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Abstract

Reconstructing a 3-dimensional scene from a set of 2-dimensional images is a fundamental
problem in computer vision. A system capable of performing this task can be used in many
applications in robotics, architecture, archaeology, biometrics, human computer interaction
and the movie and entertainment industry.

Most existing reconstruction approaches exploit one source of information to tackle
the problem. This is the motion of the camera, the 2D images are taken from different
viewpoints. We exploit an additional information source, the reference plane, which makes
it possible to reconstruct difficult scenes where other methods fail. A real scene plane may
serve as the reference plane. Furthermore, there are many alternative techniques to obtain
virtual reference planes. For instance, orthogonal directions in the scene provide a virtual
reference plane, the plane at infinity, or images taken with a parallel projection camera. A
collection of known and novel reference plane scenarios is presented in this thesis.

The main contribution of the thesis is a novel multi-view reconstruction approach us-
ing a reference plane. The technique is applicable to three different feature types, points,
lines and planes. The novelty of our approach is that all cameras and all features (off
the reference plane) are reconstructed simultaneously from a single linear system of im-
age measurements. It is based on the novel observation that cameras and features have
a linear relationship if a reference plane is known. In the absence of a reference plane,
this relationship is non-linear. Thus many previous methods must reconstruct features and
cameras sequentially. Another class of methods, popular in the literature, is factorization,
but, in contrast to our approach, this has the serious practical drawback that all features
are required to be visible in all views. Extensive experiments show that our approach is
superior to all previously suggested reference plane and non-reference plane methods for
difficult reference plane scenarios.

Furthermore, the thesis studies scenes which do not have a unique reconstruction, so-
called critical configurations. It is proven that in the presence of a reference plane the set
of critical configurations is small.

Finally, the thesis introduces a complete, automatic multi-view reconstruction system
based on the reference plane approach. The input data is a set of images and the output a
3D point reconstruction together with the corresponding cameras.
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Chapter 1

Introduction

This chapter gives a gentle introduction to the topic of 3-dimensional reconstruction. The
main and novel contributions of the thesis are highlighted. Furthermore, an outline of the
following chapters is given. The first section motivates our approach to 3-dimensional re-
construction from a human perspective. The reconstruction problem is then formulated
more mathematically. The difference between assuming a known or unknown reference
plane is described. This will reveal the novelty of our method. Finally, the main contribu-
tions, an overview of the thesis and a list of publications are presented.

1.1 Reconstruction from a Human Perspective

Various information sources for 3-dimensional reconstruction

Motion (of the observer or the scene)
Parallel and orthogonal lines

Shape and size of familiar objects
Stereo (binocular) vision

Shading of a surface
Position relative to the horizon

Shadows induced by a light source

Table 1.1. Different cues to derive 3-dimensional information from an image.

Vision is probably the most important sense for humans. It allows many potentially
complicated tasks to be performed with ease, such as walking along a corridor, picking up
an object or orientating oneself in a city. To perform these complex tasks successfully, 3-
dimensional knowledge about our environment is helpful or even necessary1. How do we

1For which tasks humans exploit 3-dimensional knowledge is an interesting and still open research question.
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2 Chapter 1. Introduction

(a) (b) (c)

(d) (e)

            

(f)

Figure 1.1. Six images of the city hall in Stockholm. The positions from where the images were
taken are depicted on the 2D map in fig. 1.2.

get this knowledge? An image of our environment provides many cues about the scene’s
depth. Table 1.1 lists some of these information sources (see Palmer (1999) for a complete
list). One of the goals of psychophysics is to understand how humans use these information
sources (Gibson, 1950; Palmer, 1999). One ultimate goal of computer vision is to imitate
the human, to build a computer that “sees”. Marr (1982) and his colleagues, e.g. Ullman
(1979), introduced this idea. To achieve this, the computer system has to automatically
derive information from various sources. The goal of this thesis is to create a virtual 3D
reconstruction of a scene from images of it. Most previous reconstruction systems exploit
merely one source of information. In this work we use two sources and show that this gives
a system which is superior to previous systems.

Let us explain this simple idea with an experiment. Fig 1.1 illustrates 6 pictures of the
tower of the city hall in Stockholm taken from different viewpoints. Your task is to draw a
top view (map) of this scene including the tower and the positions from where the pictures
were taken. Although this task is not simple, we are able to solve it approximately2. Fig.
1.2 shows the accurate result3. The bold 6 arrows represent the viewpoints with respect

2Probably this task is easier for me after working with these images for 3 1=2 years.
3The last chapter 9 discusses the fact that humans are better in performing this task approximately, qualita-

tively, than very accurately.
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(f)

(c)

(b)
(d)

(a)

(e)

Tower

Figure 1.2. Top view of the reconstruction of the city hall with 134 model points (dots) and 37
cameras (arrows). A map of the city hall is superimposed. The 6 bold arrows correspond to the
locations where the images in fig. 1.1 were taken.

37
 v

ie
w

s

134 points

Figure 1.3. The “visibility” matrix of the city hall scenario. A dot indicates that a certain 3D
point is visible in a certain view.

to a 2D map of the complete city hall. Which information sources in the images help us,
as humans, to solve this specific reconstruction task? The first information cue in table
1.1 is motion. By walking through an environment, we constantly change the viewpoint
with respect to a static object. This continuous image sequence can be used to infer the



4 Chapter 1. Introduction

object’s structure. The 6 images in fig 1.1 represent a very discrete motion. In general, 3D
information of a static object can be derived from two or more views taken from different
viewpoints. The second source of information, parallel and orthogonal lines, is a very
important cue in man-made environments. Parallel lines define a direction in the scene and
orthogonal lines give rise to a right angle in the 3D scene. Using this information, we are
able to infer a rough shape of an object, like the tower is a rectangular box. Furthermore,
orthogonal scene directions may be used to orientate yourself in the environment. For
example, the orientation of viewpoint 1.1 (a) in the top view (fig. 1.2) is defined by the
orthogonal directions of the tower. However, the distance (position) between the viewpoint
and the tower is undefined given the directions only. The third source of information, shape
and size of familiar objects, is a very useful cue as well. From image 1.1(f) we suspect that
the two sides of the tower have equal length. However, it is not possible to prove this
geometrically on the basis of one image. Image 1.1(d) gives another example. It depicts a
lamp post and the tower which have approximately the same size in the image. We know
that a lamp post is between 4 and 8 meters tall. A tower is usually taller than 8 meters4.
Therefore, the city hall has to be several meters farther away than the lamp post. This
experiment could almost continue indefinitely with the reader in the role of the detective
searching for clues about the 3D structure, however, let us now summarize the discussion.
A wide variety of information sources exist to infer 3D information (depth) from one or
more images. We may conjecture that humans exploit combinations of information sources
to solve the reconstruction task. The choice of sources might also depend on the observed
environment. Furthermore, humans may exploit the different cues cumulatively, i.e. not
in isolation. For example, the orientation with respect to a 3D scene may be derived from
parallel and orthogonal lines. Given the orientation, the position in the scene may be
determined from the motion cue. However, on the basis of the camera’s motion only, the
task of deriving both the orientation and the position might be significantly more difficult.
As we will see, this is the basic idea of our computer system for 3D reconstruction.

Before continuing the experiment, it should be noted that the information sources may
also be used to fool humans resulting in the hallucination of incorrect 3D scenes. To derive
information about the scene humans make implicit assumptions. If these assumptions are
violated, we infer wrong information. This is a well known trick in architecture. Ragnar
Östberg, the architect of the city hall in Stockholm, used this trick in the early 1900’s when
designing the tower of the city hall. The cross-section of the tower is larger at the bottom
than at the top. Since humans suspect that the tower is a rectangular box, this makes them
hallucinate a taller tower5. Artists like MC Escher perfected this skill (see fig. 1.4).

Consider how a computer system may solve this specific reconstruction task. The 6
images in fig. 1.1 and a further 31 images of the city hall are fed into our reconstruction
system. Moreover, the position of 134 projected 3D points are identified in the 37 images
(matching task). Fig. 1.3 shows the “visibility” matrix, where a dot indicates that a certain
3D point is visible in a certain view. As expected, most of the 3D points are only visible
in a limited subset of views. In this case 90% of the image data is missing. The output

4Probably people in the computer vision community remember the size from the banquet at ECCV 94.
5We would like to thank Jan-Olof Eklundh for pointing this out to us.
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Figure 1.4. Ascending and descending, a famous picture by MC Escher.

                                    

Figure 1.5. Three novel views of the virtual model of the city hall.



6 Chapter 1. Introduction

of the system is depicted in fig. 1.2. The 3D points are plotted as black dots and the
cameras corresponding to an image as an arrow. How did our system achieve this? It
exploits cumulatively two information sources, (a) parallel and orthogonal lines and (b) the
camera’s motion. Reconsider the information from parallel and orthogonal lines. Image
1.1(f) shows explicitly that man-made environments are often characterized by 3 mutually
orthogonal directions6. Parallel and orthogonal lines in the scene define these 3 directions.
If they are identified in an image, two properties about the corresponding camera may
be derived, its orientation and its internal parameters7, like the focal length. Abstractly,
common scene knowledge “available” in all views can be used to derive information about
all cameras. The remaining unknown information is the 3D positions of the 134 points
and the 37 cameras (viewpoints). To solve this problem, the second information source
(motion) is used. In summary, our reconstruction system uses two sources of information
cumulatively:

1. Compute the cameras’ orientation and internal parameters from parallel and
orthogonal lines.

2. Use this information to derive the 3D positions of the cameras and points from
the camera’s motion.

From the reconstruction of the 3D points, a textured virtual model may be extracted.
Fig. 1.5 shows novel views of the virtual model of the city hall.

The next section explains mathematically why this two-step method is significantly su-
perior to methods which use motion as the only information source. The main advantage
is that with some knowledge about all cameras (first step), the 3D positions of all cameras
and all points can be computed directly and simultaneously (second step). If motion is the
only information source, such a simple solution does not exist. The cameras and points
must be estimated sequentially. On the basis of a few, noisy image measurements these
approaches sequentially accumulate the reconstruction error and eventually fail. Exper-
iments will confirm that motion based systems cannot reconstruct the city hall from the
given image data with 90% of missing measurements (fig. 1.3).

An obvious question is, why does our system not rely on more information sources?
This is an interesting and open question for future research. However, one has to keep
in mind that inferred 3D information is not always correct, as demonstrated by Escher’s
drawing (fig. 1.4). The attentive reader might wonder how the second part of title of the
thesis “using a real or virtual reference plane” fits into the framework just discussed. The
above presentation is a simplified (Euclidean) version of our system. The next section
explains that the information source of parallel and orthogonal lines can be expressed
more generally (projective) as a real or virtual reference plane.

6The reader might think of a Cartesian coordinate system.
7This is defined mathematically in the next chapter.
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1.2 The Reconstruction Problem

This thesis addresses one of the most fundamental problems in computer vision, deter-
mining 3-dimensional information about a scene from 2-dimensional images of it. The
previous section motivated the importance of 3D information for a general computer vi-
sion system that “sees”, i.e. imitates the human vision. Potentially, a reconstruction system
can be part of any application where 3D-information is useful or necessary, some specific
applications being:

� An architect takes pictures of a city block. For the planning of a new building it is
important to have both an accurate reconstruction as well as a nice, virtual model of
the city block.

� A reconstruction system is useful for robots to navigate in an unknown environment
and to build iteratively a map.

� Insertion of synthetic objects into an existing video sequence is an important task in
movie making.

� A biometrics system can identify people from a 3D profile of the face.

� An estate agent provides a virtual tour of a building.

� In medicine, 3D information can be used to guide the doctor during an operation.

