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Abstract

This paper presents a linear multi view reconstruction al-
gorithm for translating cameras with fixed internal param-
eters. The main advantages of this method are a) points
and camera centers are computed simultaneously from one
linear system containing all image data b) the allowance of
arbitrary missing data. We show that the key to linearize the
SFM problem is the infinite homography which comprises of
the cameras’ calibration and rotation. This insight unifies
reconstruction methods for calibrated cameras, e.g. Olien-
sis [9], and uncalibrated cameras, e.g. Rother-Carlsson
[10]. A further contribution of this paper is the summary
and comparison of different approaches to determine the
infinite homography.

1 Introduction

Structure from Motion (SFM) is a long studied and funda-
mental problem in Computer Vision as it can be seen from
the number of publications [12, 14, 11, 3, 6, 9, 8, 13, 5, 10]
and books [4, 2] devoted to the topic. Ideally an SFM-
algorithm should exploit all available image data in one step
in order to reconstruct points and cameras simultaneously.
For the case of affine cameras a factorization algorithm has
been presented [12] which handles all image data uniformly.
However, all points have to be visible in all views, i.e. no
missing data. The projective counterpart [11] additionally
requires known epipolar geometry in order to determine
projective depths.
In [10] a linear algorithm for multi view reconstruction has
been presented which recovers points and cameras from the
null-space of an image data matrix. It relies on a reference
plane visible in all views. However, in contrast to factor-
ization ([12, 11]) missing data can be handled. Compared
to other reference plane methods, e.g. [13, 5], these ad-
vantages makes this approach potentially more powerful.
The key idea in [10] is to determine the infinite homogra-
phy from the reference plane. This paper we will show that
there are more multi-view configurations with different con-
straints on the cameras and the scene for which the infinite
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homography can be determined. This includes the novel
case of translating cameras with fixed internal parameters.
Applying the infinite homography to linearize the SFM-
problem has also been exploited by Oliensis, e.g. [9, 8].
It is known (see [4]) that corresponding image points of
purely rotating cameras define the infinite homography:
H = K 0 R K�1, where K;K 0 is the calibration matrix
of the first and second camera and R the rotation between
them. The basic assumption in Oliensis work is a small
movement of the camera. This means thatH can be approx-
imately determined and used as initialization for the recon-
struction algorithm ([9]). Furthermore, if the calibration is
known, i.e. K and K’, the rotation can be determined ([8]).

2 Structure, Motion and Infinite Homography

General perspective projection of a 3D point Pi onto the 2D
image point pij can be described in homogeneous coordi-
nates as:

pij � Hj ( I j � �Qj) Pi � Hj ( �Pi � �Qj) (1)

whereHj ( I j � �Qj) represents the 3�4 projection matrix
of camera j. Non-homogeneous coordinates are denoted
with a bar, e.g. �Qj , and homogeneous coordinates without
a bar, e.g. pij . The symbol “�” means equality up to scale.
Let us consider the homographyHj in more detail. A point
P = (X;Y; Z; 0)T , which lies on the plane at infinity �1,
is mapped by eqn. (1) on the image plane �j as:

pij � Hj (X;Y; Z)
T : (2)

Therefore, Hj can be considered as the infinite homogra-
phy1 between the plane at infinity �1 and the image plane
�j . Form eqn. (1) we see that if Hj is known, we are
left with a linear and symmetric relationship between non-
homogeneous points and camera centers:

p�ij � H�1

j pij � �Pi � �Qj : (3)

This suggests the following approach for structure and mo-
tion recovery:

1. Determine the infinite homographiesHj

2. Reconstruct points and camera centers.

Section 3 will discuss different ways to determine Hj with
different constraints on the cameras or the scene.

1Note, the infinite homography is slightly differently defined in [4, 2].



If Hj is known, each scene point �Pi visible in view j pro-
vides three linear projection relation which can be obtained
from eqn. (3) by eliminating the unknown scale (see [10]).
All linear projection can be put into a set of linear equations
(SLE) which has for n points and m views the form:

L h = 0 with (4)

h = ( �X1; �Y1; �Z1; : : : ; �Xn; �Yn; �Zn; �A1; �B1; �C1; : : : ;
�An; �Bm; �Cm; )

T ;

with �Pi = ( �Xi; �Yi; �Zi)
T and �Qj = ( �Aj ; �Bj ; �Cj)

T . The
nullspace of L, which can be obtained by Singular Value
Decomposition, provides the solution for all points and
camera centers. Since points on the plane at infinity �1 in-
crease the dimensionality of the null-space of L (see [10]),
these points have to be excluded from the SLE and recon-
structed separately with eqn. (2). Let us summarize the
main advantages of this reconstruction method:

� One linear system containing all image data

� Missing data can be handled

� Points and cameras are determined simultaneously.

