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Abstract. This paper presents a linear algorithm for simultaneous computation of 3D points and camera positions
from multiple perspective views based on having a reference plane visible in all views. The reconstruction and
camera recovery is achieved in a single step by finding the null-space of a matrix built from image data using
Singular Value Decomposition. Contrary to factorization algorithms this approach does not need to have all points
visible in all views. This paper investigates two reference plane configurations: Finite reference planes defined by
four coplanar points and infinite reference planes defined by vanishing points. A further contribution of this paper is
the study of critical configurations for configurations with four coplanar points. By simultaneously reconstructing
points and views we can exploit the numerical stabilizing effect of having wide spread cameras with large mutual
baselines. This is demonstrated by reconstructing the outside and inside (courtyard) of a building on the basis of 35
views in one single Singular Value Decomposition.
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configurations, reference plane, planar parallax

1. Introduction

The efficient computation of 3D structure and cam-
era information from multiple views has been a sub-
ject of considerable interest in recent years (Hartley
and Zisserman, 2000; Faugeras and Luong, 2001). The
problem can be formulated most generally as a bi-linear
inverse problem (including unknown scale factors) for
finding camera and 3D information from image data.
Contrary to the case of parallel projection (Tomasi and
Kanade, 1992) no algorithm for direct factorization
of camera parameters and 3D structure has been pro-
duced for perspective projection cameras. The perspec-
tive factorization algorithm suggested in Sturm and
Triggs (1996) relies on the pre-computation of scale
factors “projective depths” in order to cast the problem
into the same form as in Tomasi and Kanade (1992).

Approaches have been invented for efficient combi-
nation of groups of views (Fitzgibbon and Zisserman,
1998; Koch et al., 1998), or iterative methods exploiting
all views (Heyden et al., 1999). The approach in Quan
(1994) using “shape constraints” dual to epipolar con-
straints (Carlsson, 1995; Carlsson and Weinshall, 1998;
Weinshall et al., 1995) can in principle be exploited for
computing projective structure using arbitrary number
of views (Hartley and Debunne, 1998; Schaffalitzky
et al., 2000). It is however limited to a restricted num-
ber of points at a time.

Ideally an algorithm for reconstructing camera and
scene information from multiple views should exploit
all points and views simultaneously as in Tomasi and
Kanade (1992). Inevitably points become occluded as
the camera view changes. Therefore, a certain point
is only visible in a certain set of views. An efficient
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algorithm should be able to deal with this problem.
Note that this problem is not handled by any suggested
general reconstruction algorithm so far, although it has
been given some attention (Jacobs, 1997; Qian and
Medioni, 1999; Quan and Heyden, 1999).

In this paper we will show that by adding the sim-
ple assumption of having four points on a reference
plane visible in all views (Kumar et al., 1994; Heyden
and Åström, 1995, 1997; Triggs, 2000), the problem
of reconstruction and camera recovery can be formu-
lated and solved very efficiently as a linear null-space
problem. It is based on the fact that having a reference
plane in arbitrary position in 3D, the problem is trans-
formed into the equivalent problem of reconstructing
a set of translating calibrated cameras. Variations of
this has been observed and discussed (Oliensis, 1995,
1999; Heyden and Åström, 1995; Oliensis and Genc,
1999; Triggs, 2000) but it seems that its full poten-
tial for reconstruction and camera recovery has not yet
been exploited. A more detailed discussion and com-
parison of these methods to our approach will be given
later. The advantage that the constraints, given by the
2, 3 or 4 view tensors, become linear if a plane is vis-
ible in all views (Heyden and Åström, 1995; Heyden,
1998) has been exploited in Hartley and Zisserman
(2000) and Hartley et al. (2001). However, the num-
ber of geometrically corresponding views is limited to
four and structure and motion cannot be simultaneously
reconstructed.

The crucial observation exploited in this paper is that
with the reference plane the projection relations be-
tween image points, scene points and cameras become
linear in 3D points and camera positions as opposed to
being bilinear in the general case. We will show how
this relation can be derived for general reference planes
and also how it relates to general perspective projec-
tion. In particular we will demonstrate the relation
between general shape-viewpoint duality (Carlsson,
1995; Carlsson and Weinshall, 1998; Weinshall et al.,
1995), and the dual structures that arise with a refer-
ence plane (Criminisi et al., 1998; Irani and Anandan,
1996; Irani et al., 1998; Weinshall et al., 1998). Most
of the past work which studied the geometry for scenes
containing a reference plane, i.e. parallax geometry,
focused on the reconstruction of scene points for two
views (Kumar et al., 1994; Irani and Anandan, 1996;
Criminisi et al., 1998) or multiple views (Irani et al.,
1998). The reference plane formulation of this paper,
which reveals the linear relationship between points
and camera centers in multiple views, can therefore

been seen as an extension and simplification of most
planar parallax approaches.

A potential problem for numerical calculations is
the fact that the reference plane will be at infinity in the
representation that linearizes the problem. The con-
sequence is that points which are on or close to the
reference plane have to be reconstructed separately.
We will demonstrate however that this problem can be
dealt with both from a theoretical and practical point
of view. An especially interesting case is when the
reference plane actually is at infinity. As a practical
demonstration of this we consider the reference plane
at infinity spanned by three mutual orthogonal vanish-
ing points obtained from viewing typical architectural
structures. Multiple points are viewed with only par-
tial overlap. 3D positions of points and camera centers
are reconstructed using a single Singular Value De-
composition based on all observed points in all views
simultaneously.

The linearity and symmetry of space points and cam-
era positions makes it especially easy and interesting to
investigate problems of numerical stability and critical
configurations of points and cameras in the scene. In
this paper the problem of critical configurations for the
special case of having four coplanar points will be dis-
cussed. A configuration of points and cameras is critical
if the projected image points are insufficient to deter-
mine the points and cameras uniquely, up to a projective
transformation. We will show that if all points are vis-
ible in all views, i.e. no missing data, all configuration
(apart from trivial ones) where points and camera cen-
ters are non-coplanar are non-critical. If not all points
are visible in all views, i.e. missing data, a method to
construct non-critical configurations is proposed.

The content of this paper is based on Rother and
Carlsson (2001). However, in contrast to Rother and
Carlsson (2001) this paper presents novel results about
critical configurations for the case of four coplanar
scene points. Furthermore, the reconstruction algo-
rithms and the underlying theory are presented in more
detail.

2. Duality, Symmetry and Linearity
of Projection Relations

General perspective projection to an image point with
homogeneous coordinates p can be described as:

p ∼ H (I | −Q̄)P ∼ H (P̄ − Q̄), (1)
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where P and P̄ are the homogeneous and non-
homogeneous cartesian coordinates of the 3D-points
respectively. The 3 × 3 matrix I is the identity matrix
and Q̄ are cartesian coordinates of the camera centers.
The 3×4 matrix H (I | −Q̄) represents the camera ma-
trix. In a general projective representation the homogra-
phy H will be factored out and we are left with relations
between 3-D points and camera centers. Already from
Eq. (1) we see that these quantities are symmetrically
related. The symmetry relations in a complete projec-
tive description will be somewhat different depending
on whether we exploit the presence of four points on a
reference plane in 3D.

With five points P1, . . . , P5 as basis, any point P
and camera center Q in 3D can be expressed using
projective coordinates:

P ∼ XP∗
1 + YP∗

2 + ZP∗
3 + WP∗

4
(2)

Q ∼ AP∗
1 + BP∗

2 + CP∗
3 + DP∗

4.

Similarly, four image points p1, . . . , p4 can be used as
a basis for expressing image coordinates

p ∼ xp∗
1 + yp∗

2 + wp∗
3 . (3)

The normalizations P∗ and p∗ are chosen so that points
P5 and p4 get projective coordinates (1, 1, 1, 1)T and
(1, 1, 1)T respectively. Specifying 5 scene points and
4 image points fixes the 15 degrees of freedom of
the projective space P3 and the 8 degrees of freedom
projective space P2. Choosing a specific basis in an
image implies that a projective transformation has to
be applied to the observed image points which are in a
camera specific basis.

The mapping of scene points to image points

M : (X, Y, Z , W )T −→ (x, y, w)T (4)

can be computed for the general case and for the case
of having four points on a reference plane.

2.1. General Point Configurations

This case was treated in e.g. Faugeras (1992), Quan
(1994) and Carlsson (1995) and it means that we take
the image basis points p1, p2, p3, p4 as projections of
the 3D basis points P1, P2, P3, P4 (see Fig. 1(a)). We
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Figure 1. Projective basis points in 3D P1, . . . , P4 and image
p1, . . . , p4 for general configurations (a) and reference plane con-
figurations (b).

then get the constraints on the mapping M :

M :

P1 P2 P3 P4 Q
− − − − −
1 0 0 0 A

0 1 0 0 B

0 0 1 0 C

0 0 0 1 D

−→

p1 p2 p3 p4 0
− − − − −
1 0 0 1 0

0 1 0 1 0

0 0 1 1 0

. (5)

This results in the following projection relations:

x

y

w

∼

X

A
− W

D

Y

B
− W

D

Z

C
− W

D

(6)

which can be written as two constrained equations:

w
X

A
− x

Z

C
+ (x − w)

W

D
= 0

w
Y

B
− y

Z

C
+ (y − w)

W

D
= 0.

