sion whether this point lies on or off the reference plane.

Having 4 coplanar points visible in all views is equiv-
alent to the assumption of a reference plane visible in all
views (e.g. [4, 10]). A reference plane visible in all views
induces planar homographies between each pair of views.
Introduce four “virtual” basis points which lie on the refer-
ence plane. By fixing them in one view they can be deter-
mined via the homographies in all views. This shows the
equivalence of both assumptions. However, inaccurate im-
age coordinates might reduce the quality of the inter-view
homographies which could introduce a substantial numeri-
cal instability in the reconstruction process.

3.2 Reference Plane at Infinity

If the points Py, P», Ps, P, on the reference plane are
moved to infinity it can be easily shown that the projective
3D coordinates in the basis P; ... Ps; become affine coor-
dinates in an affine system defined by the direction vectors
P, — Py, P, — Py and P3 — P,. If these directions are or-
thogonal, the affine 3D coordinates become Euclidean by
proper choice of the normalizing point Ps. This is true for
a general un-calibrated perspective camera. This can typi-
cally be achieved if the points P;, P, Ps are chosen as the
orthogonal vanishing points in e.g. a city block architectural
scene. However, determining the 4th reference point P, on
the plane at infinity which is visible in all views will sub-
stantially restrict the usefulness of this approach. By con-
sidering a special case of perspective cameras, however, we
can make use of the reference plane at infinity given solely
by the three orthogonal vanishing points.

For perspective cameras:

p~KR(I|-QP (15)

where the calibration matrix /X can be written as

o 0 Zo
K:<0 o go> (16)
0 0 1

(zero skew and the same scale factor horizontally and verti-
cally) it is possible to recover internal parameters K and
camera rotations R from knowledge of three orthogonal
vanishing points [15, 24, 20]. Normalizing image coordi-
nates with this knowledge we can write the projection rela-
tion as:
p~P-Q A7)
which of course is the translating calibrated camera, derived
as before using the pure projective representation in the pre-
vious section. The use of metric information, i.e. orthogo-
nal directions, implies that metric reconstruction (3D struc-
ture up to similarity transformations) is possible.
For certain configurations of the three orthogonal van-
ishing points the special camera in eqn. (16) cannot be
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Figure 2. Original view (a), side (b), top (c) and front (d)
view of the reconstruction. The dots represent the re-
constructed model points and the dashed lines display
the contour and the symmetry axis of the model.

fully calibrated (see [15, 20]). In practice, one can deal with
this problem by assuming fixed internal camera parameters.
Furthermore, the rotation matrix R is ambiguous (24 pos-
sible variations of R) as long as the correspondence of the
vanishing points between different views is unknown. In the
current version of the algorithm this correspondence prob-
lem is solved manually.

4 Experiments
4.1 Finite Reference Plane

In the first experiment a tape holder was reconstructed.
Four images of the tape holder were taken from viewpoints
with considerable wide mutual baselines (see Fig. 2 (a)).
Since the tape holder itself contains a plane which is visi-
ble in all images this plane was used as the finite reference
plane. The four points, which are marked with circles, de-
fine the reference plane. On the basis of this, the reconstruc-
tion of 30 model points was achieved in one SVD. The 6
model points which lie on or close the reference plane were
detected automatically. In order to visualize the result we
assumed knowledge of five Euclidean coordinates to rec-
tify the projective structure (see Fig. 2 (b-d)). We see that
the reconstruction matches with the approximate size of the
object which is 6.0cm (x-direction), 15.8cm (y-direction)
and 6.8cm (z-direction). Furthermore, the symmetry of the
object is maintained in the reconstruction. Since the ratio
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Figure 3. Original view (a), top (b), side (c) and front (d)
view of the reconstruction. The dots represent the re-
constructed model points.

between the second last singular value (0.766) and the last
singular value (0.031) is substantial (24.7) this configura-
tion can be considered as non-critical.

In the second experiment we reconstructed a teapot,
which was positioned on a box (see Fig. 3 (a)). The four
corner points of the box, which are marked with circles,
specify the reference plane. For better visualization, only
those model points which lie on the contour in the top, side
or front view of the model were reconstructed. Fig. 3 (b-
d) shows the reconstruction of 99 model points, where 4
model points which lie on or close the reference plane were
detected automatically. The reconstructed model points in-
clude the corner points of the box and a cuboid, which was
used to rectify the projective reconstruction. We see that
the reconstruction matches with the approximate size of the
teapot which is 14.5cm (z-direction), 19.7cm (y-direction)
and 15.9cm (z-direction). The ratio between the second last
singular value (0.0545) and the last singular value (0.0014)
was 38.9.

4.2 Infinite Reference Plane

In the first experiment with an infinite reference plane we
reconstructed three buildings of the campus of the Royal
Institute of Technology (KTH) in Stockholm,Sweden. 26
images of size 1600 x 1200 pixel were taken with a hand-
held camera (Olympus 3030) (see Fig. 4 (a, b)). In order
to establish a correspondence between the three buildings,
we also utilized a postcard of the campus (see Fig. 4 (c)).
Naturally, we had no calibration information for the camera
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Figure 4. Two original views (a, b) and a postcard (c) of
the campus. The corresponding camera positions are

labeled in the top view (Fig. 8).