The reconstruction problem may be defined as follows: Given a set of images, deter-
mine the 3D scene and the viewpoints of the images. This problem can be formulated in a
simple way by the introduction of one formula. With this formula we can also compare the
general reconstruction problem with our specific (reference plane) reconstruction problem.
For simplicity, the scene consists of a set of 3D points called the structure. The projection
of a Cartesian 3D point �X to the image point x using a camera with Cartesian centre �Q and
matrix H may be formulated mathematically as8

x = H ( �X � �Q ) :

The matrix H is known as the infinite homography and will be considered later. The
unknown parameters in this equation are the point �X, and the camera, with centre �Q and
infinite homography H . As we saw in the previous section, in practice many 3D points
are observed by many cameras. Each point visible in a certain view gives one projection
equation. The reconstruction problem is to determine the unknown structure, 3D points,
and cameras solely from image measurements x. Therefore, this problem is called the
structure and camera recovery problem. In the literature, it is frequently referred to as
the structure and motion problem or the structure from motion problem. However, this
formulation is often interpreted to mean that the images are sorted, like from a continuously

8For simplicity, the unknown scale factor (depth) of a homogeneous image point is omitted. However, this
simplification does not affect the following conclusions.



8 Chapter 1. Introduction

moving video camera. Furthermore, it implies that the distance between successive camera
positions is small. This thesis considers a more general scenario, an unorganized collection
of images like a photo album.

In the computer vision community, the first algorithm to solve the reconstruction prob-
lem was presented more than twenty years ago by Longuet-Higgins (1981). Since that
time a vast number of approaches have been suggested. The most recent and excellent
books about this problem are by Hartley and Zisserman (2000) and Faugeras and Luong
(2001). So one might wonder what can be gained by yet another publication on the topic.
Intuitively, such a well defined problem should be solved by now. Consider, however, the
formula on the previous page. The unknown parameters, �X; H and �Q, are multiplied to-
gether. This means that the problem is non-linear. Unfortunately, there is no simple, direct
method which can compute the solution of a non-linear problem. However, if the infinite
homography H is known, the relationship between the unknown 3D point �X and camera
centre �Q is a subtraction. This gives an extremely simplified linear problem. The solution
can be computed with well known standard methods, like singular value decomposition.
Consequently, all 3D points and all camera centres can be reconstructed simultaneously
from a single linear system formed from image measurements only. This simple method is
the most important contribution of the thesis. The thesis also considers two other types of
features, 3D lines and 3D planes.

The remaining question is, how do we obtain the infinite homography H? The most
well known approach is to derive it from a real scene plane visible in the image. This
scene plane is called the real reference plane. An alternative technique was described
in the previous section. Since the infinite homography encodes the camera’s orientation
and internal parameters, it can also be derived from parallel and orthogonal lines in the
scene. In this case, the infinite homography represents a virtual reference plane. This
thesis presents many different methods to compute real or virtual reference planes.
To summarize, the reference plane approach divides the reconstruction task in two steps:

1. Determine a real or virtual reference plane.

2. Use the reference plane to compute simultaneously the 3D position of the cameras
and points from a single linear system.

The difference to the two-step approach in the previous section is that the specific informa-
tion source of parallel and orthogonal lines is replaced by the more general information
source of real or virtual reference planes. The idea of using a real or virtual reference
plane to divide the reconstruction task into two (or more) steps is not novel and has been
suggested in many previous works. In some systems a real scene plane is used (e.g. Irani
and Anandan, 1996), other methods derive a virtual reference plane by explicitly comput-
ing the camera’s internal parameters and orientation (e.g. Shum et al., 1998). However,
many systems apply the reference plane approach without mentioning it explicitly (e.g.
Van Gool et al., 1994). This thesis presents many known and novel techniques for deriving
a real or virtual reference plane. In contrast to all previous publications, we show that a
known reference plane transforms the difficult, non-linear reconstruction problem into a
simple, linear problem.
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1.3 Contributions

The main contribution of the thesis is a novel multi-view reconstruction approach for
points, lines and planes using a real or virtual reference plane. The approach is linear
and reconstructs all cameras and all 3D features (off the reference plane) simultaneously
from a single linear system of image measurements. It requires that 3D features are visible
only in a minimum number of views. For reference plane scenarios, this makes it poten-
tially superior to all previously presented reconstruction methods. We call it the Direct
Reference Plane (DRP) approach. It is based on the novel observation that the general
non-linear relationship of cameras and 3D features is linear if a reference plane is known.
This simple result was first presented for point features in (Rother and Carlsson, 2001).
Indeed, most, but not all, parts of the thesis and of the following contributions are limited
to point features.

The experiments performed in this thesis demonstrate that our method can reconstruct
difficult reference plane scenes where general (non reference plane) reconstruction meth-
ods fail. Furthermore, for some difficult scenarios our method is significantly superior
to all previously suggested reference plane methods. However, we also show that refer-
ence plane methods are inferior to general methods if the reference plane is detected very
inaccurately. The main drawback of our method is that 3D points on and off a finite ref-
erence plane have to be reconstructed separately. It is demonstrated experimentally that
our method is very stable for scenarios where the 3D points are not close to the reference
plane, for instance an infinite reference plane. An extended iterative version of our method
can also handle scenes with 3D points on or close to the reference plane.

A further contribution is the presentation of a collection of real and virtual reference
planes configurations. This includes previously known configurations like a real scene
plane and novel configurations like cameras with parallel projection or cameras with known
epipolar geometry. Consequently, the reference plane approach is applicable to general
scenarios where no real reference plane is visible.

Furthermore, we investigate critical reference plane configurations. These are configu-
rations of multiple cameras, multiple 3D points and a known reference plane which do not
have a unique projective reconstruction. The main and novel result is that all non-trivial
configurations where points and camera centres are non-coplanar are non-critical. This is
an important observation since the scenario of one dominant scene plane visible in multiple
views appears frequently in practice and is critical in the general case.

A final contribution is a completely automatic multi-view reconstruction system using
the reference plane approach. This includes novel methods for vanishing point detection
and robust multi-view point matching using a reference plane.

1.4 Thesis Outline

The reference plane approach divides the reconstruction task into two steps. First, deter-
mine a real or virtual reference plane. Second, use the reference plane to reconstruct the
3D features and cameras. The organization of the thesis reflects this partitioning. Chapter
5 investigates the first step. Alternative techniques to determine a real or virtual reference
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plane are explored. The second step is analyzed theoretically in chapter 3. The result of
this analysis is our direct reference plane method which is outlined chapter 6. This chapter
also examines the performance of our method. A brief description of the subsequent chap-
ters is as follows:

2. Basic Concepts of Geometry. This chapter reviews basic concepts of geometry which
are necessary for the understanding of the thesis. The important idea of the stratification
of 2D and 3D geometry is explained. Moreover, the camera as a Euclidean and projective
device is presented. The last section introduces the key concepts of plane+parallax, stabi-
lizing a reference plane, infinite homographies and real or virtual reference planes.

3. Projective Multi-View Geometry: General versus Reference Plane. This chapter
is from a theoretical point of view the most important. It compares general and reference
plane configurations of points, lines and planes visible in multiple views. The main ob-
servation is that the relationship between the 3D features and the cameras is linear if a
reference plane is known. For general configurations, the relationship is bi-linear. This
is the key observation for our novel reconstruction method which simultaneously recon-
structs all cameras and all features (off the reference plane) in a single linear system. We
call this approach the Direct Reference Plane (DRP) approach. Moreover, 3 alternative
categories of solving the reconstruction problem are reviewed, (a) camera constraints, (b)
structure constraints and (c) factorization. These categories are analyzed for all 3 feature
types and both general and reference plane configurations.

4. Structure and Camera Recovery – A Review and Comparison. Whereas the pre-
vious chapter presented theoretical ways of solving the reconstruction problem, this chap-
ter reviews and compares existing multi-view reconstruction systems which tackle all “real
world” problems. For reference plane configurations our method is compared to the camera
constraint method of Hartley et al. (2001) and the factorization method of Triggs (2000).
It is seen that all three methods have their strengths and weaknesses.

5. Determining a Real or Virtual Reference Plane. The investigation of alternative
techniques to determine a real or virtual reference plane is carried out in this chapter. This
analysis is important since it shows that the reference plane approach is applicable in many
scenarios where no real reference plane is visible. The collection of known and novel ref-
erence plane configurations is presented in table 5.1.

6. Structure and Camera Recovery using a Reference Plane. This chapter is from a
practical point of view the most important. First, practical algorithms for our novel direct
reference plane methods for points, lines and planes are outlined. Secondly, our methods
are compared with other approaches under various conditions using real and synthetic data.
The experimental study focuses on point features. The main observation is that for difficult,
reference plane scenarios our method performs successfully where general reconstruction
methods fail. Furthermore, we will demonstrate that our method performs very stably if
the 3D points are not close to the finite reference plane. For “flat scenes”, where many
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3D points are on or close to the finite reference plane, several reference plane methods
are compared. However, for this scenario we cannot recommend the best reconstruction
method.

7. Critical Reference Plane Configurations. In this chapter we search for configura-
tions of multiple cameras, multiple 3D points and a known reference plane which do not
have a unique projective reconstruction. This study is novel since to our knowledge crit-
ical configurations have only been examined for the general case. The main result is that
all non-trivial configurations where points and camera centres are non-coplanar are non-
critical. This is an important observation since scenes with one dominant plane appear
frequently in practice and are critical in the general case.

8. An Automatic Multi-View Reconstruction System. A complete automatic multi-view
reconstruction system shows the capability of the reference plane approach. Two novel
methods are part of this system, automatic vanishing point detection and robust multi-view
point matching using a reference plane.

9. Conclusions. Finally, the thesis is summarized and possible avenues of future work
are discussed.

1.5 Publications

Most of the thesis is based on the following publications:

� Carsten Rother and Stefan Carlsson, Linear Multi View Reconstruction and Camera
Recovery Using a Reference Plane, International Journal of Computer Vision (IJCV)
49(2/3):117-141, 2002.

� Carsten Rother, A New Approach to Vanishing Point Detection in Architectural En-
vironments, Image and Vision Computing (IVC) 20(9-10):647-656, 2002.

� Carsten Rother, Stefan Carlsson and Dennis Tell, Projective Factorization of Planes
and Cameras in Multiple Views, International Conference on Pattern Recognition
(ICPR), Quebec, Canada, pp. 737-740, 2002.

� Carsten Rother and Stefan Carlsson, Linear Multi View Reconstruction with Missing
Data, European Conference on Computer Vision, Copenhagen, Denmark, pp. II 309-
324, 2002.

� Carsten Rother and Stefan Carlsson, Linear Multi View Reconstruction and Camera
Recovery, International Conference on Computer Vision, Vancouver, Canada, pp.
42-51, 2001.

� Carsten Rother, A New Approach for Vanishing Point Detection in Architectural
Environments, British Machine Vision Conference (BMVC), Bristol, UK, pp. 382-
391, 2000.
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Chapter 2

Basic Concepts of Geometry

This chapter reviews basic concepts of geometry which are essential for understanding
the rest of the thesis. We begin the discussion with n-dimensional projective and affine
spaces (sec. 2.1). Since the world is 3-dimensional and its projection onto an image plane
is of dimensionality 2, spaces of these dimensionality are considered in more detail. In
particular, points, lines and planes in 2D and 3D are analyzed. Mappings between spaces
play an important role in geometry, for instance a camera maps the world (3D space) to the
image (2D space). These mappings represent a useful tool for classifying geometric spaces
into projective, affine, metric and Euclidean space. This leads to the important concept of
stratification of 2D and 3D geometry (sec. 2.2). Furthermore, the camera, a “mapping
device” between 3D and 2D, is analyzed in terms of its projective and Euclidean properties
(sec. 2.3). Finally, the geometry of a reference plane visible in 2 images is considered in
more detail (sec. 2.4).

