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Abstract

This paper proposes a novel method for the projective
reconstruction of planes and cameras from multiple images
by factorizing a matrix containing all planar homographies
between a reference view and all other views. If some planes
are not visible in all views an alternative method is pre-
sented which solves the problem in two steps: a) all camera
centers are recovered simultaneously b) all planes are re-
constructed. The key idea of both methods is to specify one
of the planes, which is visible in all views, as the plane at in-
finity. The methods were applied to synthetic and real data,
where VRML models can be created with a small amount of
user interaction.

1 Introduction

A major property of a man-made environment are
planes: buildings, walls, floors, streets, furniture, etc. The
recovery of planes and cameras from an image sequence of
such an environment could be utilized in a wealth of appli-
cations, e.g. image-based modeling and rendering, robotics.
This problem can be addressed in two different ways: a) re-
construct 3D-features, e.g. points, including the constraint
that features are coplanar b) reconstruct planes directly.

The key idea of the first approach is to improve feature-
based, e.g. points, reconstructions with additional copla-
narity constraints. These constraints can be incorporated in
the reconstruction process directly, e.g. [11, 6, 1], or in-
cluded in a final bundle adjustment stage of an initial recon-
struction, e.g. [11]. However, such methods do not attempt
to reconstruct planes independently of other features.

The second approach, which will be pursued in this pa-
per, reconstruct the planes directly from the knowledge of
homographies. A homography is a projective transforma-
tion matrix and encodes the information about a plane vis-
ible in two views (see [8, 3, 2]). A homography can be
determined from image features such as points, e.g. [3], or
directly from image brightness information, e.g. [4]. Meth-
ods to reconstruct multiple planes in two uncalibrated views

have been presented in [5, 13]. Planes and cameras are re-
constructed directly, however, separately on the basis of a
generalized eigenvalue analyses of the respective homogra-
phies. A method for the recovery of multiple planes in mul-
tiple uncalibrated views has been briefly introduced in [12].
It requires all planes to be visible in all views and selects
one of the views as a reference view. Cameras and “homog-
raphy parallaxes”, which describe the planes, are obtained
from a rank-1 factorization of a matrix containing all homo-
graphies. A less compact rank-4 factorization method has
been presented in [9, 14] for two view.

This paper presents two methods for the projective re-
covery of planes and cameras from multiple uncalibrated
views. Both methods specify one of the planes, which is
visible in all views, as the plane at infinity. This basic idea
has been exploited in [7] to reconstruct 3D points and cam-
eras simultaneously. The first method assumes all planes to
be visible in all views. The simultaneous reconstruction of
planes and cameras is achieved by a rank-1 factorization of
a matrix containing all homographies between a reference
view and all other views. In contrast to [12] this method is
simpler and more direct. Furthermore, no multi-image con-
straints, e.g. epipolar constraints, are needed. Since planes
become inevitably occluded when the camera’s viewpoint
changes, we present an alternative method which handles
missing planes. The only requirement is that a reference
plane is visible in all views. Firstly, all the cameras are
recovered simultaneously, secondly all planes are recon-
structed. Optionally, these two steps can be iterated.

2 Planes and Cameras in Projective Space

The general mapping of a 3D point X onto an image
point x by camera P is defined in homogeneous coordinates
as

x ∼ PX, (1)

where P denotes the 3 × 4 camera matrix and ”∼” means
equal up to scale. A 3D point X lies on the 3D plane πk if

πT
k X = 0. (2)



Suppose a plane is visible in two images. It induces a
projective transformation between the two views, which is
called a homography (see [8, 3, 2]). In particular, the image
points xi and xj in view i and j of a 3D point X which lies
on the plane πk are related by the homography Hk

ij as

xj ∼ Hk
ij xi, (3)

where Hk
ij is a 3 × 3 matrix. The homography is well de-

fined, i.e. has rank 3, if both camera centers do not lie on
the plane. Homographies can be determined from point cor-
respondences (at least 4) or directly from image intensities.

Let us consider a general multi view situation which con-
sists of m unknown camera matrices P1, . . . Pm and n un-
known planes π1, . . . , πn. The goal of this paper is to re-
cover the m cameras and n planes on the basis of known
homographies Hk

ij . Since in practice not all planes might
be visible in all views we consider two cases: a) all planes
are visible in all views (sec. 3) and b) at least one plane is
visible in all views (sec. 4).