3 Determine the Infinite Homographies

The key to linearize the problem of structure form motion
is the infinite homography. It can be derived with knowl-
edge about the scene, the cameras or the cameras’ motion.
Various cases are summarized and compared in this section,
including the case of purely translating cameras.

3.1 Constant or Known Rotation and Calibration

Eqn. 1 can be written as well as:

pij � Kj Rj ( I j � �Qj) T T�1 Pi: (5)

We see that the infinite homographyHj depends on the cal-
ibration Kj and rotation Rj of camera j, i.e. Hj = Kj Rj :
The 4�4matrix T represents the free choice of a coordinate
system, which has in case of a projective reconstruction 15
degrees of freedom. Let us choose a special T :

TA =

�
A 0

0
T 1

�
with 0 = (0; 0; 0)T : (6)

This special TA does not transform the plane at infinity
�1 = (0; 0; 0; 1)T since T�TA �1 = �1. Therefore, de-
pending on the choice of A the final reconstruction is either
Euclidean or affine. For this special TA eqn (6) may be
written as:

pij � Kj Rj A ( I j � �Qj) T
�1

A Pi: (7)

For calibrated cameras with known rotation, i.e. Kj and
Rj are known, we may choose Hj = Kj Rj and A = I .
Since TA is the identity matrix the resulting reconstruction
is Euclidean. In case of calibrated, translating cameras, i.e.

Kj known and Rj constant, we may choose Hj = Kj

and A = R�1. The reconstruction is Euclidean since TA
represents a similarity transformation in P3. Finally, for
translating cameras with fixed internal camera parameters,
i.e. Kj and Rj constant, we may choose Hj = I and
A = (K R)�1. The reconstruction is affine since TA
represents an affine transformation in P3. If the camera
calibration is approximately known, Hj should be set as
Hj = K. The fact that purely translating cameras produce
affine structure has already been shown by [14].

3.2 Unknown Rotation and Calibration

Methods for computing camera internal calibrationKj , also
known as auto- (or self-) calibration techniques, may be di-
vided into two classes: an initial projective reconstruction
is known or unknown. Since multi view reconstruction is
our task, only methods of the latter case can be utilized
here. These methods exploit known metric properties of
the scene, e.g. angles. In [7] a dominant metric property of
man-made environments, e.g. architectural scenes, is used:
orthogonal directions. It has been shown [1, 7] that a cam-
era with known aspect ratio and skew can be calibrated from
three vanishing points of orthogonal directions in the scene.
If Kj is determined by an arbitrary auto-calibration tech-
nique, we are left with the unknown rotation Rj . Rj can
be considered as the rotation between image 1 and j, if
A = R1 in eqn. 7. Let us assume that a vanishing point
v is obtained in image 1 and j, i.e. v1 and vj . If Kj

is known, each vanishing point represents a direction in
the Euclidean camera coordinate frame2: d1 = �K�1

1
v1

and dj = �K�1

j vj . The directions are related by Rj :
dj=jjdj jj = Rj d1=jjd1jj. Therefore, two such correspond-
ing directions are sufficient to determine uniquely the three
degrees of freedom of Rj .
In summary, the derivation ofKj and Rj from three orthog-
onal vanishing points as presented in [10] might be the most
useful approach in practice.

3.3 Reference Plane

It has been shown in [10] that Hj can be derived from a
reference plane visible in all views. It is assumed that four
coplanar reference points are visible in all views. The key
idea is to choose canonical coordinates for these four points
in the scene: P1 = (1; 0; 0; 0)T ; P2 = (0; 1; 0; 0)T ; P3 =
(0; 0; 1; 0)T ; P4 = (1; 1; 1; 0)T and in each image j:
pj1 = (1; 0; 0)T ; pj2 = (0; 1; 0)T ; pj3 = (0; 0; 1)T ; pj4 =
(1; 1; 1)T . We see that the reference plane defines the plane
at infinity in this particularly chosen projective space. As a
consequence, scene points on this particular plane have to
be detected and reconstructed separately. The infinite ho-
mography is defined as the identity matrix (see eqn. (2)),

2Note, the sign of a direction has to be known as well



Constraints Reconst.

1 Kj known or auto-calibrated; Euclidean
Rj known or constant

2 Kj known or auto-calibrated; Euclidean
Rj unknown, 2 van.points with direction

3 Kj ; Rj constant affine
4 Plane visible in all views projective

(special case: 4 coplanar points)

Table 1. Different cases to determine Hj

i.e. Hj = I . Alternatively, Hj can be derived from the
inter-image homographies induced by a reference plane.

3.4 Comparison

The different cases previously discussed are summarized in
table 1. The table additionally includes the type of the final
reconstruction, which can obviously be upgraded to affine
or Euclidean with the given (or further) constraints (see [4]).
However, these different cases have two fundamental differ-
ences:
� For the first three cases the plane at infinity is at its

true position. This has the advantage that the linear
system contains all finite scene points, i.e. not exclud-
ing points on a certain reference plane as in case 4.