Recently, two books focusing on geometry for computer vision have been published by
Hartley and Zisserman (2000) and Faugeras and Luong (2001). The style and notation of
this chapter is closely related to (Hartley and Zisserman, 2000). A further good reference
is the book of Faugeras (1993). General mathematical textbooks about projective, affine,
and Euclidean geometry are (Semple and Kneebone, 1952; Springer, 1964).

This chapter does not contain any novel aspects about geometry for computer vision.
Readers which are familiar with this topic might skip this chapter. However, we recom-
mend to read sec. 2.4 which introduces the basic concepts of using a reference plane.
Furthermore, the thesis does not present the subject of geometry for computer vision in the
“traditional way” as for instance Hartley and Zisserman (2000). We present the abstract
n-dimensional projective space before the “simpler” 2D and 3D Euclidean space. The rea-
son is to show that Euclidean geometry is a specialization, subgroup, of the more general
concept of projective geometry. Moreover, a thesis is not an introduction for readers which
are unfamiliar with this topic.

13
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Figure 2.1. The image of a railway line. Courtesy of (Faugeras and Luong, 2001).

2.1 Projective & Affine Spaces

Most people are familiar with the 2D and 3D Euclidean space. A point in 2D can be
expressed as a 2-vector (x; y) and in 3D as a 3-vector (x; y; z) with x; y; z 2 R. A line is
defined by two non-identical points and a plane in 3D by three non-identical points.

Fig. 2.1 shows an image of a railway line. It appears that the two rails intersect in 3D
“at infinity”. Such a 3D point at infinity cannot be described in the 3D Euclidean space,
since the triplet (x; y; z) can only represent points which are not at infinity. If we consider
the 2D image as the projection of the 3D Euclidean world, a 3D world point, e.g. the tip
of a tree, is projected onto a 2D point in the image. Surprisingly, the projection of this
3D point “at infinity” is a “normal” 2D point in the image as well, i.e. not at infinity on
the image plane. Such a 2D point is referred to as the vanishing point of the railway line.
This shows that in order to describe mathematically the 3D world and its projection onto
the 2D image plane, it would be very useful to have a concept which unifies points at in-
finity and points not at infinity. However, how can points at infinity be expressed in the
3D Euclidean space? We would have to introduce another Euclidean space which com-
prised of all points at infinity. How many points at infinity are there? Each pair of parallel
lines (railway line) in 3D induces a point at infinity, which encodes the direction of the
lines. The space of all possible directions is 2-dimensional. This leads us to the idea of the
3-dimensional projective space: The 3-dimensional projective space is the 3D Euclidean
space plus a 2-dimensional Euclidean subspace. More abstractly, the n-dimensional pro-
jective space is an extension of the n-dimensional Euclidean space (more precisely affine
space) by a (n-1)-dimensional Euclidean (affine) subspace. In the following section this
concept is introduced more formally. The basic concepts of affine and projective space are
essential for the rest of the thesis. We will begin the discussion with the n-dimensional
projective and affine space. However, for the purpose of structure and camera recovery
in the 3D world, the 2- and 3-dimensional spaces are of main interest. Furthermore, the
three different geometric elements: points, lines and planes are introduced in the projective
space P2 and P3.
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2.1.1 Spaces of n Dimension

A point in the n-dimensional projective space Pn is a (n + 1)-dimensional vector x =
(x1; : : : ; xn+1)

T with at least one xi 6= 0. Two points x1 and x2 in Pn are equal if a
non-zero scalar � exists such that x1 = �x2. We will write “projective equality” in a more
compact way as: x1 � x2. As an example, in the projective plane P2 the points (1; 0; 0)T

and (2; 0; 0)T are equal, that is (1; 0; 0)T � (2; 0; 0)T .
A point is a one-dimensional subspace of the projective spacePn. A (n�1)-dimensio-

nal subspace ofPn is called a hyperplane. A hyperplane� can be defined as the incidence
relation with a point x:

�T x = 0 : (2.1)

This equation says that the point x lies on the hyperplane � and vice versa the hyperplane
� intersects the point x. Eqn. 2.1 can be written in two different ways: �T x = 0 and
xT � = 0 . This implies that points and hyperplanes are symmetric in projective space.
This symmetry leads to a the basic Duality Principle.

Proposition 1 (Duality Principle) To any theorem in projective space Pn which includes
points and hyperplanes there exists a dual theorem, which may be derived by interchanging
the role of points and hyperplanes in the original theorem.

Examples of this principle in the projective space P2 are given later.
Let us introduce the affine space and its relation to the projective space. A point in the

n-dimensional affine space An is an n-dimensional vector x = (x1; : : : ; xn)
T . These two

different representations of a point in projective and affine space are defined as follows.
Writing a point (or hyperplane) with an (n+ 1)-dimensional vector means that a point (or
hyperplane) is expressed in homogeneous coordinates. The representation of a point as an
n-dimensional vector means that a point is expressed in non-homogeneous coordinates.
Throughout the thesis we use the following notation: Points in non-homogeneous coordi-
nates are denoted with a bar, �x, and points in homogeneous coordinates without a bar, x.
The affine space may be embedded in the projective space by the following mapping:

An ! Pn : (x1; : : : ; xn)
T ! (x1; : : : ; xn; 1)

T : (2.2)

This mapping is a one-to-one mapping, i.e. injective. However, a certain subspace of Pn

is not part ofAn, therefore the mapping is not surjective. This subspace contains points at
“infinity”. All points of the form (x1; : : : ; xn; 0) are in this subspace. Therefore, a point
(x1; : : : ; xn; 0) is denoted a point at infinity. Furthermore, points at infinity are classified
as infinite points and points not at infinity as finite points. The non-homogeneous vector
(x1; : : : ; xn)

T of a point at infinity can be regarded as the direction of this point in an affine
space. From eqn. 2.1 we see that the subspace of all points at infinity is a hyperplane of the
form (0; : : : ; 0; 1)T . This hyperplane is denoted the plane at infinity �1. Therefore, the
affine space An is the projective space Pn without the plane at infinity �1. Note, the em-
bedding of the affine in the projective space was chosen in a “canonical” way. Other ways
of embedding are possible, for instance choosing the plane at infinity as (1; 0; : : : ; 0)T .

We are now ready to define the key concept of parallelism.
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Figure 2.2. Two squares in the projective space P2 with parallel lines l1; l01 and l2; l02

Definition 1 Two hyperplanes are parallel if and only if they intersect on the plane at
infinity.

The reader might wonder how the concept of parallelism can be introduced without using
(metric) properties such as the distance between points or lines. Fig. 2.2 (a) displays a
square on the projective plane P2. The two pairs of parallel lines l1; l01 and l2; l02, which are
the hyperplanes in P2, intersect at infinity. The two corresponding points at infinity x1 and
x2 represent the directions of the line pairs. Furthermore, these two points define the line
at infinity. This looks perfectly all right – from a Euclidean viewpoint. However, fig. 2.2
(b) shows another square on the projective plane P2. The two pairs of lines l1; l01 and l2; l02
intersect at two points x1; x2. These two points define the line at infinity l1. In both cases
the projective and affine space is uniquely defined. We can state, parallel lines are “really”
parallel, i.e. the distance between the lines is constant (which is a metric concept), if the
line at infinity is at its “correct” position. The affine space defined in fig. 2.2 (b) is not
the correct affine space, although it is an affine space. Later we will see that specifying a
certain hyperplane as the plane at infinity can be very powerful, even if it is not the correct
plane at infinity. The task of detecting the correct plane at infinity is revisited in the next
section in the context of transformation groups.

Let us now introduce a basis for a projective and affine space. A set of (n + 2) points
is called a basis of Pn if and only if any subset of (n + 1) points is linearly independent.
The canonical or standard basis of the projective space Pn is defined as:

(e1 � � � en+2) =

0
B@

1 1
. . .

...
1 1

1
CA : (2.3)
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A basis of the affine space An is a set of (n + 1) linear independent points. The standard
basis of An is defined as

(e1 � � � en+1) =

0
B@

0 1
...

. . .
0 1

1
CA : (2.4)

A hyperplane in Pn is defined as the join of n points. Dual to this, a point in Pn

is defined as the intersection of n hyperplanes. In both cases we assume that points and
hyperplanes are in general pose, e.g. n points form a basis of the hyperplane. These join
and intersection relationships can be derived compactly from the homogeneous coordinates
of points and hyperplanes respectively. Before doing this the following two lemmas are
needed.

Lemma 1 The (n + 1) points x1; : : : xn+1 in projective space Pn are on a hyperplane if
and only if the determinant jx1 � � � xn+1j is zero.

Proof The condition that a point xi is on a certain hyperplane � is xTi � = 0. Stack all
these linear condition into a system

0
B@

xT1
...

xTn+1

1
CA� = 0 :

To obtain a unique solution for the hyperplane �, the nullspace of the linear system has
to be 1-dimensional. This means that the determinant jx1 � � � xn+1j has to be zero. This
concludes both directions of the lemma.

2

Using the duality principle 1, the dual lemma to lemma 1 is the following.

Lemma 2 The (n + 1) hyperplanes �1; : : : �n+1 in projective space Pn intersect at one
point if and only if the determinant j�1 � � ��n+1j is zero.

Proof This proof is dual to the proof of lemma 1 by interchanging the role of points and
hyperplanes.

2

Let us define the generalized cross(vector-) product � for the projective space Pn

which maps n homogeneous vectors x1; : : : xn onto a single vector x. This crossproduct
can be defined informally as

�(x1; : : : ; xn) =

���������

e1 � � � en
xT1
...

xTn

���������
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and more formally

�(x1; : : : ; xn) = e1

�������
x1;2 � � � x1;n+1

...
xn;2 � � � xn;n+1

�������
� e2

�������
x1;1 x1;3 � � � x1;n+1

...
xn;1 xn;3 � � � xn;n+1

�������

+ � � � (�1)n+1 en

�������
x1;1 � � � x1;n

...
xn;1 � � � xn;n

�������
; (2.5)

where e1; : : : en represent the first n vectors of the standard projective basis. In the projec-
tive plane P 2 it is �(x1; x2) = x1 � x2.

Using this crossproduct, the join of n points, which define a hyperplane, can be ex-
pressed as follows.

Theorem 1 The hyperplane � defined by the n points x1; : : : xn is � = �(x1; : : : xn).
Proof Choose n+1 points x1; : : : xn+1 which lie on a hyperplane�. According to lemma
1 jx1 � � � xn+1j = 0. Using eqn. 2.5 this is equivalent to xTn+1 � (x1; : : : xn)
= 0. Since the point xn+1 can be any point on �, the hyperplane � is defined by the the
points x1; : : : xn as � = �(x1; : : : xn).

2

The dual theorem to theorem 1 is the following.

Theorem 2 The point x defined by the intersection of n hyperplanes �1; : : : �n is x =
�(�1; : : : �n).
Proof This proof is dual to the proof of theorem 1 by interchanging the role of points
and hyperplanes.

2

Let us consider the transformation between projective spaces of the same dimension in
more detail.

Definition 2 An invertible mapping from Pn ! Pn is called a projectivity, projective
transformation or collineation if and only if collinear points are mapped onto collinear
points.

Such a mapping can be algebraically expressed as a non-singular matrix H 2 Rn+1 � n+1

as: x ! x0 � H x, where x; x0 are points in Pn. Therefore,H defines a linear mapping of
points in homogeneous coordinates. All possible projective transformations form a group
called the general linear group of projective transformations. In the next section this
group and important subgroups are discussed in more detailed. Since H is non-singular,
it is bijective and we obtain x from x0 as: x � H�1 x0. Note, since points are only
defined up to scale, projectivities are also only unique up to scale. This can be seen from:
x0 � �H x � H� x � H x.

According to the duality principle 1 there is a theorem for the transformation of hyper-
planes.
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Proposition 2 If points in Pn transform with x0 � Hx then hyperplanes transform as
�0 � H�T�.