(7)

These relations make explicit the duality of space
points and camera centers in the sense that the
homo-geneous projective coordinates of space points
X, Y, Z , W and inverse coordinates of camera centers
A−1, B−1, C−1, D−1 are bilinearly related in a sym-
metric way.
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For completeness, Eq. (1) can be explicitly written
as: 


x

y

w


 ∼




A−1 0 0

0 B−1 0

0 0 C−1




×

1 0 0 −A/D

0 1 0 −B/D
0 0 1 −C/D







X

Y

Z

W


 (8)

where Q̄ = (A/D, B/D, C/D)T as the non-homo-
geneous camera center. This means that the homog-
raphy H in Eq. (1) depends on the camera centers. The
choice of the fifth basis point P5 has further conse-
quences (see e.g., Carlsson, 1995) which are, however,
not relevant in this context.

2.2. Four Points on a Reference Plane

If we have four points P1, P2, P3, P4 on a reference
plane visible in all views we can use the images of
these as a four point basis for image coordinates (see
Fig. 1(b)). This has similar consequences leading to
a similar but non-equivalent duality or symmetry be-
tween space points and camera centers. Note, in this
case P4 can not be used as a basis point for the pro-
jective basis, which has to consist of five non-coplanar
points. How the remaining degrees of freedom of the
projective space, i.e. P4, P5, of the projective space, are
fixed will be discussed later. Let us choose the point P4

in a canonical way as in e.g. Heyden and Åström (1995)
and Triggs (2000). The constraints on the mapping M
become:

M :

P1 P2 P3 P4 Q
− − − − −
1 0 0 1 A

0 1 0 1 B

0 0 1 1 C

0 0 0 0 D

−→

p1 p2 p3 p4 0
− − − − −
1 0 0 1 0

0 1 0 1 0

0 0 1 1 0

. (9)

We see that the four points define the plane at infin-
ity, which is specified by W = 0. Using this we can
compute the projection relations:

x

y

w

∼

X

W
− A

D

Y

W
− B

D

Z

W
− C

D

. (10)

If we compare this to the general projection rela-
tions in Eq. (6) we see that the relationship between
points and cameras is different, however, still sym-
metric. The symmetry now relates to the substitutions
(X, Y, Z , W ) ↔ (A, B, C, D). More importantly the
relations are linear in the non-homogeneous projective
coordinates for points X/W etc. and cameras A/D
etc. This means that the projection relations only ap-
ply to non-homogeneous points and cameras which are
outside the plane at infinity, i.e. W �= 0. We can now
rewrite the projection relations as linear constrained
equations:

x

(
Z

W
− C

D

)
− w

(
X

W
− A

D

)
= 0

y

(
Z

W
− C

D

)
− w

(
Y

W
− B

D

)
= 0 (11)

x

(
Y

W
− B

D

)
− y

(
X

W
− A

D

)
= 0.

Obviously only two of the three projection relations
are linearly independent. However, two relations are
insufficient for special cases where e.g. w = 0 and
Z
W − C

D = 0.
Arbitrary numbers of points and views can be used to

build one matrix consisting of all projection relations
in terms of image coordinates. For n points in m views
the linear system takes the form:




S11 0 0 . . . 0 0 −S11 0 . . . 0

S12 0 0 . . . 0 0 0 −S12 . . . 0

.

.

.
.
.
.

S1m 0 0 . . . 0 0 0 0 . . . −S1m

0 S21 0 . . . 0 0 −S21 0 . . . 0

0 S22 0 . . . 0 0 0 −S22 . . . 0

.

.

.
.
.
.

0 S2m 0 . . . 0 0 0 0 . . . −S2m

.

.

.

0 0 0 . . . 0 Sn1 −Sn1 0 . . . 0

0 0 0 . . . 0 Sn2 0 −Sn2 . . . 0

.

.

.

0 0 0 . . . 0 Snm 0 0 . . . −Snm







X̄1

Ȳ 1

Z̄1

.

.

.

X̄ n

Ȳ n

Z̄ n

Ā1

B̄1

C̄1

.

.

.

Ām

B̄m

C̄m




= 0

(12)

for non-homogeneous projective point coordinates
X̄ = X/W etc. and camera centers Ā = A/D etc.
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where

Si, j =




0 wi, j −yi, j

−wi, j 0 xi, j

yi, j −xi, j 0


 (13)

are 3 × 3 matrices built up from image coordinates of
point i visible in view j . In the following we denote
the matrix which forms the linear system in Eq. (12) as
the S-matrix.

Before the solution of points and cameras can be
obtained from the linear system, the projective space
defined by the four coplanar points have to be consid-
ered in more detail. With the four points P1, P2, P3, P4

on the plane at infinity (Eq. (1)) can be explicitly written
as:




x

y

w


 ∼




1 0 0 −A/D

0 1 0 −B/D

0 0 1 −C/D







X

Y

Z

W


 (14)

or more compact as (see as well Eq. (10)):

p ∼ (I | −Q̄)P ∼ P̄ − Q̄. (15)

We see that the homography H in Eq. (1) is now the
identity matrix. This means that having four coplanar
points is projectively equivalent to having purely trans-
lating calibrated cameras. This simple result was al-
ready stated in e.g. Heyden and Åström (1995) and
Triggs (2000), however, it was differently exploited in
contrast to this paper.

It is well known that a 3D projective space has 15
degrees of freedom. This can be expressed as a 4 × 4
homography which transforms a point P to P ′ as:

P ′ =
(

A t

bT λ

)
P, (16)

where A is a 3 × 3 matrix, bT , t are 3 dimensional
vectors and λ a scalar (see e.g. Hartley and Zisserman
2000; Faugeras and Luong, 2001). The choice of the
points P1, P2, P3, P4 as in Eq. (9) implies that A =
µI and bT = (0, 0, 0). This means that 11 of the 15
degrees of freedom of the projective space are fixed.
The remaining 4 degrees of freedom correspond to the
arbitrary choice of t, µ and λ (minus an overall scale).

Let us apply a Singular Value Decomposition (SVD)
on the S-matrix (Eq. (12)) which gives the null-space

of the S-matrix. Since the chosen projective space
has 4 degrees of freedom, the null-space of S is
at least of dimension 4. However, three of the four
singular vectors of the null-space have the trivial
form: P̄ i = Q̄ j = (1, 0, 0)T , P̄ i = Q̄ j = (0, 1, 0)T and
P̄ i = Q̄ j = (0, 0, 1)T . This reflects the fact that the
translation t in Eq. (16) can be chosen arbitrarily.
Therefore, if S has a four dimensional null-space, the
summation of all four singular vectors of the null-space
gives the non-trivial solution for all camera centers and
points. However, certain configurations of points and
cameras might give a null-space of dimension larger
than 4. Such configurations are called critical and they
will be the subject of Section 5.

To summarize, the simple addition of a fourth copla-
nar point implies that the general bilinear problem
of reconstruction and camera recovery from multiple
points and views is transformed into a linear problem,
i.e. finding the null-space of a matrix with elements
computed from the image coordinates in all available
views. In contrast to this, reconstruction algorithms for
general scenes are not that straight forward. Factor-
ization based methods, e.g. Sturm and Triggs (1966),
Sparr (1996), and Heyden et al. (1999) have to deter-
mine fundamental matrices (Sturm and Triggs, 1966)
or iterate the solution (Sparr, 1996; Heyden et al., 1999)
in order to obtain depth scale factors. Other methods,
e.g. Fitzgibbons and Zisserman (1998) and Koch et al.
(1998) have to determine complete camera projection
matrices before doing reconstruction.

Utilizing the homography H in Eq. (1) to linearize
the reconstruction problem has also been exploited by
Oliensis (1995, 1999) and Oliensis and Genc (1999).
It is known (Hartley and Zisserman, 2000) that cor-
responding image points of purely rotating cameras
define the homography: H = K ′RK−1, where K , K ′

is the calibration matrix of the first and second cam-
era and R the rotation between them. The basic as-
sumption in Oliensis work is a small movement of the
camera between successive frames. This means that
H can be approximately determined. With the knowl-
edge of H , the relationship between points and cam-
era centers can be linearized by applying the inverse
homography on the image points: H−1 p ∼ P̄ − Q̄
(compare Eq. (1)). This is used to initialization an it-
erative reconstruction algorithm (Oliensis, 1999). Fur-
thermore, if the calibration is known, i.e. K and K ′,
the rotation R can be determined and a Euclidean
reconstruction may be obtained (Oliensis and Genc,
1999).
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3. Finite versus Infinite Reference Plane

The relative simplicity of the S-matrix hides a poten-
tially disturbing fact for numerical calculations. The
linearity is expressed in non-homogeneous projective
coordinates X/W etc. for points and A/D etc. for cam-
eras. Therefore, for points on the reference plane we
have W = 0, i.e. they are moved to infinity in the pro-
jective basis representation. This was noted in Triggs
(2000) as a fundamental requirement for obtaining this
simple structure of purely translating calibrated cam-
eras. In contrast to the reconstruction method in Triggs
(2000), this has consequences for points which are on
or close to the reference plane. In this section we will
demonstrate however that this problem can be dealt
with both from a theoretical and practical point of view.