In a projective framework it is common to choose the
camera matrices as (see [3, 2]):

P1 ∼ (I |0) , Pj ∼ H∞
j (I | − Q̄j) for j = 2 . . . m , (4)

where I is the identity matrix and Q̄j represents the cam-
era center of view j in non-homogeneous coordinates. Let
us consider the homography H∞

j in more detail. A point
at infinity X = (x, y, z, 0)T is mapped into view 1 and j
as x1 = (x, y, z)T and xj = H∞

j (x, y, z)T . This means
that H∞

j represents the mapping from view 1 to view j via
the plane at infinity, i.e. xj ∼ H∞

j x1. Let us assume that
one plane, without loss of generality π1, is visible in all
views. By applying a projective transformation, we may
choose this plane as the plane at infinity in our specific pro-
jective space, i.e. π1 = π∞ = (0, 0, 0, 1)T . This means
that the only remaining unknowns of the camera matrices
(see eqn. (4)) are the camera centers. Furthermore, 14 of
the 15 degrees of freedom (dof) of our specific projective
space are fixed (camera P1 fixes 11 dof and π1 fixes 3 dof).

3 All planes visible in all views

Let us choose the first view P1 as a reference view. With
the assumption that all n planes are visible in all views we
can determine the homography Hk

1j (for simplicity denoted
as Hk

j ) between the reference view 1 and view j for a plane
πk. It is known (see [3, 2]) that this homography can be
explicitly expressed as

Hk
j = λ H∞

j (I + Q̄j vT
k ) , (5)

with πT
k = (vT

k , 1) and λ as an arbitrary scalar. The fourth
coordinate of πk can be chosen as 1 since the camera center
Q1 = (0, 0, 0, 1)T must not lie on πk, i.e. πT

k Q1 �= 0.
We will now show that λ can be determined directly from

the known homographies Hk
j and H∞

j . Eqn. (5) can be
rewritten as

H∞−1
j Hk

j − λ I = λ Q̄j vT
k . (6)

This matrix has rank 1 since it is the product of two rank 1
matrices. Therefore this matrix has the double eigenvalue
0, which means that the matrix H∞−1

j Hk
j has the double

eigenvalue λ. This result was previously presented in e.g.
[5, 12] and relates to the fact that H∞−1

j Hk
j is a planar

homology [3]. However, it has never been exploited for the
direct recovery of planes in multiple views.

With known λ eqn. (5) can be rewritten as

Ĥk
j = λ−1 H∞−1

j Hk
j − I = Q̄j vT

k . (7)

We are now able to construct a block matrix of size 3m×3n
which is the product of two vectors: one vector containing
all the camera centers and another vector containing all the
planes:

W =




Ĥ2
2 . . . Ĥn

2
...

...
Ĥ2

m . . . Ĥn
m


 =




Q̄2
...

Q̄m


 (

vT
2 , . . . , vT

m

)
. (8)

The matrix W has rank at most 1 which corresponds to the
1 dof of our specific projective space. The final reconstruc-
tion for cameras and planes can be obtain from the Singular
Value Decomposition (SVD) of W = UDV T :
(
Q̄2, . . . , Q̄m

)T = uT
1 and

(
vT
2 , . . . , vT

m

)
= σ1v

T
1 , (9)

where σ1 is the first singular value of D and u1, v1 are the
first columns of U and V respectively.

4 A reference plane visible in all views

In the previous section, only those homographies were
utilized which include the reference view P1, i.e. Hk

1j . In
this section we will present a method which exploits all
available homographies, i.e. Hk

ij . Furthermore, the only
restriction will be that a reference plane, i.e. the plane at
infinity, is visible in all views. The homography Hk

ij can be
explicitly expressed as Hk

ij =

λ H∞
j

(
I + (vT

k Q̄i + vk4)−1(Q̄j − Q̄i) vT
k

)
H∞−1

i , (10)

where πT
k = (vT

k , vk4). The derivation is similar to the
derivation of eqn. (5) and was presented in [11]. As in
the previous case, λ can be directly determined from the
homographies Hk

ij , H
∞
i and H∞

j . We rewrite eqn. (10) as

H∞−1
j Hk

ijH
∞
i − λI = λ (vT

k Q̄i + vk4)−1(Q̄j − Q̄i) vT
k .

Since this matrix is the product of two rank 1 matrices, the
matrix H∞−1

j Hk
ijH

∞
i has the double eigenvalue λ. With

known λ eqn. (10) can be rewritten as

Ĥk
ij = (vT

k Q̄i + vk4)−1(Q̄j − Q̄i) vT
k .



where Ĥk
ij = λ−1H∞−1

j Hk
ijH

∞
i −I . From the SVD of the

matrix Ĥk
ij = UDV T we obtain

Q̄j − Q̄i = λk
ij u1 (11)

vk =
σ1

λk
ij

(vT
k Q̄j + vk4)−1 v1, (12)

where σ1 is the first singular value of D and u1, v1 are the
first columns of U and V respectively. The scalar λk

ij is
undetermined in this case.