Proof All points x which lie on a specific hyperplane � are defined by �T x = 0. This
is equivalent to �T H�1 H x = 0 and (H�T�)T x0 = 0. Therefore, the hyperplane � is
mapped to �0 by �0 � H�T�.

2

The following theorem is a classical theorem of projective geometry and proved in
(Semple and Kneebone, 1952).

Theorem 3 Any projective basis in Pn can be transformed by a unique projective trans-
formation into the standard basis.

This transformation T can be written explicitly for a projective basis x1; : : : xn+2 as

T = (�1x1 � � ��n+1xn+1)where (�1; : : : �n+1) = (x1 � � � xn+1)�1 xn+2 : (2.6)

Furthermore, any two bases in Pn define a unique projective transformation.
We will see later, that singular transformation matrices may occur.

Theorem 4 If the mapping H: x 2 Pn ! x0 2 Pn is singular than all points x0 lie on a
hyperplane in Pn.

Proof W.l.o.g the standard projective basis is mapped withH onto the points x1; : : : xn+2.
According to eqn. 2.6, the mappingH is of the form: H = (�1x1 � � ��n+1xn+1). Since H
is singular the determinant j�1x1 � � ��n+1xn+1j is zero. Using lemma 1 we can conclude
that the points x1 : : : xn+1 lie on a hyperplane in Pn. The point xn+2 can be expressed as:
xn+2 = �1x1 + � � � + �n+1xn+1. Therefore, the determinant j�1x1 � � ��n+1xn+1j can be
written as well as j�2x2 � � ��n+1xn+1 xn+2j. This means, according to lemma 1, that the
point xn+2 lies in the same hyperplane as x1 : : : xn+1.

2

A singular matrix H is not injective, i.e. two different points x1 6� x2 can be mapped to
the same point Hx1 � Hx2. This means that such a mapping is no longer a collineation.
In the projective plane P2, the standard basis (non-collinear points) are mapped onto a line
(collinear points).

A mapping from Pn ! Pm where n > m is called a projection. As in the case of
projectivities this mapping can be expressed algebraically by a matrixH of size (m+1)�
(n + 1) as: x ! x0 � H x where x 2 Pn and x0 2 Pm. An example of a projection is a
“projective” camera which maps P3 ! P2. It will be the subject of discussion in a later
chapter. Similar to theorem 4 for projectivities, we can state the following theorem.

Theorem 5 If the mapping H: x 2 Pn ! x0 2 Pm (m > n) is of rank less than m+ 1,
then all points x0 lie on a hyperplane in Pm.

Proof W.l.o.g the standard projective basis is mapped with H onto the points
x1; : : : xn+2 2 Pm. According to eqn. 2.6, the mapping H is of the form:
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H = (�1x1 � � ��n+1xn+1). Since the rank of H is less than m+ 1 all
�
m+1
n+1

�
subdetermi-

nants have to be zero. According to lemma 1 this means that the points x1 : : : xn+1 lie on a
hyperplane in Pm. As in the proof of theorem 4 we may conclude that the point xn+2 lies
on this hyperplane as well.

2

2.1.2 The Projective Spaces P2 and P3

Fist consider the projective plane P2. A point x and a line l are define as homogeneous
3-vectors: x = (x; y; w)T , l = (l1; l2; l3)

T . A line is a hyperplane of P2 and therefore
dual to a point. A point x lies on the line l if lT x = 0 or xT l = 0. Obviously, all
theorems developed in the previous section for n-dimensional projective spaces hold for
the 2-dimensional projective plane. As an example, two points at infinity x1 = (1; 0; 0)T

and x2 = (0; 1; 0)T define the line at infinity l1. According to theorem 1 it is:

l1 = x1 � x2 =

����� 0 0
1 0

���� ;�
���� 1 0
0 0

���� ;
���� 1 0
0 1

����
�T

=

0
@ 0

0
1

1
A : (2.7)

In the projective space P3 points and planes are dual. They can be written in homoge-
neous coordinates as X = (X;Y; Z;W )T and � = (�1;�2;�3;�4)

T . Throughout the
thesis, geometric elements of the projective space P2 are denoted by lower case letters,
e.g. a point x, and elements of the projective space P3 by upper case letters, e.g. a point
X.

The representation of a line in P3 is more complex. A line in P3 has 4 degrees of
freedom. The reader might think of 2 arbitrary 2D points located onto 2 distinct planes,
which are not identical. A minimal representation of a 3D line is, however, not compact
enough for later use. The simplest representation of a line L requires two distinct non-
homogeneous points �X1; �X2:

L : �X1 + �(�X2 � �X1) ; � 2 R : (2.8)

Each value of � gives a point �X on the line. However, this representation is only useful in
an affine space A3. Therefore, several different line representations have been suggested
in P3 (Hartley and Zisserman, 2000). Let us define a 3D line as a 4 � 4 matrix L of two
homogeneous points X1;X2:

L = X1XT
2 � X2XT

1 : (2.9)

This is called the Plücker matrix of a line. Eqn. 2.9 shows that a scaling of X1 and X2

results in a scaling of L, i.e. �X1 and �X2 have a Plücker matrix ��L. Therefore, L
is a homogeneous representation of a line. The Plücker matrix L is skew symmetric, i.e.
Lij = �Lji, with zeros on its diagonal, i.e. Lii = 0. Therefore, L is described by 6
numbers. Since a line has only 4 degrees of freedom, the Plücker matrix has to satisfy
one extra constraint, which is that its determinant has to be zero. These 6 elements form
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a homogeneous vector L called the Plücker line coordinates. Explicitly, the Plücker line
coordinates are

L = (L12; L13; L14; L23; L42; L34)
T : (2.10)

A dual Plücker matrix representationL� is based on 2 distinct planes�1;�2 and defined
in a similar way to 2.9:

L� = �1�
T
2 � �2�

T
1 : (2.11)

The two different Plücker matrix representations L;L� are related by the substitution:

(L12; L13; L14; L23; L42; L34) $ (L�34; L
�

42; L
�

23; L
�

14; L
�

13; L
�

12) : (2.12)

On the basis of these representations, joint and incident relationships of a point X, a
line L and a plane � can be written compactly as

� � L�X and X � L� : (2.13)

Consider the transformation of a 3D point X: X0 � HX. In this case the Plücker matrix L
transforms to L0 � HLHT and the dual Plücker matrix L�

0

to L�
0 � H�TLH�1.

2.2 Stratification of 2D and 3D Geometry

The previous section introduced two geometric spaces, the affine and projective space. A
different way to define a geometric space is by relating it to a group of transformations of
this space. Such a transformation group can be characterized by certain invariants. Histori-
cally, Klein (1893) declared in the “Erlanger Programme” that geometry should be consid-
ered as the study of invariance of transformation groups. An invariant of a transformation
group is a property of geometric elements (or a geometric element itself) which remains
unchanged under any transformation of this group. The most general transformation group
is the general linear group, which is composed of all projectivities of Pn (see definition
2). It is also denoted the projective group. We have already seen one invariant property of
this group: collineation of points. In general there are three other transformation groups:
Affine group, similarity group and Euclidean group. Each group defines a space: Affine
space (by the affine group), metric space (by the similarity group) and Euclidean space
(by the Euclidean group). An informal description of these groups is: The Euclidean group
allows rigid transformation, the similarity group allows scaling additionally, and the affine
group preserves parallelism. These three groups, together with the projective group, form
a hierarchy of subgroups:

Euclidean � similarity � affine � projective :

This means that invariants of a certain group are necessarily invariants of a subgroup. This
hierarchy of transformation groups reflects a hierarchy of the corresponding spaces which
is called the stratification of geometry.

Why is this concept of stratified geometry important for the problem of 3D reconstruc-
tion? The reconstruction task is to create a Euclidean (or at least metric) reconstruction
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of the 3D Euclidean world from 2D (Euclidean) images of the world. In general, nothing
prevents us from using a more general concept than Euclidean geometry, e.g. projective
geometry, to achieve this goal. The central idea is to treat the the camera as a projective
device, a projection from P2 to P3, not as an Euclidean device, i.e. consider explic-
itly camera properties like the focal length. This allows 3D reconstruction from multiple
images in the projective space P3 without any knowledge about the camera’s calibration1.
This reconstruction task is known as uncalibrated structure and camera recovery. Since
humans perceive the 3D world as being Euclidean, the reconstruction has to be upgraded
from the projective space to at least the metric space. This process is equivalent to the
task of calibrating the camera. The traditionally approach to reconstruction is the reverse
of this order. order: First calibrate the camera and then recover structure and cameras.
The traditional way is called calibrated structure and camera recovery. However, there
is a significant advantage of uncalibrated reconstruction in contrast to calibrated recon-
struction. The traditional way of calibration is to use a single view of a calibration object
with known properties, usually a calibration grid. However, in the uncalibrated case in-
formation derived from multiple views can be used. It has been demonstrated (Faugeras
et al., 1992) that a projective reconstruction from multiple views of a camera with constant
internal parameters is sufficient to calibrate the camera and upgrade the reconstruction to
the metric space. This approach to camera calibration is called auto- or self-calibration.
It has been an active field of research and the interested reader is referred to (Pollefeys
et al., 1998; Triggs, 1997a; Faugeras et al., 1992) and for an overview (Faugeras and Lu-
ong, 2001; Hartley and Zisserman, 2000; Pollefeys, 1999).

The task of camera calibration does not play an essential role in this thesis. Therefore,
only the basic concepts of stratified geometry are presented here. Note, for some specific
tasks, e.g. new view synthesis (generating new views from a reconstruction), it is not
necessary to upgrade the projective reconstruction to the metric space. The concept of
stratified geometry was introduced into the field of computer vision by Faugeras (1995).

In the following, we consider the transformation groups for 2- and 3-dimensional
spaces. A summary of the four transformation groups together with their transformation
matrices and main invariant properties are given in table 2.1. Let us begin with the most
general group, the projective group.

2.2.1 Projective Group

The projective transformation in P2 is also known as a homography. It can be represented
by a matrix H of size 3� 3 and maps a point x onto x0 by:

x0 � Hx or

0
@ x0

y0

w0

1
A �

0
@ h11 h12 h13

h21 h22 h23
h31 h32 h33

1
A
0
@ x

y
w

1
A : (2.14)

It plays an essential role in this thesis. In the 3D world three different types of planes can
be identified: a “real” plane in the scene, the plane at infinity and the image plane. In

1The formal definition of calibration will be given later.
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Figure 2.3. Different types of homographies between a scene plane and an image (a), two images
via a scene plane (b), and two images of a rotating camera (c).

fig. 2.3 three different types of homographies are shown. The homography in (a) relates a
scene plane to an image plane, the homography in (b) relates two images via a scene plane
and the homography in (c) relates two image planes of a rotating camera, i.e. via the plane
at infinity. The algebraic derivation of these homographies is discussed in a later section.
A homography has 8 degrees of freedom (dof), since it has 9 elements and the overall scale
is undetermined.

The projective transformation in P3 is represented by a matrix of size 4� 4. It has 15
degrees of freedom. Probably the most interesting invariant of the projective group is the
cross-ratio. Let dis(x1; x2) define the distance between two points x1 and x2. The cross
ratio is defined as the ratio of ratios of four collinear points x1; x2; x3 and x4:

dis(x1; x2)
dis(x1; x4)

:
dis(x3; x2)
dis(x3; x4)

: (2.15)

More invariants are summarized in table 2.1.

2.2.2 Affine Group

The affine space differs from the projective space by not including the plane at infinity. The
affine group is the set of all projective transformations which leaves the plane at infinity in
its canonical position, i.e. (0; 0; 0; 1)T in P3. The affine transformation T : x ! x0 for the
affine space An can be written in homogeneous coordinates x; x0 and non-homogeneous
coordinates �x; �x0 as:

x0 �
�

A t
0T 1

�
x and �x0 = A �x + t ; (2.16)

where A is a general, non-singular matrix of size n� n, t a general vector of size n and 0
the null vector of size n. It is easy to verify that this T does not move the plane at infinity
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�1, since T�T�1 � �1. Note, T can change the position of points on �1but does
not move them out of this plane. Therefore, parallelism is an invariant property of affine
transformations. Further invariants are summarized in table 2.1. The number of degrees of
freedom of T is 12 forA3 and 6 forA2.