An especially interesting case is when the reference
plane actually is at infinity. However, having 4 points
on the plane at infinity, which are visible in all views,
in general constrains the camera positions in a multi
view situation. When we consider the practically in-
teresting case of architectural scenes, we see that they
are often characterized by orthogonal directions, i.e
three orthogonal vanishing points. We will show that
the knowledge of three orthogonal vanishing points,
which span the plane at infinity, together with some
simple natural assumptions about the camera parame-
ters result in the same linear reconstruction problem as
with four points on an arbitrary reference plane.

3.1. Finite Reference Plane

We see that the reference plane is the plane at infinity,
i.e. W = 0, in the projective basis representation. This
means that only those points can be reconstructed by
the linear system in (12) which do not lie on the ref-
erence plane. Therefore, points which are on the refer-
ence plane have to be reconstructed separately. How-
ever, points on the reference plane are particularly easy
to determine. From Eq. (14) we see that a point at in-
finity (X, Y, Z , 0)T can be reconstructed directly as:




x

y

w


 ∼




X

Y

Z


. (17)

Let us consider the case if we put a point which lies
on the reference plane, e.g. P1 = (X1, Y1, Z1, 0), into
the linear system (12). The projection relations (17) can

be written as linear constrained equations:

x Z1 − wX1 = 0

y Z1 − wY1 = 0 · (18)

xY1 − y X1 = 0

In this case the submatrices S1, j contain these equations
instead of the equations in Eq. (11). We see that, inde-
pendent of all camera centers and all other points, the
vector (X1, Y1, Z1, 0, . . . , 0) represents an additional
solution to the linear system (12). This means that we
obtain a five-dimensional null-space for the S-matrix,
i.e. 2 non-trivial solutions for the points and cameras.

Although in practice points are seldomly exactly on
the reference plane, the linear system gets numerically
instable if points which are “close” to the reference
plane are included into the linear system (12). Firstly,
due to errors in the image coordinates the singular vec-
tor which does not represent the complete solution for
all points and cameras could have a smaller singular
value than the singular vector which does represent
the complete solution. Secondly, the coordinates of the
points which are not close to the reference plane have
very small values in contrast to the coordinates of the
points which are close to the reference plane. This po-
tentially increases the inaccuracy in all those points
which are not close to the reference plane.1

Therefore, the points which are on or close to the
reference plane have to be excluded from the linear
system (12). This means that we have to decide for
each point whether it lies on (or close to) the reference
plane or not. However, this decision can be achieved
with the knowledge of the image coordinates of the four
reference points P1, P2, P3 and P4. Since these points
lie on the reference plane and are visible in all views
they introduce a planar homography between each pair
of views. Therefore, we can determine for each pair
of views, in which a certain world point is visible, a
residual parallax vector (see Irani and Anandan, 1996;
Hartley and Zisserman, 2000). It has been shown that in
case of parallel projection the parallax vector depends
only on the distance between the world point and the
reference plane (see Irani and Anandan, 1996; Kumar
et al., 1994). This result can be utilized for projective
cameras as an approximation. Therefore, a ranking of
all world points with respect to their distance to the
reference plane can be obtained on the basis of the
magnitude of their parallax vectors. Points on and off
the plane can now be separated by defining a thresh-
old. However, the choice of such a threshold depends
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on the scene and camera motion, i.e. the distance be-
tween scene points and the camera. This choice can be
circumvented by successively excluding points from
the linear system (12) on the basis of this ranking, i.e.
distance to the reference plane. This leads, however, to
an iterative algorithm. An explicit formulation of the
algorithm will be given in Section 4.

3.2. Choosing a Reference Plane
or Reference Points

The plane plus points configurations, i.e. a reference
plane and points which lie not on the reference plane,
has received significant attention in the past e.g. Kumar
et al. (1994), Irani and Anandan (1996), Criminisi et al.
(1998), Irani et al. (1998), Cross et al. (1999), and
Hartley et al. (2001). These approaches are character-
ized by the basic assumption of a reference plane visible
in all views. This assumption seems to be more general
in contrast to the assumption we do, i.e. four reference
points visible in all views. However, we will see that
those four reference points can be easily derived from
the general assumption of a visible reference plane.

A reference plane visible in all views introduces
planar homographies between each pair of views. Let
us introduce four “virtual” basis points which lie on
the reference plane. The position of these points can
be fixed by choosing their image coordinates in one
arbitrary view. With the use of the inter-view planar
homographies, the image coordinates of these points
can be established in all other views. Therefore, these
four “virtual” basis points can be used as the points
P1, P2, P3, P4 as in the previous section. This means
that a reference plane visible in all views is sufficient
for establishing a unique projective basis for all points
and cameras.

However, depending on the image coordinates some
inter-view homographies might be inaccurate. This
could introduce a substantial numerical instability in
the reconstruction process. In order to avoid this source
of error, we concentrate our current interest on the spe-
cial configuration of four points visible in all views.

3.3. Reference Plane at Infinity

If the points P1, P2, P3 on the reference plane are
moved to infinity it can be easily shown that the pro-
jective 3D coordinates in the basis P1, . . . , P5 become
affine coordinates in an affine system defined by the di-
rection vectors P1 − P4, P2 − P4 and P3 − P4. The point

P4 represents the origin of the affine system which is not
at infinity. If these directions are specialized to being or-
thogonal, the affine 3D coordinates become Euclidean
by proper choice of the normalizing point P5. This
is true for a general un-calibrated perspective camera.
This can typically be achieved if the points P1, P2, P3

are chosen as the orthogonal vanishing points in e.g. a
city block architectural scene. The main advantage in
these kinds of scenes is the use of images estimated for
very different camera positions. However, the exploita-
tion of the infinite reference plane needs additionally
the image of a fourth coplanar reference point. Having
a specific point at infinity visible in all views will sub-
stantially restrict the usefulness of the infinite reference
plane for the general perspective camera. By consider-
ing a special case of perspective cameras, however, we
can make use of the reference plane at infinity given by
the three orthogonal vanishing points only.

For the special case of perspective camera:

p ∼ K R(I | −Q̄)P (19)

where K contains the internal camera parameters:

K =




σ 0 x̄0

0 σ ȳ0

0 0 1


, (20)

i.e. zero skew and the same scale factor horizontally
and vertically, it is possible to recover internal param-
eters K and camera rotations R from knowledge of
three orthogonal vanishing points (Caprile and Torre,
1990; Liebowitz and Zisserman, 1999; Svedberg and
Carlsson, 1999). Normalizing image coordinates with
this knowledge we can write the projection relation as:

p′ ∼ P̄ − Q̄, (21)

where p′ = RT K −1 p. This is the same situation of
purely translating calibrated cameras just as derived
using the pure projective representation in the previous
section. The fact that we have knowledge of the projec-
tion of vanishing points at infinity together with their
orthogonality implies that we can compute a metric
reconstruction, i.e. 3D structure up to similarity trans-
formations.

3.4. Determination of K and R

In order to identify the internal camera parameters K
and camera rotations R, mutual orthogonal directions
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Figure 2. Relationship between the CCS and the BCS, which is
defined by the orthogonal vanishing points v̄x , v̄y and v̄z .

in the scene have to be detected. Although this task
has recently raised great interest e.g. Rother (2000),
it is manually performed in the current version of the
algorithm. This has the reason that falsely detected van-
ishing points might significantly reduce the quality of
the reconstruction.

Since the three mutual orthogonal vanishing points
v̄x , v̄y and v̄z are visible in all views, they specify the
directions of a 3D, cartesian basis coordinate system
(BCS). Figure 2 shows the geometrical relation be-
tween the BCS and a camera coordinate system (CCS).
The orthogonality relation of the three vanishing points
can be algebraicly defined as: 〈K −1v̄x , K −1v̄y〉 =
0, 〈K −1v̄x , K −1v̄z〉 = 0 and 〈K −1v̄y, K −1v̄z〉 = 0,
with 〈·, ·〉 as scalar product. From these equations the
focal length σ and the principal point (x̄0, ȳ0) of the
specific camera model introduced in Eq. (19) can be
derived. However, in case one or two of the vanish-
ing points are at infinity (so-called degenerated cases)
with respect to the image plane, i.e the image plane is
parallel to the corresponding axis of the BCS, not all in-
ternal camera parameters are determinable (Liebowitz
and Zisserman, 1999; Rother, 2000). In the current ver-
sion of the algorithm, we assume fixed internal cam-
era parameters for the process of acquiring images.
This allows us to improve the camera calibration sig-
nificantly, by averaging all those internal camera pa-
rameters which were derived from non-degenerated
cases.

With the knowledge of K , the rotation matrix R can
be determined. For that the correspondence problem
between the three vanishing points and the x-, y- and
z-axis of the BCS has to be solved. Furthermore, direc-
tions given by each vanishing point have to be uniquely
defined, i.e. the sign of K −1v̄x,y,z has to be determined.
We define:

R = (±K −1v̄x |±K −1v̄y | ± K −1v̄z) with det(R) = 1.