Ideally, all camera centers, i.e. Q̄i, Q̄j , all planes πk =
(vk, vk4)T and all scalars λk

ij should be determined simul-
taneously. However, due to the non-linear nature of this
problem, we suggest a two step method: a) derive all cam-
era centers simultaneously b) determine the planes. From
eqn. (11) we may derive the three linear relations:

uy(Xj − Xi) − ux(Yj − Yi) = 0
uz(Xj − Xi) − ux(Zj − Zi) = 0 (13)

uz(Yj − Yi) − uy(Zj − Zi) = 0 ,

where Q̄i = (Xi, Yi, Zi)T and u1 = (ux, uy, uz)T . There-
fore, each homography Ĥk

ij provides three linear equations
of the form (13) which can be put into a set of linear equa-
tions:

L (X1, Y1, Z1 . . . Xm, Ym, Zm)T = 0 . (14)

The null-space of L has dimension 1 since our specific pro-
jective space has 1 dof. Therefore, the last singular vector
of the SVD of L provides a solution for all camera centers.
The scalars λk

ij can now be derived from the camera cen-
ters (see eqn. (11)). With known λk

ij and Q̄i each plane
πk = (vk, vk4)T can be directly determined from eqn. (12).

Optionally, these two steps can be iterated. This means
that the scalars λk

ij are recalculated from the plane πk and
used to redetermine all the camera centers simultaneously.

5 Experiments

5.1 Synthetic Data

A 8 frame synthetic sequence was generated based on the
scene shown in fig. 1 (a) which consists of 9 planes forming
a house. The homographies between views were computed
from point matches, where each plane has on average 20
points. The size of the ground plane (reference plane) is
100 × 100 units and the height of the house is 80 units.

In a first experiment the assumption was made that all
planes are visible in all views, i.e. all planes are transpar-
ent. Our two algorithms which assume either all planes to
be visible in all views (All planes; sec. 3) or only a refer-
ence plane (Ref. plane; sec. 4) were applied to the synthetic
sequence. For comparison, the projective factorization al-
gorithm (Factorization) of Sturm-Triggs [10] was applied
to the point matches. This method assumes that all points

are visible in all views and is known to give nearly optimal
results. The performance of the algorithms is evaluated in
terms of a 3D error in units. This error represents the aver-
age point distance in a Euclidean frame, which means that
the projective reconstruction was aligned with the ground
truth Euclidean model. For our plane based algorithms, the
3D points were obtained by triangulation (see [3]).

Fig 1 (b) shows the average performance of 20 runs
with respect to different levels of Gaussian noise: σ =
0, 0.2, . . . , 3.0 (standard deviation) which was added to the
image data, i.e. reprojected 3D points. The performance
of the Ref. plane algorithm and the Factorization algorithm
are virtually identical. The performance of the All planes
algorithm is slightly worse for smaller noise, e.g. σ < 1,
and significantly worse otherwise. A plausible explanation
is that the algorithm utilizes only those homographies which
include a certain reference view. In contrast to this, the
Ref. plane algorithm exploits the knowledge of all homo-
graphies. The number of iterations for the Ref. plane algo-
rithm was on average 7.

In a second experiment the influence of missing homo-
graphies was investigated. In contrast to the previous exper-
iment, the house was assumed to be non-transparent. This
means that each plane, except the ground plane, is visible
in only 3 successive views. Fig. 1 (c) depicts the perfor-
mance of the Ref. plane algorithm in this case (true vis.).
Additionally, the performance of the previous experiment is
shown (compl. vis.). We see that the Ref. plane algorithm
performs very well even with missing homographies (note
the different scale between Fig. 1 (b) and (c)).

5.2 Real Data

The reference plane algorithm was applied to the toy-
house sequence (available at [15]) consisting of 8 images.
Fig. 2 (a) shows the first frame of the sequence. The ground
plane, which dealt as the reference plane, the roof and the
front side of the house are visible in all views. The other 3
planes are only visible in the first four views. The homogra-
phies were determined on the basis of point matches. The
metric rectified VRML-model is shown in fig. 2 (b,c). The
intersection lines of the planes were identified manually.

6 Summary and Conclusions

This paper presented two novel methods for the projec-
tive recovery of planes and cameras from multiple views.
The first method determines planes and cameras by factor-
izing a matrix containing all planar homographies between
a reference view and all other views. This requires that all
planes are visible in all views. The second method assumes
only a reference plane to be visible in all views. The re-
construction is determined in two steps: a) all camera cen-
ters are recovered simultaneously b) all planes are recon-
structed. Optionally, these two steps can be iterated.
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Figure 1. 8 views of a synthetic house (a). The performance of the algorithms for the case of all
planes visible in all views (b) and true visibility (c).
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Figure 2. Real view (a) of the toyhouse sequence and synthetic views (b,c) of the VRML model.

The key idea of both methods is to specify one of the
planes, which is visible in all views, as the plane at infinity.
This implies that the unknown scale of each homography
can be determined directly from an eigenvalue analyses.

Both methods were tested on real and synthetic data and
performed well in comparison to the projective factorization
algorithm for points of Sturm-Triggs [10], which requires
all points to be visible in all views. Our method which
handles missing planes performed slightly better than our
method which assumes all planes to be visible. An expla-
nation is that the latter method utilizes only those homogra-
phies which include a certain reference view.
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