The result of an uncalibrated reconstruction process is a projective reconstruction in
P3. In order to upgrade it to an affine reconstruction, the correct plane at infinity has to
be detected. This can be done by exploiting the information of affine (or metric, Euclidean)
invariants in the scene. For example, if we know that a pair of 3D reconstructed lines in P3

is parallel in reality, their intersection point has to lie on the correct plane at infinity. Three
such points would uniquely identify the correct plane at infinity. If these 3 points define a
finite plane �, the transformation

T : x0 �
�

I 0
�T

�
x ; (2.17)

where I is the identity matrix, moves � to its canonical position, �1, since T�T� � �1.

2.2.3 Similarity Group

The group of similarity transformations allows the rotation, transformation and scaling of
geometric elements in the metric space M. A transformation of this group can be written
in homogeneous coordinates x; x0 and non-homogeneous coordinates �x; �x0 as:

x0 �
�

�R t
0T 1

�
x and �x0 = �R �x + t ; (2.18)

where R is a rotation matrix of size 2 � 2 in M2 or 3 � 3 in M3. For a rotation matrix
j R j = 1 and RT = R�1. Therefore, R RT = RTR = I . The metric space M2 has 4
degrees of freedom andM3 7 degrees of freedom.

For the purpose of visualizing a 3D reconstruction, the metric space is sufficient. Hu-
mans are naturally familiar with the similarity group, since the 3D world is Euclidean and
the additional scaling of an object is equivalent to seeing an object from different distances.
For instance, the picture of a real building from a far distance and a toyhouse from a close
distance have the same size on the human retina.

In order to upgrade an affine reconstruction to a metric reconstruction, metric (or Eu-
clidean) invariants have to be known or determined. Invariant property which may be
identified for some scenes are angles and ratio of distances. As invariant elements, the
circular points inM2 and the absolute conic in M3 can be identified. These are important
entities for the task of auto- or self-calibration, which are, however, not introduced here
(see Pollefeys, 1999).
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Group Dof 2D/3D Matrix 2D(3D) Invariants 2D/3D

Cross-ratio, collinearity,Projective 8 = 15 H3�3(4�4) concurrency, intersection

Parallelism, centre of mass,Affine 6 = 12

�
A t
0T 1

�
line/plane at infinity, ratio of areas

Angles, ratio of lengths,Metric 4 = 7

�
�R t
0T 1

�
circular points/absolute conic

Euclidean 3 = 6

�
R t
0T 1

�
Length, area

Table 2.1. The hierarchy of transformation groups for 2D and 3D, where A is a general, non-
singular matrix of size 2 � 2 or 3 � 3, t is a general vector of size 2 or 3, 0 is the null-vector of
size 2 or 3 and R is a 2D or 3D rotation matrix with j R j = 1.

2.2.4 Euclidean Group

The Euclidean group differs from the similarity group by fixing the scale factor �. A
transformation of this group is

x0 �
�

R t
0T 1

�
x or �x0 = R �x + t : (2.19)

In order to determine the unknown scale factor, i.e. to upgrade the metric reconstruction to
Euclidean, an absolute distance in the scene has to be known.

Table 2.1 summarizes the four transformation groups together with their transformation
matrices, degrees of freedom and main invariants.

2.3 Camera Geometry

The following treatment of the geometry of cameras in the Euclidean and projective space
is closely related to the book of Hartley and Zisserman (2000). However, only some im-
portant properties are discussed. The interesting reader is referred to (Hartley and Zisser-
man, 2000; Faugeras and Luong, 2001; Faugeras, 1993) for a more exhaustive study of this
subject.
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Figure 2.4. The pinhole camera is an idealization of a real world camera.

2.3.1 Cameras in Euclidean Space

A common simplification of a real world camera is to consider it as a central projection
device of the Euclidean space E3 onto the image plane E2. Advantageously such a projec-
tion is a linear mapping of homogeneous coordinates as seen in the previous chapter. Such
a simplified camera is called a pinhole camera. If this simplification is not sufficient, as
in the case of wide-angle cameras, non-linear mappings, e.g. radial distortion, have to be
incorporated in the camera model (e.g. Devernay and Faugeras, 1995).

Consider a special pinhole camera with its centre of projection at the origin of the
Euclidean space (see fig. 2.4). The mapping of a scene point X = (X;Y; Z; 1)T onto a
point x = (x; y; 1)T on the image plane can be written as

x = f
X

Z
and y = f

Y

Z
(2.20)

or in homogeneous coordinates as a linear mapping

0
@ x

y
1

1
A �

0
@ f 0 0

0 f 0
0 0 1

1
A (I3�3 j 03�1)

0
BB@

X
Y
Z
1

1
CCA : (2.21)

The centre of projection is denoted the camera centre �Q and the scalar f , which is
the distance between the camera centre and the image plane, is called the focal length of
the camera. The line perpendicular to the image plane and passing through the camera
centre represents the optical axis of the camera. The intersection of the optical axis with
the image plane is the principle point x0 of the camera. Furthermore, the plane parallel to
the image plane through the camera centre is called the principle plane. In fig. 2.4, the
optical axis coincide with the z-axis, the principle point is �x0 = (0; 0)T and the principle
plane is the plane z = 0.

A unit of the Euclidean image plane can be considered as a pixel. This is especially
useful for CCD cameras. A more detailed inspection of a CCD camera reveals that a pixel
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Figure 2.5. A pinhole camera which is rotated and translated with respect to a world coordinate
system.

is not necessarily square. We introduce the aspect ratio r and the skew s of a pixel as
additional parameters of the camera model.

Such a camera with unknown focal length, principle point, aspect ratio and skew can
be formulated as a linear mapping of Euclidean spaces:

0
@ x

y
1

1
A �

0
@ f s x0

0 r f y0
0 0 1

1
A (I3�3 j 03�1)

0
BB@

X
Y
Z
1

1
CCA (2.22)

or compactly

x � K (I3�3 j 03�1)X : (2.23)

The matrix K is called the calibration matrix and its five, non-zero parameters the in-
trinsic camera parameters. The process of determining the calibration matrix is called
camera calibration and its result is a calibrated camera. If the matrix K is unknown the
camera is denoted an uncalibrated camera.

For most real world cameras, four out of five intrinsic camera parameters are pre-
dictable. The aspect ratio is close to one, the skew close to zero and the principle point
close to the centre of the image. In contrast to this, the focal length might vary largely
depending on the aperture angle of the lens. Additionally, if the focal length is defined in
terms of number of pixels, its size depends on the resolution of the CCD camera. Further-
more, for zoom-cameras the focal length might change considerably during the process of
capturing a scene.

As previously mentioned, camera calibration is not an essential topic in the thesis. The
only calibration procedure explained in more detail in sec 5.1.2 is based on three vanishing
points of orthogonal directions (Caprile and Torre, 1990). In this case a special “square
pixel” camera is used, which has aspect ratio one and skew zero.
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So far, we have assumed that the coordinate system of the camera (ccs) is aligned with
the world coordinate system (wcs) in a special way (see fig. 2.4). In general, the camera
coordinate system is rotated and translated with respect to the world coordinate system
(see fig. 2.5). A point in the world coordinate system Xwcs is transformed to a point in the
camera coordinate Xccs as

�Xccs = R ( �Xwcs � �Q ) or Xccs �
�

R �R�Q
0 1

�
Xwcs ; (2.24)

where �Q is the camera’s centre and R the camera’s rotation. The rotation matrix R can be
written as R = (xw j yw j zw) where xw; yw; zw is the x�; y�; z�axis of the world coor-
dinate system. The 3 parameters of R and the 3 parameters of �Q are called the extrinsic
camera parameters. Combining eqn. 2.23 and 2.24, the linear mapping of a camera is
defined as

x � K R (I j � �Q ) X � P X : (2.25)

The 3� 4 matrix P is called the camera projection matrix. Since P is only unique up to
scale, it has 11 degrees of freedom. This matches with the complete number of unknown
camera parameters which is 11 (5 intrinsic and 6 extrinsic).

It has been shown (e.g. Hartley and Zisserman, 2000) that all intrinsic and extrinsic
camera parameters can be identified uniquely from a given camera matrix P . First, the
camera centre �Q is identified. Secondly, a QR-decomposition of the matrix KR with the
assumption that f > 0 provides the remaining camera parameters.

2.3.2 Cameras in Projective Space

The stratified approach to structure and camera recovery interprets the camera as a “pro-
jective device” rather than a Euclidean device. A pinhole camera can then be expressed
most generally as a projection from the projective space P3 to P2. Such a camera is called
a projective camera. The 3�4 projection matrix P of a projective camera may be written
as

P � H3�3 (I j 0 ) H4�4 ; (2.26)

where H3�3 and H4�4 represent arbitrary projective transformations. The free choice
of the projective basis on the 2D image plane and in the 3D world is described by the
projective transformationsH3�3 and H4�4 respectively.

Eqn. 2.26 forces P to have rank 3. If the rank of P is less than 3, all points in P3

are mapped onto a line in the image. This is a conclusion of theorem 5. Let us write the
camera matrix as P = (H j t). Since P must have rank 3, the matrixH has either rank 2 or
3. We will see that these two types of cameras, where H is either non-singular or singular,
have different properties.

Let us investigate the camera centre of a general projective camera P . It has been
shown (e.g. Hartley and Zisserman, 2000), that the camera centre Q is defined by P Q =
0. If H is non-singular we may write P � H (I j H�1 t). This means that the camera
centre is Q = (�H�1 t; 1)T since P Q = H (�Q � �Q) = 0. Therefore, we may write
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Figure 2.6. Projection of the plane at infinity onto a finite (a) and infinite (b) camera. An infinite
camera means that the centre of projection Q lies on the plane at infinity.

P � H (I j � �Q) and the mapping of a scene point X 2 P3 onto an image point x 2 P2

is
x � H ( I j � �Q ) X : (2.27)

Eqn. 2.27 corresponds to eqn. 2.25 in the Euclidean case where H = KR. This is correct
since the matrix KR is always non-singular. Furthermore, the camera centre was defined
as a finite point in the Euclidean space. If H is singular, it can be shown (e.g. Hartley
and Zisserman, 2000) that QT = (d; 0)T where H d = 0. Note, the right nullspace of H
is one-dimensional since H is singular. This means that the camera centre is at infinity.
Therefore, a camera with a non-singular matrix H is called a finite camera and a camera
with a singular matrix H an infinite camera.

Consider the matrix H of eqn. 2.27 in more detail. A point X = (X;Y; Z; 0)T , lying
on the plane at infinity �1, is mapped by eqn. 2.27 onto the image plane as

x � H

0
@ X

Y
Z

1
A : (2.28)

Therefore, H can be considered as the homography between the plane at infinity and the
image plane. In the following, H is denoted the infinite homography2 H1. Therefore, a

2Note, this definition of the infinite homography is slightly different to (Hartley and Zisserman, 2000; Faugeras
and Luong, 2001).
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finite camera Pi with a non-singular H1

i may be written as

Pi � H1

i ( I j � �Qi ) : (2.29)

If H1 is singular the plane at infinity is mapped, according to theorem 5, onto a line in the
image. This corresponds to the fact that in this case the camera centre is at infinity, i.e. lies
on the plane at infinity. These two situation are illustrated in fig. 2.6.