Since the condition det(R) = 1 has to be fulfilled,
we obtain 24 possible R in case of unknown corre-
spondence and 4 possible R otherwise. Note, for the
determination of R two of the three orthogonal van-
ishing points are sufficient, since v̄z = v̄x × v̄y . In the
current version of the algorithm, the ambiguity in R is
manually solved.

4. Outline of the Algorithm and Optimization

We have seen that with the use of a reference plane
points and cameras can be simultaneously recon-
structed in closed-form. However, the prize we have
to pay is that an algebraic error function is minimized.
Such an error is suboptimal in contrast to a geomet-
ric error, e.g. the Euclidean distance between image
points and reprojected scene points. In this section this
algebraic error function will be analysed and we will in-
vestigate how it can be optimized with the restriction of
having a closed-form solution. The section concludes
with an explicit description of the algorithm for finite
and infinite reference planes.

4.1. Optimization of the Error Function

Let us reconsider Eq. (1) where the scene point Pi is
mapped by the camera j on the image point pi j :

λi j pi j = Hj (Q̄ j − P̄ i ). (22)

The vector pi j represents now the observed image point
before normalization (Eq. (3)) and λi j is an unknown
scale, which is denoted in Sturm and Triggs (1996) as
projective depth. We have seen in Section 2.1 that the
homography Hj depends on the camera center Q̄ j for
general scenes. In case of a reference plane visible in
all views, Hj is the identity matrix with respect to the
normalized image points (see Eq. (15)). This means
that H−1

j represents the projective transformation of
image points pi j into the normalized image points p′

i j
defined in Eq. (3). Explicitly written:

p′
i j = H−1

j pi j with H−1
j :

(p1 p2 p3 p4) −→




1 0 0 1

0 1 0 1

0 0 1 1


, (23)

where p1, p2, p3, p4 are the projections of the 4 copla-
nar points P1, P2, P3, P4. In order to eliminate the
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unknown scale λi j , the ratios of x, y and w-coordinates
of the image points p′

i j were considered (see Eq. (11)).
These ratios are the subject of minimization in the lin-
ear system of Eq. (12). Minimizing such an algebraic
error is, however, statistically suboptimal in contrast to
geometric error functions used e.g. for bundle adjust-
ment (see e.g. Triggs et al., 1999).

How can this algebraic error function be improved?
We have seen that the key for obtaining a closed-form
solution is the linear relationship between scene points
and camera centers, i.e. the knowledge of Hj . This
linear relationship is not affected by a change of the
image basis, i.e. applying a homography B, and by an
individually scaling si j of the image points p′

i j :

p′′
i j ∼ si j Bp′

i j ∼ BP̄i − BQ̄ j ∼ P̄ ′
i − Q̄′

j . (24)

If B and si j are chosen, p′′
i j can be derived and we obtain

a linear system as in Eq. (12):

S′(X̄ ′
1, Ȳ ′

1, Z̄ ′
1, . . . , X̄ ′

n, Ȳ ′
n, Z̄ ′

n,

Ā′
1, B̄ ′

1, C̄ ′
1, . . . , Ā′

n, B̄ ′
n, C̄ ′

n)T = 0. (25)

The matrix S′ consists now of the image points p′′
i j (see

Eq. (13)).
Let us consider the choice of the homography B first.

It has been shown in Hartley (1997) that different nor-
malizations of the image coordinates can dramatically
influence the result of a computation based on image
coordinates. Hartley (1997) suggested to choose the
centroid of all image coordinates as the origin and to
normalize the average distance of an image point to
the origin to

√
2. If we consider Eq. (24), such a nor-

malization would involve to determine for each view j
an individual matrix B j , which represents the normal-
ization. However, such a B j would destroy the linear
relationship between points and camera centers. There-
fore, the matrix B has to be determined independently
of a certain view j . We define:

B = 1

m

m∑
j=1

B j/‖B j‖2, (26)

where ‖ · ‖2 is the Frobenius norm of a matrix and m
is the number of views.

We have seen in Section 2.2 that a finite reference
plane has to be chosen as the plane at infinity in or-
der to obtain the simple situation of purely translat-
ing cameras. However, this suboptimal choice can be
compensated by an appropriate selection of the scale

factors si j . Let us consider a point P1 which is closer to
the reference plane than another point P2. By choosing
the reference plane as the plane at infinity, the coordi-
nates of the reconstructed point P̄1 are larger than the
ones of P̄2. This means that in the presence of noise,
the point with larger coordinates is reconstructed more
accurately. In order to eliminate this favoring of cer-
tain points we suggest to choose the scale factors in
Eq. (24) as si j = dis(Pi ), where dis(Pi ) ∈ [0, 1] de-
notes the distance between Pi and the reference plane
(see Section 3.1). This scaling just inverses the effect
of moving a finite plane to infinity.2 This means that
points which are closer to the reference plane are in-
hibited. The same applies to the equations in the linear
system of Eqs. (12) and (25) of such a point.

4.2. Outline of the Algorithm

On the basis of the previous sections the algorithm for
finite and infinite reference planes can be explicitly
formulated. In case of a finite reference plane the algo-
rithm is composed of the following steps:

1. Determine 4 coplanar points and other correspond-
ing points

2. Normalize the image basis, i.e. p′
ij = H−1

j pi j

(Eq. (23))
3. Calculate the distance between scene points Pi and

the reference plane (Section 3.1)
4. Exclude iteratively points from the S-matrix (or

choose a threshold) (Section 3.1)
5. Determine matrix B (Eq. (26))
6. Determine scales si j and image points p′′

ij = si j

‖BH−1
j p′

i j‖2 (Section 4.1)
7. Obtain P̄ ′

i , Q̄′
j by SVD (Eq. (25)) and points Pi on

(or close to) the reference plane with Eq. (17)
8. Take the best result on the basis of RMS-error be-

tween image points and reprojected scene points
9. Undo the basis change: P̄ i = B−1 P̄ ′

i and Q̄ j =
B−1 Q̄′

j

The Euclidean norm is denoted by ‖ · ‖2. The quality
of the reconstruction is evaluated in terms of the Root-
Means-Square (RMS) error between image points and
reprojected scene points. However, other criteria could
be used.

If three orthogonal vanishing points are detected in
the scene, the algorithm has a simpler form since finite
scene points do not lie on the reference plane. The
algorithm can be explicitly written as:
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1. Determine 3 orthogonal vanishing points and other
corresponding points

2. Calculate K j , R j for each camera j (Section 3.4)
3. Normalize the image basis, i.e. p′

i j = H−1
j pi j

(Eq. (23))
4. Determine matrix B and image points p′′

i j =
‖BH−1

j p′
i j‖2 (Section 4.1)

5. Obtain P̄ ′
i , Q̄′

j by SVD (Eq. (25))
6. Undo the basis change: P̄ i = B−1 P̄ ′

i and Q̄ j =
B−1 Q̄′

j

5. Critical Configurations and Minimal Visibility

In the following we investigate the constraints that
points and cameras have to satisfy in order to obtain
a unique reconstruction for the special case of having
four coplanar points.

In practice, not all n points are visible in all m views,
i.e. we have to deal with missing data. In order to spec-
ify a certain overlap between points and views we in-
troduce the visibility matrix V . An element V (i, j) of
the visibility matrix is set if the j th point is visible in
the i th view. The following example shows a specific
visibility matrix of n = 5 points partly visible in m = 3
views:

V = views

points

1 2 3 4 5

1 • •
2 • • • • •
3 • • •

(27)

Note, the visibility matrix does only specify which
point is visible in which view. However, it does not
specify the actual placement of points and camera
centers in the scene. Therefore, we denote a specific
placement of points and cameras in the scene as a
configuration. Note, a configuration is only unique up
to a certain transformation, which is in our case ei-
ther a projective transformation (finite reference plane)
or a similarity transformation (three orthogonal vanish-
ing points). In this context a fundamental question is:
Is a certain visibility matrix sufficient, i.e. is there at
least one configuration which represents a unique re-
construction?

Sufficient visibility does not necessarily imply a
unique reconstruction. Therefore, we denote a configu-
ration as critical if the visibility matrix is sufficient but
the projected image points are insufficient to determine

a unique reconstruction (Hartley and Zisserman, 2000).
This poses a second fundamental question: What are
the critical configurations of a sufficient visibility
matrix?

Let us consider these questions for the special case of
four coplanar points. For n points and m views the total
number of degrees of freedom (dofs) of the the linear
system in (12) is: #dofs = 3(m + n) − 4. Note, the ref-
erence points on the reference plane are not included in
this counting. In the case of a finite reference plane we
had additionally 4 reference points (P1, P2, P3, P4) and
for an infinite reference plane 3 orthogonal vanishing
points (P1, P2, P3). Let us consider the rank of the S-
matrix (Eq. (12)). This is at the most #dofs. If the rank of
the S-matrix is smaller than #dofs, the dimensionality
of the null-space is larger than four which means that
the reconstruction is not unique. We can state: A given
visibility matrix is sufficient if the rank of the S-matrix
is equal to the number of dofs, for a generic set of points
and camera centers, i.e. points and camera centers in
“general pose”. Furthermore, we can state: A given
configuration is critical if the rank of the S-matrix is
smaller than the number of dofs for this configuration.
The question of critical configurations is not only of
theoretical interest, however, from a numerical point
of view we should expect instabilities whenever the S-
matrix comes close to rank deficiency, i.e. whenever a
configuration is close to a critical one.