114 points

27 views

Figure 5. The visibility matrix of the campus with 27 im-
ages and 114 model points.

used for the postcard. On the basis of 114 manually selected
points and orthogonal edges K and R were determined for
each view and the campus was reconstructed in one single
SVD (see Fig. 8). We stress that no further constraints,
e.g. orthogonality, were imposed, which would presumably
improve the reconstruction. By manually selecting model
points which lie on same model planes a textured VRML
model was created (see Fig. 10 (a-d)).

Let us consider the results. The last and second last sin-
gular value of the SVD were 12.55 and 143.5 respectively,
which corresponds to a ratio of 11.44. The average error
between selected image points and back-projected model
points was 0.83 pixels. The respective maximum error was
35.2 pixels, which is 1.8% of the image diagonal. The accu-
rate match between the top view of the reconstruction and
the true map of the campus (see Fig. 8) demonstrates the
high quality of the reconstruction.

The matrix in Fig. 5, denoted as the visibility matrix V,
depicts the 114 points partly visible in 27 images. If the jth
point is visible in the ith view, the corresponding element
V(i,7) is set (a black square). We see that the matrix is
only sparsely filled, i.e. 10.4% of the entries are set.

In the second experiment with an infinity reference plane
we reconstructed the outside and inside (courtyard) of the

©
Figure 6. Three original views of the City Hall. The camera
positions are labeled in the top view (Fig. 9).

129 points

35 views

Figure 7. The visibility matrix of the City Hall with 35
images and 129 model points.

City Hall in Stockholm,Sweden on the basis of 35 images
(see Fig. 6). Since some parts of the building can be seen
from both the outside and inside, e.g. the tower (see Fig.
6 (a-c)), a correspondence between the outside and inside
can be established. With the knowledge of the correspon-
dences of 129 model points, the building was reconstructed
in one single SVD (see the top view in Fig. 9 and VRML
model in Fig. 10 (e-h)). As in the previous example, no
further constraints were imposed in order to improve the re-
construction.

The ratio between the second last singular value (57.24)
and the last singular value (12.75) was 4.49. The aver-
age error between selected image points and back-projected
model points was 0.81 pixels. The respective maximum er-
ror was 97.31 pixels, which is 4.9% of the image diagonal.
Let us consider the quality of the reconstruction (see Fig.
9). It is clear that the building was not designed as a perfect
rectangular building. However, this fact does not consider-
ably affect the quality of the reconstruction. The fact that
the detected vanishing points are not perfectly mutually or-
thogonal influences the camera calibration as well as the
estimation of the rotation matrix R. Since the accuracy of
R directly affects the camera’s position, we would expect
a higher “positioning error” for cameras with less accurate
R. This reasoning would explain the deviation between the
reconstruction and the true map at the top, left corner of the
building.

The visibility matrix in Fig. 7 depicts the 129 model
points partly visible in the 35 images. The upper half of
the matrix comprises images of the outside of the building.
Most of these correspondences between points and images
are close to the diagonal of the matrix. This reflects the
fact that model points appear and disappear as the camera
moves around the outside of the building. The lower half
of the matrix which represents images of the inside of the
building is less structured. This is due to the fact that the
strategy of taking pictures was more complex.

5 Summary and Conclusions

We have demonstrated theoretically and experimentally
that points and camera centres in a multi view situation



can be simultaneously, linearly, projectively reconstructed
by computing the null-space of a matrix built from image
coordinates in an arbitrary number of views. The only spe-
cific requirement is to have four coplanar points visible in
all views. This results in a substantial simplification rel-
ative to previous algorithms for multi view reconstruction
and calibration that e.g. rely on systematic procedures for
exploiting two or three views at a time [5]. The fact that,
contrary to factorization algorithms [25, 23], we do not need
to have all points visible in all views gives a very flexible al-
gorithm for the reconstruction of e.g. architectural environ-
ments where the reference plane can be chosen as the plane
at infinity using vanishing points as the reference points.
Furthermore, we showed how to deal with the problem of
choosing the reference plane as the plane at infinity in the
specific projective representation.

Experimental results indicate that the use of an arbitrary
number of cameras leads to numerically robust reconstruc-
tions which can be expected since large mutual baselines are
exploited. We consider this as a major practical advantage
over existing algorithms.

The linearity and specific symmetry relation between
points and camera centres implies that any analysis of crit-
ical configurations, minimal cases and numerical stability
will be easier (see [21] for preliminary results).
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Figure 8. Top view of the reconstruction of the campus with 114 model points (dots) and 27 cameras (arrows). A map of the
campus is superimposed. The labeled cameras correspond to images in the respective figures.
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Figure 9. Top view of the reconstruction of the City Hall with 129 model points (dots) and 35 cameras (arrows). A map of the

City Hall is superimposed. The labeled cameras correspond to images in the respective figures.
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Figure 10. Novel views of the campus (a-d) and City Hall (e-h). The views are labeled in Fig. 8 (campus) and Fig. 9 (City Hall).