Finally, we will consider a special infinite camera, which has attracted considerable
interest for the task of structure and camera recovery. A camera of the form

P =

0
@ p11 p12 p13 p14

p21 p22 p23 p24
0 0 0 1

1
A (2.30)

is called an affine camera. The main property of an affine camera is that parallel lines in
the world are projected to parallel lines in the image. This can be verified by projecting
a point at infinity (X;Y; Z; 0)T to (x; y; 0)T . Furthermore, the centre of projection is
obviously at infinity since the last row of the infinite homography is 0T . It can be shown
that the last row of a general camera matrix represents the principle plane (Hartley and
Zisserman, 2000). This means that the principle plane of an affine camera is the plane
at infinity, i.e. (0; 0; 0; 1)T . For a non-homogeneous 3D point �X and an image point
�x, the projection equation 2.25 of an affine camera may be written in non-homogeneous
coordinates as

�x =M �X+ t ; (2.31)

where M is the top left 2� 3 submatrix of P and t = (p14; p24)
T .

2.4 Reference Planes & Plane + Parallax

We come now to a simple concept which is essential for the understanding of the thesis.
Assume that a real scene plane is “known”. This scene plane is called the reference plane.
How can this known reference plane be used for 3D reconstruction? The previous section
defined the relationship between the plane at infinity and the camera matrix. Furthermore,
in the projective space P3 any (reference) plane may represent the plane at infinity (sec.
2.1). Consequently, a known finite (or infinite) reference plane may give information about
the cameras. This idea and further consequences are now explained in more detail.

Consider a real, finite plane (the reference plane) visible in two views (see fig. 2.7). A
point x on the reference plane (with an arbitrary basis) is projected onto the image plane i as
xi. This projection can be described by the projective transformation xi � Hi x. Similarly,
the point x is mapped onto the image plane j as xj � Hj x. Since the set of all projective
transformations form a group, the mapping between image i and j is a homography Hij ,
which may be derived from Hi and Hj as

xj � Hj H
�1
i xi � Hij xi : (2.32)

Since the basis of the reference plane may be chosen freely, we choose it so that Hi is the
identity matrix. Consequently, the homographyHij is Hj .



2.4. Reference Planes & Plane + Parallax 31

xi; xhi

Image i
Image j

x

xhj

xj
parallax

Hij

Hi

Reference plane

Hj

Xh

Figure 2.7. Explanation for the concept of plane + parallax

Consider the head of the man as a 3D point Xh which does not lie on the reference
plane. The head is projected into image i and j as xhi and xhj respectively. We chose Xh

such that its projection in the image i is xi, i.e. xi � xhi . However, the two projections in
image j, xj and xhj , do not coincide. The vector between xj and xhj is called the parallax
vector of the point Xh with respect to the reference plane. Obviously this vector vanishes
if Xh is on the plane. A set of 3D points together with a plane is in the literature referred
to plane + parallax (Carlsson and Eklundh, 1990; Kumar et al., 1994; Sawhney, 1994).

Reconsider this scenario from an “image-based” point of view. It would be convenient
to superimpose the two images so that all points on the reference plane are identical and all
points off the reference plane move and hence induce a parallax vector. This idea is known
as stabilizing a reference plane. It can be achieved by specifying the reference plane
as the plane at infinity and transforming the cameras into calibrated translating cameras.
Although this sounds complicated, it is mathematically fairly simple. Specifying the refer-
ence plane as the plane at infinity means that the homographiesHi and Hj are represented
by the infinite homographies H1

i and H1

j . With the assumption of finite cameras Pi and
Pj , a 3D point X is projected to the image points xi and xj as (see eqn. 2.29)

xi � H1

i (I j � �Qi) X and xj � H1

j (I j � �Qj) X : (2.33)

Let us warp the images i and j with the inverse homographies H1�1
i and H1�1

j respec-
tively

x0i � H1�1
i xi � (I j � �Qi) X and x0j � H1�1

j xj � (I j � �Qj) X : (2.34)

The two new cameras matrices P 0i and P 0j , of the warped images x0i and x0j , are therefore
P 0i = (I j � �Qi) and P 0j = (I j � �Qj). From a Euclidean point of view, these two cam-
eras have the identity matrix as calibration matrix and no relative rotation, i.e. calibrated
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translating cameras. Fig. 2.8 depicts the two superimposed images after stabilizing the
reference plane. The feet of the man are in both images at the same position (stabilized).
The head of the man is at different positions in the stabilized images. However, why do
points at infinity, points on the reference plane, not move, are stabilized? Mathematically,
a point at infinity, e.g. a foot of the man, is X = (X;Y; Z; 0)T . The projection of X is
independent of the camera centre �Q and identical in both images (see eqn. 2.34)

x0i �
0
@ X

Y
Z

1
A and x0j �

0
@ X

Y
Z

1
A : (2.35)

Reference plane

Figure 2.8. Superimposed images after stabilizing the reference plane.

In the above example we assumed that the reference plane is a real, finite plane in the
scene. In order to stabilize the reference plane, this finite plane has been specified as the
plane at infinity. In the following we will consider the case where the reference plane is
already the correct plane at infinity. Since such a reference plane does not represent a real,
finite scene plane, it is called a virtual reference plane. In chapter 5, different techniques
of deriving a virtual reference plane are reviewed. Consider the projection of a point X into
a Euclidean camera Pi with calibration matrix Ki, rotation Ri and camera centre �Qi (see
eqn. 2.25)

xi � Ki Ri ( I j � �Qi) X : (2.36)

The difference to projection equation 2.33 is that the infinite homography H1

i represents
now the camera’s calibration and rotation matrix, H1

i = Ki Ri. Since the infinite ho-
mography maps the plane at infinity to the image plane, the correct plane at infinity may
be considered as a (virtual) reference plane. As in the real reference plane case, the image
may be stabilized by warping, i.e. x0i � H1�1

i xi. The result is a calibrated translating
camera with Ki = I and Ri = I . Such a scenario is shown in fig. 2.9 (a). The car rep-
resents a calibrated translating camera. Two pictures at a different time are superimposed
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Figure 2.9. A translating car in a Euclidean space (a). Two superimposed images at a different
time (b) show that the sun, a point at infinity, does not move. In this scenario the stabilized
(virtual) reference plane is the correct plane at infinity.

in fig. 2.9 (b). The man which is closed to the car moves and increases in size. However,
the sun, which is a point close to infinity, does not move. Therefore, the stabilized (virtual)
reference plane is the correct plane at infinity. Another point at infinity is interesting in
this scenario. It is specified by the direction of the moving car. The projection of this point
at infinity onto the superimposed images is denoted the focus of expansion. This point
also represents the projection of one camera centre into the other camera. The fact that the
focus of expansion is defined by the projection of two distinctive 3D points, e.g. the head
and one foot of the man (fig. 2.9 (b)), will be considered in the next chapter.

So far, we have not addressed the question if the formula H1

i = Ki Ri is valid for a
real, finite reference planes as well? Let us write eqn. 2.33 for camera Pi as

xi � H1

i ( I j � �Qi) T T�1 X : (2.37)

The 4� 4 transformation matrix T represents the choice of the projective coordinate sys-
tem (sec. 2.3.2). Consider the case where T is an affine transformation TA (sec. 2.2.2).
Projection equation 2.37 may then be written as

xi � Ki Ri A ( I j � �Qi) T
�1
A X for TA =

�
A 0
0T 1

�
: (2.38)

If the matrix TA is the identity matrix, TA = I , the space is Euclidean and H1

i = Ki Ri.
However, in an affine space, A may represent any matrix. In this case, a known infinite
homographyH1

i = Ki Ri A can not be decomposed into a calibration and rotation matrix.
More precisely, H1

i is only the product of a calibration and rotation matrix if A = �R,
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i.e. the space is metric. As discussed in sec. 2.2.3, � and R represent the scaling and
rotation of a metric space. In the example of a real, finite reference plane, the plane at
infinity is not in its correct position. Therefore T represents a projective transformation
and H1

i is not the product of a calibration and rotation matrix. To conclude, the infinite
homography is only in a metric space the product of the camera’s calibration and rotation
matrix, H1

i = Ki Ri.
Let us summarize the above discussion. Any real or virtual plane may be chosen as a

reference plane. In a projective setting, the reference plane may represent the plane at infin-
ity. This specification has the advantage that the homography between the reference plane
and an image is the infinite homography of the respective camera. The reference plane
homography “encodes” the calibration and rotation information of the respective camera.
However, the infinite homography is only in a metric space the product of the camera’s
calibration and rotation matrix, H1 = KR. These basic observations have been noted in
many publications about plane+parallax (e.g. Irani et al., 1998; Triggs, 2000). By stabi-
lizing a reference plane in an image, the calibration and rotation of the respective camera
is canceled out. This gives a set of calibrated translating cameras with the camera centre
as the only remaining unknown. The idea of stabilizing the images to obtain calibrated
translating cameras has as well been suggested by Heyden and Åström (1995a), Triggs
(2000) and Shashua and Navab (1994). Irani et al. (1998) and Criminisi et al. (1998) in-
vestigate the plane+parallax scenario by mapping the 3D points onto the reference plane
itself. This transformation is basically identical to stabilizing the images. The condition
for image stabilization is that the cameras are finite, i.e. their centres do not lie on the
reference plane. This is a valid assumption for almost all real and virtual reference planes
(see chapter 5). However, the reference plane concept, i.e. choosing the reference plane as
the plane at infinity, may be applied as well to infinite cameras. In most parts of the thesis,
finite cameras and therefore stabilized images are assumed for simplicity. However, for the
sake of generality, the main results and algorithms using reference planes are derived for
both infinite and finite cameras.

2.5 Conclusion

This chapter reviewed basic concepts of geometry for computer vision. Section 2.1 pre-
sented general n-dimensional affine and projective spaces. Furthermore, points, lines and
planes in P2 and P3 were analyzed. The important concept of stratification of 2D and 3D
geometry was the subject of sec. 2.2. Moreover, the approach of uncalibrated structure
and camera recovery was introduced. The advantages of this approach in contrast to the
traditional way of calibrated reconstruction were explained. Section 2.3 described the dif-
ferences between a Euclidean and a projective camera. The term infinite homography was
introduced slightly different to (Hartley and Zisserman, 2000). Finally, we considered the
scenario of a plane visible in two views (sec. 2.4). The key concepts of plane+parallax,
stabilizing a reference plane, real and virtual reference planes and calibrated translating
cameras were reviewed.



Chapter 3

Projective Multi-View Geometry:
General versus Reference Plane

This chapter comprises of most theoretical concepts used in the thesis. It investigates the-
oretically the geometry of multiple images for two different configurations: scenes with a
reference plane and general scenes. The analysis is carried out for three different feature
types: points, lines and planes. The result are different theoretical approaches to recon-
struct multiple features observed in multiple views. The approaches may be categorized
into: camera constraint, structure constraint and factorization methods. These categories
are well known and will be reviewed here for both scene types, general and reference plane.
The main contribution of this chapter is the introduction of a new category for reference
plane configurations. This category is based on the novel observation that the relationship
between 3D features and cameras is linear if a reference plane is given. In contrast, this
relationship is non-linear for general configurations. The linear relationship makes it pos-
sible to simultaneously reconstruct all cameras and all features in a single linear system.
We call this new category the direct reference plane (DRP) approach.

The emphasis of this chapter is not on a literature review of practical reconstruction
methods. The purpose is to review theoretical approaches of solving the reconstruction
problem. In order to present the basic ideas in a simple way, some assumptions will be
made, such as image features being matched correctly. These assumptions are abolished in
the next chapter. The next chapter presents a literature review and comparison of practical
reconstruction methods.