In the past these two questions have been inves-
tigated for two different cases: no missing data and
missing data. This corresponds to two different types
of visibility matrices: full and not full visibility matrix.
For the special case of four coplanar points, these two
types of visibility matrices will be discussed separately
as well.

Before addressing these questions, let us recapitu-
late the constraints on points and cameras we have so
far. If we reconstruct points which lie on the reference
plane with the linear system in (12), we have seen,
that we do not obtain a unique (up to 4 dofs) solution.
However, points on the reference plane can be uniquely
detected and reconstructed separately as we showed be-
fore. Therefore, such configurations are in general not
critical configurations.

5.1. No Missing Data—Full Visibility Matrix

The problem of critical configurations for the gen-
eral case of projective reconstruction has received con-
siderable interest in computer vision over the years
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(Maybank, 1992; Hartley and Debunne, 1998; Hartley,
2000). The classical case of 2 view critical configura-
tions implies that all cameras and points are located on
a ruled quadric (Krames, 1942). From the duality of
camera centers and space points (Carlsson, 1995) fol-
lows that this applies also for 6 points and any number
of cameras (Hartley and Debunne, 1998). The case of
three cameras and an arbitrary number of points and
its dual is somewhat more complex (Hartley, 2000).
The non-linearity of the general case means that crit-
ical configurations generally imply a finite number of
multiple solutions given projected image data. Having
four points on a reference plane on the other hand,
gives us a linear reconstruction problem and therefore
either a unique solution or an infinite number. The case
of an infinite number of solutions will occur when the
S-matrix becomes rank deficient so that the dimension-
ality of the null-space increases.

We will prove that the only critical configurations
for 2 points (excluding all points on the reference
plane) visible in 2 views are if the camera centers and
the points are coplanar. This is not a contradiction to
the general case of projective reconstruction, since the
placement of points and camera centers is not restricted
in the general case. Additionally, we will prove that 2
points and 2 views provide minimal visibility. Further-
more, for the multi view case we will prove that a con-
figuration is non-critical if (a) the points and the camera
centers are non-coplanar and (b) all camera centers and
one of the points are non-collinear and (c) all points and
one of the camera centers are non-collinear.

5.1.1. Two View Configurations. Let us consider the
case of 2 points (excluding all points on the reference
plane) visible in 2 views. From the projection relation
(Eq. (11)) we obtain at the most 8 linearly indepen-
dent constraints for the S-matrix. Note, only 2 of the 3
projection relations are linear independent. If all these
8 equations were linearly independent we would get a
unique reconstruction, since the number of dofs is 8.

Therefore, we can make the conjecture that 6 points,
where 4 of them are coplanar, are sufficient for a recon-
struction from two un-calibrated views. In case of the
reference plane at infinity defined by three orthogonal
vanishing points we conjecture that 5 points are suf-
ficient under the assumption of a camera model with
zero skew and unit aspect ratio. We will now prove that
this is indeed the case.

Theorem 1. A configuration of 2 points (excluding
all points on the reference plane) visible in 2 views is

critical if and only if the points and the camera centers
are coplanar.

Proof: Since the S-matrix has a four dimensional
null-space, we are free to choose either a space point or
a camera center as the “origin”, i.e. (0, 0, 0, 1), of the
projective space. The S-matrix (Eq. (12)) then takes on
either of the forms:




S21 −S21 0

S22 0 −S22

0 S11 0

0 0 S12







X̄2

Ȳ 2

Z̄2

Ā1

B̄1

C̄1

Ā2

B̄2

C̄2




= 0

(28)




S12 0 −S12

0 S22 −S22

S11 0 0

0 S21 0







X̄1

Ȳ 1

Z̄1

X̄2

Ȳ 2

Z̄2

Ā2

B̄2

C̄2




= 0

where

Si, j =




0 wi, j −yi, j

−wi, j 0 xi, j

yi, j −xi, j 0


 (29)

are 3 × 3 matrices built up from image coordinates of
point i visible in view j .

In case of a non-critical configuration these matri-
ces are of rank 8 which means that the null vector is
unique up to scale. If the matrices were of rank 7 or
less, the dimension of the null-spaces would be larger
than one and the null vector no longer unique up to
scale. Rank deficiency of a matrix is generally checked
by computing the singular values. In our case, however,
we are interested in the algebraic conditions on the el-
ements of the matrix for it to be rank deficient. Rank
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deficiency, i.e. a rank less than 7, of the S-matrix im-
plies that the determinants of all the 8 × 8 submatrices
of the S-matrix are zero.

These subdeterminants were computed using
MAPLE and it was found that all subdeterminants
that were not genericly zero have a simple common
structure. By reordering rows and columns it can be
shown that the two cases in Eq. (28) are completely
equivalent by the choice of the origin. Therefore, all
computations were made for the case of choosing the
first camera as the origin, i.e. Ā1 = B̄1 = C̄1 = 0. By
expressing the elements in the Si, j matrix in terms of
coordinates of space points P̄1, P̄2 and coordinates
of the second camera center Q̄2 it was found that all
8 × 8 subdeterminants could be factored into:

(A) The determinant:

det(P̄1 P̄2 Q̄2) (30)

(B) A factor computed by selecting one coordinate
element from five vectors in three different ways:

1. (P̄2 − Q̄2) (P̄1 − Q̄2) P̄1 P̄2 Q̄2

2. (P̄2 − Q̄2) (P̄1 − Q̄2) P̄1 P̄2 P̄1 (31)

3. (P̄2 − Q̄2) (P̄1 − Q̄2) P̄1 P̄2 P̄2.

This factor is then computed by multiplying these five
elements together, e.g.:

(X̄2 − Ā2) (Ȳ 1 − B̄2) X̄1 Z̄2 Ā1. (32)

Rank deficiency of the S-matrix, implying that all sub-
determinants are zero, will occur if either the A factor
or the B factor is zero for all combinatorial choices.
Obviously rank deficiency will occur if:

det(P̄1 P̄2 Q̄2) = 0 (33)

which means that points P1, P2 and Q2 are coplanar
with the origin, i.e. point Q1.

We will now show that all rank deficient configura-
tions are described by this coplanarity condition. Sup-
pose this condition is not fulfilled, i.e.

det(P̄1 P̄2 Q̄2) �= 0 (34)

This means that the B factor for every determinant has
to be zero. This in turn implies that at least one of the

conditions:

P̄2 − Q̄2 = 0, P̄1 − Q̄2 = 0, P̄1 = 0, P̄2 = 0

(35)

has to be fulfilled. Let us assume that this is not the
case. Let us consider the determinants which were con-
structed as in the second and third way. For such a de-
terminant there is at least one element of each vector
which is non-zero. If we select these very elements for
the computation of the B factor we obtain a non-zero
B factor after multiplying all those elements. Since the
A factor was assumed to be non-zero we would obtain
a subdeterminant which is non-zero and therefore an
S-matrix which is not rank deficient. Therefore, at least
one of the four conditions in Eq. (35) has to be fulfilled.
Since these conditions imply coincidence of points and
cameras they all imply coplanarity of the four points
P̄1, P̄2, Q̄2, Q̄1 = 0, i.e. det(P̄1 P̄2 Q̄2) = 0. This
concludes the proof that all rank deficient configura-
tions are given by the coplanarity of the two points
P̄1, P̄2 and camera centers Q̄1, Q̄2.

We are now able to answer the question of minimal
visibility.

Theorem 2. The sufficient and minimal visibility ma-
trix contains 2 points (excluding all points on the ref-
erence plane) visible in both 2 views.

Proof: 2 points visible in both 2 views is obviously
sufficient. All configurations where P̄1, P̄2, Q̄1 and Q̄2

are not coplanar give a unique reconstruction.
Furthermore, we have to prove that this visibility

matrix is minimal. Let us assume that not all points
are visible in all views. This means that we obtain:
#equations < 8 = #dofs. If we assume that only one
view is available, we obtain #equations = 2n < 3n −
1 = #dofs for n > 1. However, one point visible in
one camera can not be reconstructed. The case of one
point is dual to the case of one view. This concludes
the proof.

5.1.2. Multi View Configurations. For the case of
n points visible in all m views the S-matrix has (at
the most) 2mn linear independent equations and 3(n +
m) − 4 dofs. This means that the S is over-constrained,
if it is not rank deficient. Let us investigate the critical
configurations for such a case.
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Theorem 3. A configuration of n points (excluding
all points on the reference plane) visible in m views
is non-critical if (a) the points and the camera centers
are non-coplanar and (b) all camera centers and an
arbitrary point are non-collinear and (c) all points and
an arbitrary camera center are non-collinear.

Proof: We will show that a configuration which does
not fulfill the conditions (a), (b) and (c) is a non-critical
configuration. This will be done by actually construct-
ing such a unique reconstruction.