� The quality of Hj is a major factor for the quality of
the final reconstruction (sec. 4). Those cases which
compute Hj from a few reference points, i.e. cases 2
and 4, are potentially inferior to the other cases.

4 Experiments

In the experiments the case of translating cameras with fixed
internal parameters is investigated. However, the conclu-
sion drawn from the results apply to all cases (1-3 in table
1), where Kj and Rj are derived explicitly.

4.1 Synthetic Data

In order to demonstrate the performance of the algorithm, it
was applied to a wide range of different camera and scene
settings. Fig. 1 depicts two of them: lateral movement –
LAT (a) and translational movement towards the scene –
TOW (b). For the TOW-configuration, points on the base-
line, i.e. the line of the camera centers, were removed. The
internal calibration matrix was set to diag(1000,1000,1).
In a first experiment the influence of noise on the image
data was investigated. Fig. 1 (c) shows the results of our
algorithm (Our) and the projective factorization algorithm
(Fac.) of Sturm-Triggs [11] for the two synthetic configura-
tions. In order to obtain average performance, the following
two steps were conducted 20 times for each noise level: a)
randomly determine 50 points b) add Gaussian noise (stan-
dard deviation �) on the reprojected 3D points. The com-
puted reconstructions were evaluated in terms of the Root-
Mean-Square (RMS) error between reprojected 3D points

and 2D image data (potentially corrupted by noise). The
main observation is, that the performance of our algorithm
and factorization is close to identical. Furthermore, the per-
formance of both algorithms is close to the theoretical min-
imum, i.e. Cramera-Rao lower bound. This means that
this method is close to optimal with the assumption that the
cameras’ calibration and rotation is detected correctly.
The second experiment investigated the case if the assump-
tion of pure translating cameras is not satisfied (see fig. 1
(d)). In contrast to the previous experiment Gaussian noise
(in degree) was added on the rotation of each camera in an
arbitrary direction. The result is as expected: the recon-
struction is perfect without noise and is less accurate with
increasing noise. This shows that the quality of Hj has a
major influence on the final reconstruction. However, for
small errors in the rotation, e.g. � = 1o, the resulting RMS
error is of the same magnitude as the error for practical
noise level on the image data, e.g. � = 2 pixel,

4.2 Real Data

Fig. 2 (a) depicts 3 out of 16 images of a real sequence,
where a camera moved translational along a corridor. 46
scene points where selected manually in the sequence. Fig.
2 (b) shows the visibility matrix, where a dot indicates that
a certain scene point is visible in a certain view. We see that
a point is visible in average in 4 successive frames. The top
view of the final reconstruction, which had an RMS error
of 6:6, is depicted in fig. 2 (c). The first part of the recon-
struction from 0 � 9m is qualitatively correct: the camera
(crosses) moved on a fairly straight line along the corridor
(dots), which is about 15m long and 2mwide. However, the
second part from 9� 15m is qualitatively worse: the width
of the corridor and the distances between successive camera
positions is shrinking. An explanation for this might be that
the images of scene points at the end of the corridor are es-
sentially closer to the focus of expansion which negatively
influences both the reconstruction of points and cameras.

5 Summary and Conclusions

We have presented a linear multi view reconstruction algo-
rithm for translating cameras with fixed internal parameters.
Points and camera centers are computed simultaneously as
the nullspace of one linear system constructed from all the
image data. In contrast to factorization-based algorithms,
e.g. [11, 12], we allow arbitrary missing data,
It has been shown that the key to linearize the SFM prob-
lem is the infinite homography which comprises of the cam-
eras’ calibration and rotation. Several, alternative ways to
computing the infinite homography have been presented in-
cluding the case of a reference plane visible in all views
(see [10]). However, a major disadvantage of the reference
plane case is that the reference plane is chosen as the plane
at infinity. As a consequence, scene points on this particular
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Figure 1. Top view of two synthetic configurations: lateral movement – LAT (a) and translational
movement towards the scene – TOW (b). The performance of our algorithm (Our) and factorization
(Fac.) in terms of noise on the image data (c) and noise on the camera rotation (d).
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Figure 2. Three images of the corridor sequence (a), the visibility matrix (b) and a top view of the
reconstruction (c), where dots represent 3D points and crosses the camera positions.

plane have to be detected and reconstructed separately. This
is not necessary in our case, where the infinite homography
is derived from the restriction on the cameras’ motion, i.e.
purely translating cameras.
We demonstrated experimentally that the performance of
our method is as good as projective factorization [11] and
close to the theoretical minimum. Furthermore, we have
seen that the quality of the determined infinite homogra-
phies directly influence the quality of the reconstruction.
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