The first sec. 3.1 introduces formally the reconstruction task and related problems.
The remaining sections examine separately the three different feature types: points (sec.
3.2), lines (sec. 3.3) and planes (sec. 3.4). The main focus is on point features. The
novel discussion of points for reference plane configurations is in sec. 3.2.1 (single view
case) and sec. 3.2.2 (multi-view case). This is based on our publications (Rother and
Carlsson, 2001; Rother and Carlsson, 2002b; Rother and Carlsson, 2002a). The readers
who are familiar with the subject of multi-view geometry might skip the other subsections

35
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X

x1

�Q2
�Q1

x2

x02

Figure 3.1. Explanation of the concept of geometric constraints. Corresponding image points x1
and x2 constrain both the position of the 3D point X and the two camera centres �Q1; �Q2.

for point features. However, we point out that the review of reference plane configurations
in sec. 3.2.3 (camera and structure constraints) and 3.2.4 (factorization) is less well known.
For lines, the novel aspects for reference plane configurations are in sec. 3.3.1 (single view
case) and sec. 3.3.2 (multi-view case). This discussion is not part of any of our previous
publications. For planes, the sections 3.4.1, 3.4.2 and 3.4.3 comprise of novel aspects
which are partly based on (Rother et al., 2002). The idea of factorizing planes and cameras
(sec. 3.4.4) has been presented in (Triggs, 2000; Rother et al., 2002).

This chapter describes theoretically our novel direct reference plane methods for the
three feature types, points, lines and planes. The corresponding practical algorithms are
outlined in sec. 6.1.1 for points, sec. 6.2.1 for lines and sec. 6.3.1 for planes.

After considering separately the three feature types, sec. 3.5.1 discusses methods of
combining them. Furthermore, we examine how to incorporate scene constraints, like a
point lies on a plane, in the reconstruction process (sec. 3.5.2). The main observation is
that our direct reference plane reconstruction method extends straightforward to all three
types of features and may include several interesting scene constraints, such as incidence
relationships. Section 3.5 does not involve any novel concepts, and is not important for the
understanding of the following chapters.

3.1 Introduction

Consider a 3D point X seen by two cameras with centres �Q1 and �Q2 (fig. 3.1). The
projection of X into cameras 1 and 2 gives the image points x1 and x2. This means that
the two rays of sight (�Q1; x1) and (�Q1; x2) intersect in the 3D point X. What about the
two image points x1 and x02, do they represent a unique point in space? Obviously not,
since in this case the two rays of sight (�Q1; x1) and (�Q1; x02) do not intersect in space.
However, by moving the camera centre �Q2, these two rays would intersect in the unique
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3D point X. Equivalently, the 3D point X can be moved, so that the two rays (�Q1; x1)
and (�Q1; x02) intersect uniquely in this point. This means, that the image points constrain
both the position of the cameras and of the 3D point. More generally, any feature seen in
two or more views constrains the position of cameras and the feature. These geometric
constraints make it possible to pose the following question: Given a sufficient number of
image features, what are the positions of the features and cameras in space? It is important
to note that the two tasks of reconstructing the structure and the cameras are interlinked
and should not be considered as two decoupled problems.

In the discussion above we implicitly made the assumption that it is known which im-
age features in two or more views represent the same 3D feature in space. In general, the
only source of information for the reconstruction problem is images. Therefore, the first
step of any “feature-based” reconstruction algorithm is to detect image features which are
in correspondence. In general, image features of multiple views are said to be in corre-
spondence if they represent the same feature in 3D space. The problem of detecting cor-
responding image features is known as the matching problem. With a continuous image
sequence, e.g. from a video camera, this problem can be solved by tracking image features
(e.g. Isard and Blake, 1998). If the cameras are far apart, i.e. have a wide-baseline, the
problem is substantially more difficult (e.g. Tell, 2002). In this chapter it is assumed that
the matching problem is solved. However, the matching problem and the reconstruction
problem are linked together via the geometric constraints introduced above. The image
points x1 and x02 in fig. 3.1 do not correspond for these two cameras since they do not de-
fine a unique point in space. In general, a number of image features only correspond if they
define a unique reconstruction, i.e. a unique set of cameras and features in space. Chapter 8
of the thesis presents a system which solves both the matching and reconstruction problem
automatically.

A further implicit assumption made so far is that the scene is rigid and the camera
is moving, i.e. it is at different positions in space. From a geometric point of view this is
equivalent to a fixed camera and a moving scene. The more general task is to have a moving
camera which observes independent moving objects in the scene. This task is known as
the reconstruction of dynamic scenes and has recently raised a lot interest (Vision and
Modelling of Dynamic Scenes, 2002). However, it is still less understood then the more
simple rigid scene case. A further useful application of the geometric constraints is to
detect moving objects in a static scene. Assume that the 3D point X in fig. 3.1 moves,
while the camera moves from position 1 to 2. This means that X is projected in image 1
as x1 and image 2 as x02. With the assumption of known cameras, the geometric constraint
that x1 and x02 do correspond would be violated. Therefore, the geometric constraints can
be used to detect moving features of a rigid scene. In summary, the geometric constraints
may be applied to the four fundamental tasks:

� Reconstruction of 3D features and cameras

� Matching of image features

� Detecting moving features in a rigid scene

� New view synthesis
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The idea of new view synthesis is to create new views of a scene from images only, i.e.
without computing explicitly the 3D structure and cameras. This thesis concentrates on the
reconstruction task. However, a completely automatic reconstruction system involves the
matching task as well. Such a system is presented in chapter 8. The third task of moving
object detection will be briefly addressed in this chapter.

Let us now specify the problems involved in determine structure and cameras more
formally. This will be done on the basis of point features, however the extension to other
feature types is straightforward. In the previous chapter we have mathematically formu-
lated the projection of one 3D point feature onto the image plane via a pinhole camera.
Let us generalize this setting for multiple point features and multiple cameras in projective
space. As was seen in the first chapter, points inevitably become occluded as the camera’s
view changes. This problem is known as the missing data problem and every “real world”
reconstruction algorithm has to deal with it.

Definition 3 (Structure and camera recovery) Given a sufficient number of correspond-
ing image points xij . The task of structure and camera recovery is to determine uniquely
the unknown 3D points X1; : : : ;Xn, unknown cameras P1; : : : ; Pm and unknown scalars
�ij , so that the projection relation:

�ij xij = Pj Xi (3.1)

is satisfied.

The unknown scalars �ij are sometimes denoted projective depths (e.g. Sturm and Triggs,
1996). This definition of the reconstruction problem immediately raises two questions:
When is the reconstruction unique and how many image features are needed?

The first question is known as the critical configuration problem. Consider two con-
figurations (Xi; Pj) and (X0i; P

0

j) of 3D points Xi;X0i and cameras Pj ; P 0j which are related
by a projective transformationH so that

Xi � HXi and P 0j � PjH
�1 : (3.2)

These two configurations have the same projective image coordinates, since xij � PjXi �
PjH

�1HXi � P 0jX
0

i . Therefore we denote these configurations as equivalent, any con-
figuration (Xi; Pj) has an equivalent class of solutions (H Xi; Pj H

�1), which have the
same projective image coordinates. The remaining question is if there are any inequiva-
lent configurations which have the same image coordinates. This leads to the definition of
critical configurations.

Definition 4 (Critical Configurations) A configuration (Xi; Pj) is called a critical con-
figuration, if an inequivalent configuration (X0i; P

0

j) exists such that both configurations
have the same projective image coordinates, i.e. Pj Xi � P 0j X0i for all i; j.

The study of critical configurations has a long history in the field of photogrammetry and
computer vision. The first publication was probably by Krames (1942). This problem is
the subject of discussion in chapter 7.
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The second question of sufficient image data is “fairly” easy to answer if all 3D fea-
tures are visible in all views (e.g. Hartley and Zisserman, 2000). The projections of the 3D
points into a camera give a certain number of constraints which has to be equal to or larger
than the number of unknowns contained in the 3D points and cameras. This chapter gives
a complete answer to this question for the three feature types: points, lines and planes and
two different configurations: general and reference plane. With missing data this problem
is more difficult to solve (e.g. Quan et al., 1999). It will be addressed in chapter 7.

The reconstruction problem becomes fundamentally more simple if either the cameras
or the structure is known a-priori. The problem of determine the structure from known
cameras is called the intersection or triangulation problem and the the problem of cam-
era recovery from known structure the resection problem. Eqn. 3.1 indicates that both
problems are linear in the unknown structure and scale factors or the unknown cameras
and scale factors. This means, that both problems can be solved with “standard” linear
methods as we will see later. Furthermore, the resection problem is identical to the “clas-
sical” calibration problem, where a camera is calibrated from a calibration object with
known 3D coordinates.

The thesis limits the investigation of multi-view geometry to three feature types: points,
lines and planes. For the task of 3D reconstruction, points have been the most popular fea-
ture type. This can be seen as well from the larger number of publications devoted to the
topic of point matching in contrast to line matching (see Tell (2002) for an overview). A
3D points has 3 degrees of freedom in P3, whereas a 3D line has 4 degrees of freedom.
As a consequence, more 3D lines than 3D points are needed to obtain a 3D reconstruc-
tion. In particular, uncalibrated reconstruction of two views is impossible with 3D lines
only. An interesting aspect of 3D points is that camera centres are 3D points as well. This
leads to the fundamental duality theorem, which is discussed in this chapter. An advantage
of line features is that they can be detected more accurately in the image, since a line or
line segment extends over a larger image area. Furthermore, man-made environments are
characterized by a lot of linear structures. The third feature type, i.e. planes, is present in
many man-made environments. Planes can be represented by homographies between pairs
of views. One way of estimating homographies is to use point and/or line features which
are already matched. Therefore, planes are seldom used as the only feature type for 3D re-
construction. It is more popular to considered them in a post-processing step for improving
a point or line reconstruction. Alternatively, homographies can be obtained directly from
greylevels in a sequence of images (e.g. Bergen et al., 1992; Irani and Anandan, 1999a).
However, even in this case the task of plane reconstruction from homographies may be cir-
cumvented by “hallucinating” 3D points. From the homographies, 3 corresponding image
points (or lines) in multiple views may be hallucinated, to represent the 3D plane uniquely.

After considering the three feature types separately, methods of combining them are
investigated in the last section. Such methods have the advantage that all three feature types
constrain the camera’s position simultaneously. Furthermore, external constraints, e.g. the
incidence relationship of a point lying on a plane, may be integrated in the framework.
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3.2 Points

We start the discussion by comparing a general point configuration with a plane+parallax
point configuration, i.e. 3D points and a reference plane, in the single view case. The
conclusion of this discussion will be that the structure and camera recovery problem is bi-
linear in the general case and linear in the reference plane case. On the basis of this result
we will present four different categories of formulating and investigating the relationship
between multiple points in multiple views:

� Use the reference plane to reconstruct cameras and points simultaneously from a
linear system (sec. 3.2.2).

� Derive from the bi-linear projection relation the so-called camera constraints which
involve only cameras and image points. From the camera constraints the cameras
may be derived (sec. 3.2.3).

� The dual counterpart to the camera constraints are the structure constraints, which
involve image points and 3D points. From the structure constraints the structure may
be derived (sec. 3.2.3).

� Combine all image coordinates into a large “measurement matrix”, which can be
used to compute points and cameras simultaneously by factorization (sec. 3.2.4).

The last three approaches are not specialized to reference plane configurations. Therefore,
they are studied for general and reference plane configurations. It will turn out that the
reference plane case simplifies these approaches.

3.2.1 Single View: General versus Reference Plane

In order to simplify the analysis of single view geometry, a specific projective basis using
reference points is chosen in the image and 3D world (e.g. Faugeras, 1992; Quan et al.,
1994; Heyden and Åström, 1995a; Carlsson, 1995). How to choose the projective basis
independently of specific reference points is discussed later. Figure 3.2 shows two point
configurations where the 3D points X1�4 are either in general pose (a) or on on a reference
plane (b).