First of all we state, that a point and a camera center
can never coincide, since such a point would not have a
unique projection in such a camera. With the assump-
tion that the condition (a) is not fulfilled we have at
least two camera centers and two points which are not
coplanar. W.l.o.g we denote the views as Q̄1 and Q̄2

and the points as P̄1 and P̄2. In the previous section we
have proved that we obtain a unique reconstruction for
such a configuration. We will now show that we can
add an arbitrary view Q̄i to the 2 view system and ob-
tain a 3 view system with a unique reconstruction. Let
us assume that the points P̄1, P̄2 and the camera center
Q̄i are not collinear. Figure 3(a) shows the geometric
interpretation of such a configuration. Obviously the
lines l1 = P̄1 − Q̄i and l2 = P̄2 − Q̄i uniquely define
the camera center Q̄i .

In the other case, if P̄1, P̄2 and Q̄i are collinear, the
lines l1 and l2 coincide (see Fig. 3(b)). This means that
the camera center Q̄i has one dof, i.e. has to lie on the
line l1. Since we assume that the condition (c) is not
fulfilled there is a point P̄ j which does not lie on the
line l1. Let us consider the epipolar plane � j1, which is
defined by P̄ j, Q̄i and Q̄1, and the epipolar plane � j2,
which is defined by P̄ j, Q̄i and Q̄2. The intersection of
the epipolar plane � j1 and the line l1 defines the camera
center Q̄i uniquely if l1 and � j1 do not coincide. The

Figure 3. Geometric interpretations for the proof of Theorem 3.

same applies to the epipolar plane � j2. We will now
show that either of these two cases is true. Let us assume
that the two planes � j1 and � j2 are different. This
implies that the two planes intersect uniquely in the line
l3 = P̄ j − Q̄i . Since P̄ j does not lie on l1, the two lines
l1 and l3 are different. Therefore, either the plane � j1

or the plane � j2 does specify the camera center Q̄i

uniquely. We are left with the case that � j1 and � j2

are identical. This implies that the plane � j1 contains
the camera centers Q̄1 and Q̄2. However, if l1 coincided
with the plane � j1, the condition (a) would be violated,
i.e. P̄1, P̄2, Q̄1 and Q̄2 would be coplanar. Therefore,
l1 can not coincide with � j1 and the camera center Q̄i

is uniquely defined by l1 and � j1.
Furthermore, if P̄ j lay on the baseline between Q̄1

and Q̄i or on the baseline between Q̄2 and Q̄i , the point
P̄ j would specify this very baseline which means that
the camera center Q̄i is uniquely defined as well.

In this way all the views can be added to the 2 view
system. Therefore, we obtain a unique reconstruction
with m views and the two points P̄1 and P̄2.

With the assumption that the condition (b) is not ful-
filled we can finally reconstruct all points. This means
that for every configuration which does not satisfy the
conditions (a), (b) and (c) we obtain a unique recon-
struction. This concludes the proof.

Let us consider which of the configurations (a–c) are
actually critical. A configurations of type (b) where all
camera centers and one of the points are collinear is ob-
viously critical. Such a point lies on the baselines of all
pairs of cameras and can not be reconstructed. There-
fore, configurations of type (c) are critical as well, since
they are dual to the configurations of type (b). However,
a configuration of type (a) where all camera centers and
points are coplanar is not necessarily critical. Note, the
fact that all pairs of possible 2-view cases are criti-
cal (as proved in Theorem 1) does not imply that the
configuration is critical. The investigation of configu-
rations of type (a) for n points and m views would be
of theoretical interest.

Let us consider the question of sufficient visibility
for n points and m views.

Theorem 4. Every visibility matrix which contains 2
or more points (excluding all points on the reference
plane) and 2 or more views is sufficient if all points are
visible in all views.

Proof: We choose a configuration which does not ful-
fill the conditions (a), (b) or (c). Obviously, this can be
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done for an arbitrary (more than 2) amount of views
and points. Such a configuration has a unique recon-
struction as proved in Theorem 3.

With Theorems 2 and 4 we can conclude that the
basic condition that #equations ≥ #dofs is a sufficient
check for sufficient visibility in the case of no miss-
ing data. With a full visibility matrix we obtain:
#equations = 2mn and #dofs = 3(m + n) − 4.

5.2. Missing Data—Not Full Visibility Matrix

Compared to the previous case of no missing data, the
problem of minimal visibility and critical configura-
tions for the general case of multi view projective re-
construction with missing data has received less atten-
tion in the past. In Quan and Heyden (1999) all recon-
structions for sufficient visibility matrices with 3 and 4
images are cataloged.

We will now address the problem of minimal visi-
bility and critical configurations for the case of missing
data and with the assumption of having four coplanar
points. Furthermore, we will introduce a constructive
method of choosing points and cameras which provide
sufficient visibility and non-critical configurations.

5.2.1. Minimal Visibility and Critical Configurations.
Let us first consider the question of minimal visibility
in the case of missing data. The basic condition that
#equations ≥ #dofs is insufficient to answer the ques-
tion of sufficient visibility. For a non-full visibility ma-
trix we obtain for the maximum number of linearly in-
dependent equations: #equations = 2#(V (i, j) = set)
and for the number of dofs: #dofs = 3(m + n) − 4 (the
reference points excluded). However, if these equations
include linear dependences, the number of linearly in-
dependent equations reduces. In order to give a com-
plete answer for a given visibility matrix, the rank (or
the subdeterminants) of the corresponding S-matrix
has to be investigated for a generic set of points and
cameras. Such an investigation can be carried out with
MAPLE.

Let us consider the specific visibility matrix in (27).
Although the number of equations is equal the num-
ber of dofs, i.e. #equations = 20 = #dofs, the corre-
sponding S-matrix has rank 19, i.e. is rank deficient,
for a generic set of points. In this case the linear de-
pendence of equations can be seen if we consider the
views 1 and 2 and the views 2 and 3 as separated 2-
view cases. The second 2-view case includes a linear

dependence since #equations = 12 > 11 = #dofs. Ex-
cluding e.g. point 5 results in linear independent equa-
tions for the second 2-view case, since #equations =
8 = #dofs. However, in this case the resulting S-
matrix for the 3-view case is under-constrained since
#equations = 16 < 17 = #dofs.

The general problem of critical configurations in the
case of missing data is very complex. Basically ever
specific visibility matrix might give a different set of
critical configurations. Therefore, the rank (or the sub-
determinants) of the S-matrix for a specific configura-
tion has to be investigated in the same manner as we
did in the 2-view case with no missing data.

5.2.2. A Constructive Method. So far we have con-
sidered the questions of sufficient visibility and critical
configurations for a given visibility matrix. However,
in practice the placement of cameras and the number
of visible points can be chosen freely to a certain ex-
tent. Therefore, it is of particular interest of having a
method of choosing points and cameras which provide
sufficient visibility and non-critical configurations.

We will now introduce and prove such a method for
the multi view case. This will be done in an iterative
way in terms of the number of cameras. Let us assume
that we have a unique reconstruction of n points and
m views and we want to add a new view Q̄m+1 to this
m view system. In order to obtain a unique reconstruc-
tion with the additional view, we have to specify the 3
dofs of the new camera center Q̄m+1. There are vari-
ous ways of doing this. Let us assume that a point P̄ i

which is already reconstructed is visible in the view
Q̄m+1. Furthermore, a new point P̄n+1 is visible in
Q̄m+1 and in Q̄ j , which belongs to the m view system.
Figure 4 shows the geometric interpretation of such a
case. The point P̄ i gives at least 2 more constraints. The
point P̄n+1 adds 3 dofs to the new m + 1 view system,

Figure 4. Adding a new view Q̄m+1 to a system with n points and
m views which has a unique reconstruction.
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however, it supplies 4 more constraints on the system
as well. This is sufficient for specifying the 3 dofs of the
new camera center Q̄m+1. Therefore, such a visibility
is sufficient for obtaining a unique reconstruction for
the m + 1 views case.

The remaining question is: which are the critical con-
figurations of such a multi view system?

Figure 4 shows the geometric relationship between
points and cameras. The point P̄ i introduces a line
li = P̄ i − Q̄m+1, where the camera center Q̄m+1 has
to lie on. Furthermore, the point P̄n+1 introduces the
epipolar plane �n+1 which contains the camera cen-
ters Q̄ j and Q̄m+1. Let us assume that the point P̄n+1

does not lie on the baseline between Q̄ j and Q̄m+1. In
this case, the camera center is uniquely defined if li

does not coincide with the plane �n+1. This is true if
P̄ i , P̄n+1, Q̄ j and Q̄m+1 are not coplanar. We are left
with the case that P̄n+1, Q̄ j and Q̄m+1 are collinear.
The point P̄n+1, which is assumed to be visible only in
Q̄ j and Q̄m+1, cannot be reconstructed, since it lies on
the baseline between Q̄ j and Q̄m+1. Let us summarize:
a configuration of such a multi view system is critical
if and only if (a) P̄i , P̄n+1, Q̄ j and Q̄m+1 are coplanar
or (b) Q̄ j , P̄n+1 and Q̄m+1 are collinear.

Obviously, adding more points to this system does
not affect a non-critical configuration as long as the
following condition is satisfied, such a point is not
collinear with those camera centers from which the
point is visible.

A possible visibility matrix for such a multi view
system is:

V = views

points

1 2 3 4 5 · · ·
1 • •
2 • • •
3 • • •
4 • • •
5 • • ·
· · · ·
· · · ·
· · ·

Such a band-structured matrix typically appears for re-
constructing large scale scenes, e.g. architectural envi-
ronments, as we will see in the experimental section. It
reflects the fact that model points appear and disappear

in the sight of view while the camera moves around an
object, e.g. a building.

6. Experiments

6.1. Synthetic Data

The synthetic experiments were conducted for the case
of a finite reference plane. However, some of the con-
clusions drawn from the synthetic experiments can also
be applied to infinite reference planes since the algo-
rithm for infinite reference planes is part of the algo-
rithm for finite reference planes (see Section 4.2). In
order to investigate the performance of our algorithm,
it was applied to two different synthetic configurations
(see Fig. 5). The synthetic scene consists of a cube with
26 points floating above a reference plane. The refer-
ence plane is a square where the four corners depict the
reference points. In the first configuration (Fig. 5(a))
a camera circled around the cube with a radius of 10
units and shot 8 images (CIR-configuration). In the sec-
ond configuration (Fig. 5(b)) the camera moved trans-
lationally towards the scene (TRA-configuration). The
dimensions of the configurations are as in Fig. 5. The
internal calibration matrix of the camera was set to
diag(1000,1000,1).

In a first experiment, the influence of noise on the
image data was investigated. Therefore different lev-
els of Gaussian noise: σ = 0, 0.2, . . . , 3.0 (standard
deviation) were added to the image data, i.e. repro-
jected 3D points. Additionally, our algorithm was ap-
plied to a special situation: Gaussian noise was added
to all image points except for the reference points (de-
noted in the following as perfect basis). The com-
puted reconstructions were evaluated in terms of the
Root-Mean-Square (RMS) error between reprojected
3D points and 2D image data (potentially corrupted
by noise). Figure 6(a) shows the results for the CIR-
configuration and Fig. 6(b) for the TRA-configuration.
Additionally, the performance of the projective factor-
ization algorithm of Sturm-Triggs (Sturm and Triggs,
1996) is shown, which assumes that all points are vis-
ible in all views. The “projective depths” used in this
method were initialised to one and reestimated by re-
projection. This is a simplification of the original ap-
proach by Sturm-Triggs, however, it has been demon-
strated by Heyden et al. (1999), Hartley and Zisserman,
(2000), and Hartley et al. (2001) to produce good re-
sults as well. The first observation is that the different
algorithms performed approximately the same for both
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Figure 5. Two synthetic configurations with circular motion (radius 10 units) of the camera (a) and translational movement of the camera
towards the scene (b).

Figure 6. Performance of our algorithm (Our-alg.) and Sturm-Triggs algorithm (ST-alg.) with respect to noise on the image points for the
CIR-configuration (a) and the TRA-configuration (b).

configurations. If the reference points were not cor-
rupted by noise (perfect basis), our method and projec-
tive factorization performed nearly identical. The per-
formance of both algorithms are close to the theoretical
minimum, i.e. Cramer-Rao lower bound. If noise was
added on the reference points, the performance of our
algorithm is slightly worse. This leads to the conclusion
that, independent of the configuration, the noise on the
reference points is crucial for the performance of our
algorithm. Further experiments, including the case of
an infinite reference plane, confirmed this conclusion.

The second experiment investigated the problem of
separating points on (or close to) and off a finite ref-
erence plane. Therefore the distance between the cube
and the reference plane was varied between 0 and 2
units (see Fig. 5(b)). If the distance is 0, 9 out of 26
points of the cube lied on the reference plane. Two
different variations of our algorithm were utilized:

always all points are used for the S-matrix (without
threshold ) and points are iteratively excluded form the
S-matrix (with threshold ). The iterative exclusion of
reference points means that the threshold for separat-
ing points is automatically detected (see Section 4.2).
Figure 7(a) shows the performance of the algorithms
in terms of RMS-error for the CIR-configuration. The
performance is very similar above a certain distance,
i.e. about 0.5 units. However, if the cube is closer to
the reference plane, the performance of the algorithm
“without threshold” is worse and eventually fails. The
algorithm which reconstruct points close to the refer-
ence plane separately, i.e. “with threshold”, has a con-
stant performance for all distances. The ratio between
the fifth and fourth last singular value is depicted in
Fig. 7(b). The curves are as expected. The solution
gets less stable if the cube moves closer to the reference
plane. If the cube is closer than 0.5 units to the reference
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Figure 7. The performance of two variations of our algorithm: always all points are used for the S-matrix (without threshold ) and points are
iteratively excluded form the S-matrix (with threshold ). The performance is analysed in terms of RMS-error (a) and the ratio between the fifth
and fourth last singular value (b).

plane the algorithm “with threshold” performed much
more stable than the one “without threshold”. This is
due to the fact that in this case 9 out of 26 points of the
cube were reconstructed separately. We may draw the
conclusion that the problem of separating points on (or
close to) and off the reference plane can be handled by
our algorithm. However, an algorithm which does not
take care of this problem eventually fails if points are
on or close to the reference plane.

6.2. Real Data—Finite Reference Plane

In a first experiment a tape holder was reconstructed.
Four images of the tape holder were taken from view-
points with considerably wide mutual baselines (see
Fig. 8(a)–(c)). Since the tape holder itself contains a
plane which is visible in all images this plane was used
as the finite reference plane. The four points, which
are marked with circles, define the reference plane. On
the basis of this, the reconstruction of 24 model points
was achieved in one SVD. The 6 model points which
lie on or close to the reference plane were automati-
cally detected and separately reconstructed. In order to
visualize the result we assumed knowledge of five Eu-
clidean coordinates to rectify the projective structure.
Figure 8(d)–(f) shows the results of the reconstruction
from three different views. We see that the reconstruc-
tion matches with the approximate size of the object
which is 6.0 cm (x-direction), 15.8 cm (y-direction)
and 6.8 cm (z-direction). Furthermore, the symmetry of
the object is maintained in the reconstruction. Since the
ratio between the fifth last singular value (0.766) and
the fourth last singular value (0.031) is substantially

high, i.e. 24.7, this configuration can be considered as
non-critical. By manually selecting points which lie
on same model planes we created a VRML model,
which consists solely of planes. Figure 8 (g)–(i) de-
picts 3 novel views of the VRML model.

In a second experiment we reconstructed a teapot. In
order to achieve this, the teapot was posed on a box (see
Fig. 9(a)–(c)). With the aid of the box both methods,
with finite and infinite reference plane, can be applied.
The four corner points of the box, which are marked
with circles, specify the finite reference plane. The mu-
tual orthogonal edges of the box were used to determine
K and R, i.e. the plane at infinity. For a better visualiza-
tion, only those model points were reconstructed which
lie on the contour in the top, side or front view of the
model. Figure 9 shows the reconstruction of 99 model
points, which were determined with the finite (d)–(f)
and infinite (g)–(i) reference plane approach. The re-
constructed model points include the corner points of
the box and a cuboid, which was placed beside the
teapot. The Euclidean coordinates of the cuboid were
used to rectify the projective reconstruction, which we
obtained with the finite reference plane approach. Let
us consider the metric reconstruction which was de-
rived with the infinite reference plane approach. The
average error between selected image points and back-
projected model points was 0.65 pixel, whereas the size
of the image is 1600×1200 pixel. The respective max-
imum error was 5.2 pixel. The ratio between the fifth
last singular value (360.36) and the fourth last singular
value (4.65) was 77.5. For the approach with a finite
reference plane, the ratio between the fifth last sin-
gular value (0.0545) and the fourth last singular value
(0.0014) was 38.9. Let us compare both reconstructions
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Figure 8. Three original views of the tape holder (a)–(c). The top (d), side (e) and front (f ) view of the reconstruction, where the dots represent
the reconstructed model points and the dashed lines display the contour and the symmetry axis of the model. Three novel views of the tape
holder (g)–(i).

of the teapot, which has the approximate dimen-
sions of 14.5 cm (x-direction), 19.7 cm (y-direction)
and 15.9 cm (z-direction). The average difference is
0.76 cm and the maximal difference is 1.31 cm.

6.3. Real Data—Infinite Reference Plane

In a first experiment of a large scale environment we re-
constructed three buildings of the campus of the Royal
Institute of Technology in Stockholm/Sweden. 26 im-
ages of size 1600×1200 pixel were taken with a hand-
held camera (Olympus 3030) (see Fig. 10(a) and (b)).
The internal camera parameters remained fix while the
pictures were taken. In order to establish a correspon-
dence between the three buildings, we utilized addi-

tionally a postcard of the campus (see Fig. 10(c)). Nat-
urally, we had no calibration information, e.g. the focal
length, of the postcard available. For this application
the plane at infinity was used as reference plane. There-
fore, we manually selected mutual orthogonal edges in
each image, which were used to determine K and R
for each view. The camera’s calibration was improved
by assuming fixed internal camera parameters. In case
of the postcard, one of the vanishing points is close
to infinity (horizontal lines). However, the focal length
can still be determined for this degenerate configura-
tion with the additional assumption that the principal
point is close to the middle of the image. Furthermore,
the correspondences of 114 model points were man-
ually achieved. On the basis of this the campus was
reconstructed in one single SVD. Figure 11 shows the
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Figure 9. Three original views of the teapot (a)–(c). The top, side and front views of the reconstruction with a finite (d)–(f ) and infinite (g)–(i)
reference plane.

            

(a)

            

(b)

            

(c)

Figure 10. Two original views (a) and (b) and a postcard (c) of the campus. The corresponding camera positions are labeled in the top view
(Fig. 11).
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Figure 11. Top view of the reconstruction of the campus with 114 model points (dots) and 27 cameras (arrows). A map of the campus is
superimposed. The labeled cameras correspond to images in the respective figures.

top view of the reconstruction, whereas the dots rep-
resent reconstructed points, arrows depict cameras and
the grey structure represents the superimposed map of
the campus. The labeled cameras correspond to images
in the respective figures. We stress that no further con-
straints, e.g. orthogonality, were imposed, which would
presumably improve the reconstruction. As in the pre-
vious experiment, we obtain a VRML model by man-
ually selecting model points which lie on same model
planes. By projecting image texture onto the planes we
acquire the final VRML model of the campus. Figure 12
shows 6 novel views of the VRML model.

Let us consider the results. The fourth and the fifth
last singular values of the SVD were 12.55 and 143.5
respectively, which corresponds to a ratio of 11.44. The
average error between selected image points and back-
projected model points was 0.83 pixel. The respective
maximum error was 35.2 pixel, which is 1.8% of the
image diagonal. The accurate match between the top
view of the reconstruction and the true map of the cam-
pus (see Fig. 11) demonstrates the high quality of the
reconstruction.

The visibility matrix in Fig. 13 shows the 114 points
partly visible in 27 images. We see that the matrix is
only sparsely filled, i.e. 10.4% of the entries are set. The
first 24 images can be divided into three groups of 8
images, whereas each group represents images of a cer-
tain building. Therefore, most of the model points are
visible exclusively in one group. Those model points

27
 v

ie
w

s

114 points

Figure 13. The visibility matrix of the campus with 27 images and
114 model points. If the j th point is visible in the i th view, the
corresponding element V (i, j) is set (a black square).

which are visible in more than one group, have to be
visible in images which display more than one building,
e.g. Fig. 10(c).

In a second experiment we reconstructed the out-
side and inside (courtyard) of the City Hall in Stock-
holm/Sweden. 35 images of size 1600 × 1200 pixel
were taken, whereas the internal camera parameters
remained fix (see Fig. 14). As in the previous exper-
iment, the plane at infinity was used as the reference
plane. Since some parts of the building can be seen
from both the outside and inside, e.g. the tower (see
Fig. 14(a)–(c)), a correspondence between the outside
and inside can be established. With the knowledge of
the correspondences of 129 model points, the building
was reconstructed in one single SVD. 6 novel views of
the textured VRML model of the building are displayed
in Fig. 15. Since part of the roof can not be seen from a
ground plane position, the roof was not reconstructed.
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Figure 12. Six novel views of the campus. The corresponding camera positions are labeled in the top view (Fig. 11).

Figure 15. Six novel views of the City Hall. The corresponding camera positions are labeled in the top view (Fig. 16).
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Figure 14. Three original views of the City Hall. The corresponding camera positions are labeled in the top view (Fig. 16).

Figure 16. Top view of the reconstruction of the City Hall with 129 model points (dots) and 35 cameras (arrows). A map of the City Hall is
superimposed. The labeled cameras correspond to images in the respective figures.

The top view of the reconstruction with a superimposed
map of the City Hall is shown in Fig. 16. As in the pre-
vious example, no further constraints were imposed in
order to improve the reconstruction.

The ratio between the fifth last singular value (57.24)
and the fourth last singular value (12.75) was 4.49. The
average error between selected image points and back-
projected model points was 0.81 pixel. The respective
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Figure 17. The visibility matrix of the City Hall with 35 images
and 129 model points. If the j th point is visible in the i th view, the
corresponding element V (i, j) is set (a black square).

maximum error was 97.31 pixel, which is 4.9% of the
image diagonal. Let us consider the quality of the re-
construction (see Fig. 16). It stands out that the build-
ing was not designed as a perfect rectangular build-
ing. However, this fact does not considerably affect the
good reconstruction. The fact that the detected vanish-
ing points are not perfectly mutually orthogonal influ-
ences the camera calibration as well as the estimation
of the rotation matrix R. Since the accuracy of R di-
rectly affects the camera’s position, we would expect
a higher “positioning error” for cameras with less ac-
curate R. This reasoning would explain the deviation
between the reconstruction and the true map at the top,
left corner of the building.

The visibility matrix in Fig. 17 depicts the 129 model
points partly visible in the 35 images. As in the previ-
ous experiment, the matrix is only sparsely filled, i.e.
9.7% of the entries are set. The upper half of the matrix
comprises images of the outside of the building. Most
of these correspondences between points and images
are close to the diagonal of the matrix. This reflects
the fact that model points appear and disappear in the
sight of view while the camera moves around the out-
side of the building. The lower half of the matrix which
represents images of the inside of the building seems
less structured. This is due to the fact that the strat-
egy of taking pictures is more complex in this case.
The strategy was to maximize both the baseline of the
cameras and of the model points (see Fig. 16). The re-
maining correspondences which do not belong to one
of the regions discussed above represent model points
which are visible from the outside and the inside of the
building, e.g. part of the tower (see Fig. 14(a)–(c)).

7. Summary and Conclusions

We have demonstrated theoretically and experimen-
tally that points and camera centers in a multi view situ-
ation can be simultaneously, projectively reconstructed

by computing the null-space of a matrix built from
image coordinates in an arbitrary number of views.
The only specific requirement is to have four copla-
nar points (or a reference plane) visible in all views.
This results in a substantial simplification relative to
previous algorithms for multi view reconstruction and
calibration that e.g. rely on systematic procedures for
exploiting two or three views at a time (Fitzgibbon and
Zisserman, 1998). Contrary to factorization algorithms
for affine reconstruction (Tomasi and Kanade, 1992) or
projective reconstruction (Sturm and Triggs, 1996), we
do not need to have all points visible in all views. This
gives a very flexible algorithm for the reconstruction
of e.g. large scale scenes such as architectural environ-
ments where the reference plane can be chosen as the
plane at infinity using vanishing points as the reference
points.

Most of the planar parallax approaches utilized a
reference plane to either reconstruct points in two
views (Kumar et al., 1994; Irani and Anandan, 1996;
Criminisi et al., 1998) or multiple views (Irani et al.,
1998) or to recover the camera’s motion (Hartley et al.,
2001). In contrast to this, the approach by Triggs (2000)
and our method reconstruct structure and motion si-
multaneously. Both methods utilize the assumption of
having four coplanar points (or a reference plane) to for-
malize the projective reconstruction problem in terms
of purely translating calibrated cameras. In contrast to
our approach, Triggs method needs all points to be
visible in all views. This is a major restriction for prac-
tical applicability. However, this assumption makes it
possible to determine points and cameras from a rank-
1 factorization of a matrix containing all image points
and projective depths. Furthermore, these projective
depths have to be determined in a pre-processing step
which implies that multi-image tensors, e.g. fundamen-
tal matrices, have to be additionally known. The main
advantage of Triggs method is that all points, which
includes points on and close to the reference plane,
are used in the factorization step. In case of a finite
reference plane those points, which are on or close to
the reference plane, have to be reconstructed separately
with our approach. This is suboptimal, however, it has
been shown in experiments on synthetic and real data
that this problem is not critical. The size of the ma-
trix, which contains all image data, is in case of full
visibility (n points and m views) 3mn × 3(m + n) for
our method and 3m × n for Triggs method. Since both
methods apply a SVD on this matrix, our method is
eventually slower. Furthermore, we have seen that the
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price we have to pay in order to obtain a closed-form
solution for all points and cameras is that an algebraic
error function is minimized. However, we have demon-
strated experimentally that despite this suboptimal cost
function the performance of our algorithm is nearly op-
timal, i.e. very close to the theoretical minimum.

Experimental results on real data indicate that the
use of arbitrary number of cameras leads to numer-
ically robust reconstructions which can be expected
since large mutual baselines are exploited. We consider
this as a major practical advantage over existing algo-
rithms. The reconstructions can potentially be further
improved by applying the non-linear, iterative bundle
adjustment method (Triggs et al., 1999).

The linearity and specific symmetry relation be-
tween points and camera centers implies that any anal-
ysis of critical configurations, numerical stability etc.
is greatly simplified. The questions of critical configu-
rations was discussed under the assumption of having
four points on a reference plane. We have proved that if
all points are visible in all views, i.e. no missing data,
all configuration (apart from trivial ones) where points
and camera centers are non-coplanar are non-critical.
If not all points are visible in all views, i.e. missing
data, a method to construct non-critical configurations
was proposed.

Notes

1. This issue will be reconsidered in the next section.
2. This can be seen by the mapping (0, 1)T → (1, 0)T and (1, 1)T →

(1, 1)T in the projective space P1.
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