General configurations

We have seen in sec. 2.3.2 that in a projective setting a projective basis in the image and
the 3D world may be chosen freely. Let us use for both spaces the standard basis as defined
in eqn. 2.3. The scene points X1�4 are mapped to the image points x1�4 as

X1 X2 X3 X4 Q
� � � � �
1 0 0 0 A
0 1 0 0 B
0 0 1 0 C
0 0 0 1 D

�!

x1 x2 x3 x4 0
� � � � �
1 0 0 1 0
0 1 0 1 0
0 0 1 1 0

(3.3)
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Figure 3.2. A general point configuration (a) and reference plane configuration (b). The 3D
points X1�4 and image points x1�4 are used as a projective basis in space and in the image.

where the camera centre is mapped onto the centre of projection, i.e. (0; 0; 0)T . On the ba-
sis of this choice, the projection of any point X to the image point x is defined as (Carlsson
and Weinshall, 1998)

0
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CCA : (3.4)

This shows, that in a projective setting a camera is uniquely defined by its projection centre.
Furthermore, the position and calibration of the image plane is not relevant in this context.
Eqn. 3.4 can be transformed into the following projection relation:
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The unknown scale factor can be eliminated, which gives the two equations

w
X

A
� x

Z

C
+ (x� w)

W

D
= 0

w
Y

B
� y

Z

C
+ (y � w)

W

D
= 0 : (3.6)

These equations describe explicitly the duality of space points and camera centres in the
sense that the homogeneous projective coordinates of a space point (X;Y; Z;W )T and the
inverse coordinates of a camera centre (A�1; B�1; C�1; D�1)T are bi-linearly related in
a symmetric way. The choice of the fifth basis point P5 has further consequences (e.g.
Carlsson, 1995) which are not, however, relevant in this context.

Reference plane configurations

Let us analyze the reference plane case, where the four points X1�4 define a reference
plane in the scene (see fig. 3.2 (b)). The mapping of these points can be used as a basis in
the projective image plane if the centre of projection is not on the reference plane. If the
camera centre lies on the reference plane (see fig. 2.6 (b)), the four basis points are collinear
in the image. Note that in the reference plane case, the point X4 cannot be used as a basis
point for the projective space P3, which has to consist of five non-coplanar points. Let us
specify these four points so that they define the plane at infinity, i.e. X4 = (1; 1; 1; 0)T ,
(e.g. Shashua and Navab, 1994; Heyden and Åström, 1995a; Triggs, 2000). The mapping
between scene points and image points is now

X1 X2 X3 X4 Q
� � � � �
1 0 0 1 A
0 1 0 1 B
0 0 1 1 C
0 0 0 0 D

�!

x1 x2 x3 x4 0
� � � � �
1 0 0 1 0
0 1 0 1 0
0 0 1 1 0

: (3.7)

This means that the mapping of a general 3D point X onto the image point x is

0
@ x

y
w

1
A �

0
@ 1 0 0 �A=D

0 1 0 �B=D
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1
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or more compactly

x � ( I j � �Q) X : (3.9)

This equation is identical to eqn. 2.33, which represented the projection equation for a
stabilized image, i.e. x0 � H1�1 x. Therefore, such a stabilization is equivalent to
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changing the image basis as described above. Furthermore, the assumption of having four
coplanar 3D points is equivalent to the assumption of having a known reference plane, i.e.
the infinite homography H1. The infinite homography can be defined explicitly on the
basis of the image points as:

H1 :

0
@ 1 0 0 1

0 1 0 1
0 0 1 1

1
A �! (x1 x2 x3 x4) : (3.10)

Obviously, it is implicitly assumed that the camera does not lie on the reference plane, i.e.
that the infinite homography is non-singular.

Let us now consider only those scene points which do not lie on the plane at infinity,
i.e. W 6= 0. Those points form an affine space, which is the projective space without the
plane at infinity. From eqn. 3.8 the following projection relation may be derived
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(3.11)

or more compactly

x � �X� �Q : (3.12)

If we compare this to the general projection relation in eqn. 3.5, we see that the relation-
ship between points and cameras is different, though, still symmetric. The symmetry now
relates to the substitutions (X;Y; Z;W ) $ (A;B;C;D). More importantly the relation-
ship between a non-homogeneous point and a non-homogeneous camera centre is linear
in contrast to bi-linear in the general case. We will see that this linearity leads to a simple
relationship between points and cameras in the multiple view case.

The projection relation can be transformed into linear constraints by eliminating the
unknown scale:

x ( �Z � �C) � w ( �X � �A) = 0

y ( �Z � �C) � w ( �Y � �B) = 0 (3.13)

x ( �Y � �B) � y ( �X � �A) = 0 ;

where �X; �Y ; �Z and �A; �B; �C represent the coordinates of the non-homogeneous point �X
and camera centre �Q, e.g. �X = X=W . Obviously, only two of the three equations are
linearly independent. However, two relations are insufficient for special cases where e.g.
w = 0 and �Z � �C = 0.
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What happens to infinite points, i.e. points which lie on the plane at infinity? Using
eqn. 3.9, a point at infinity X = (X;Y; Z; 0)T is related directly with its image point
x = (x; y; w)T as: 0

@ x
y
w

1
A �

0
@ X

Y
Z

1
A : (3.14)

Note that the above discussion assumed that the image is stabilized and the infinite homog-
raphy is non-singular, i.e. the camera is finite. The same analysis can be carried out without
these restrictions. This will be done in sec. 6.1.1 and it will turn out that the relationship
between point and camera parameters is even in this case linear.

Conclusion

The general bi-linear projection relation between a point X and a camera P is

x � P X � H1 (I j � �Q) X ; (3.15)

where �Q is the camera centre and H1 the infinite, non-singular homography. If four 3D
points are coplanar, the projection relation is linear for non-homogeneous points �X:

x0 � H1�1 x � �X� �Q : (3.16)

Note that the assumptions of having four coplanar points or a known reference plane, i.e.
H1, are equivalent. This simple relationship between points and cameras is achieved by
stabilizing the image, i.e. x0 � H1�1 x, or equivalently choosing a specific image basis.
Therefore, the difference between general point configurations and point configurations
with a reference plane may be summarized as follows:

In general, points and cameras have a bilinear relationship in projective space.
If four points are on a plane, points and cameras have a linear relationship in
an affine space where this plane represents the plane at infinity.

Shashua and Navab (1994), Heyden and Åström (1995a) and Triggs (2000) use the same
projective basis to formulate the relationship between points and cameras. However, they
did not discover and use the linear relationship for reconstruction, as we did (Rother and
Carlsson, 2001). Shashua and Navab (1994) called the affine space with the reference plane
as the plane at infinity the “relative affine structure”.

3.2.2 Multiple Views & Reference Plane:
Linear System of Cameras and Points

We introduces now our direct reference plane (DRP) method for multiple points observed
in multiple views. This novel reconstruction approach is based on our publications (Rother
and Carlsson, 2001; Rother and Carlsson, 2002b; Rother and Carlsson, 2002a). Note that
the practical algorithm of this method is outlined in sec. 6.1.1.
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Consider the reference plane case for multiple 3D points and multiple cameras. All
points which are not on the reference plane give 3 linear equations of the form 3.13. There-
fore, for an arbitrary numbers of points and views, we can build a single linear system
consisting of all projection relations. For n points in m views the linear system takes the
form:
0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

S11 0 0 : : : 0 0 �S11 0 : : : 0
S12 0 0 : : : 0 0 0 �S12 : : : 0

...
...

S1m 0 0 : : : 0 0 0 0 : : : �S1m

0 S21 0 : : : 0 0 �S21 0 : : : 0
0 S22 0 : : : 0 0 0 �S22 : : : 0

...
...

0 S2m 0 : : : 0 0 0 0 : : : �S2m
...

0 0 0 : : : 0 Sn1 �Sn1 0 : : : 0
0 0 0 : : : 0 Sn2 0 �Sn2 : : : 0

...
0 0 0 : : : 0 Snm 0 0 : : : �Snm

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

�X1
�Y1
�Z1

...
�Xn
�Yn
�Zn

�A1
�B1
�C1

...
�Am
�Bm
�Cm

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

= 0

(3.17)
for non-homogeneous projective point coordinates �Xi and camera centres �Qj . The 3 � 3
matrices Si;j are defined as

Si;j =

0
@ 0 wij �yij

�wij 0 xij
yij �xij 0

1
A (3.18)

and are built up solely from image coordinates of point i visible in view j. In the following
we denote the matrix which forms the linear system in eqn. 3.17 as the system matrix or
S-matrix.

The linear system can be used to compute the unknown 3D points and cameras directly
from the known image measurements1. Throughout the thesis this method is denoted the
DRP method, i.e. Direct Reference Plane method. Note that the linear system deals nat-
urally with the problem of missing data, since the projection relations of points which are
not visible in a certain view are not part of the system. However, how are 3D points on the
reference plane reconstructed? A point at infinity X = (X;Y; Z; 0)T can be reconstructed
directly from image coordinates using eqn. 3.14.

1The experiments in sec. 6.1.2 will demonstrate that this method is capable of reconstructing difficult scenes
where general reconstruction methods fail.
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The solution of the linear system in 3.17 can be obtained by a Singular Value Decom-
position (SVD) of the S-matrix: S = U D V T (Golub and Van Loan, 1996). In practice,
only the matrix V is computed which reduces the computation time considerably as dis-
cussed in sec. 6.1. The singular vectors of V , which correspond to the singular values in
D that are zero, represent the right nullspace of the S-matrix. Furthermore, the nullspace
represents the set of all solutions of the homogeneous linear system. Let us consider the
size of this nullspace. Apart from the true solution for all points and cameras, the fol-
lowing three trivial solution exist: �Xi = �Qj = (1; 0; 0)T , �Xi = �Qj = (0; 1; 0)T and
�Xi = �Qj = (0; 0; 1)T . This means that the nullspace is (at least) of dimension four. Let
us reconsider this more formally. We have seen in sec. 2.2.1, that the 3D projective space
has 15 degrees of freedom. This can be expressed as a 4�4 homography which transforms
a point X to X0 as:

X0 �
�

A t
bT �

�
X ; (3.19)

where A is a 3� 3 matrix, bT ; t are 3-dimensional vectors and � a scalar (e.g. Hartley and
Zisserman, 2000; Faugeras and Luong, 2001). The special choice of the 3D points X1�4

as in eqn. 3.7 implies that A = �I and bT = (0; 0; 0). This means that 11 of the 15
degrees of freedom of the projective space are fixed. The remaining 4 degrees of freedom
correspond to the arbitrary choice of t; � and � (minus an overall scale). Therefore, the
nullspace of the S-matrix has to be (at least) of dimension four. However, we have as-
sumed implicitly in this argumentation that only one non-trivial solution exists. A point
configuration with more than one non-trivial solution has been denoted a critical configu-
ration. Such critical configurations in the reference plane case are discussed in chapter 7.
In practice, the non-trivial solution of the linear system can be obtained by either fixing a
point or a camera as the origin of the space, e.g. �Q1 = (0; 0; 0)T , or by summation of the
four singular vectors of the nullspace.

What happens if we put a point which lies on the reference plane, e.g. X1 =
(X1; Y1; Z1; 0), into the linear system (3.17)? The projection relations (3.14) can be writ-
ten as linear constraints:

xZ1 � wX1 = 0
yZ1 � wY1 = 0
xY1 � yX1 = 0

: (3.20)

In this case the submatrices S1;j contain these equations instead of the equations in 3.13.
This means that the vector (X1; Y1; Z1; 0; : : : 0) represents now the non-trivial solution.
Furthermore, a second point on the reference plane, e.g. X2 = (X2; Y2; Z2; 0), would give
an additional solution (0; 0; 0; X2; Y2; Z2; 0; : : : 0). This means that n points on the refer-
ence plane give a nullspace of dimensionality n+3. As a consequence, the reconstruction
of all points and cameras, which are not on the reference plane, cannot be obtained from
the linear system if one or more points lie on the reference plane. This means that points on
and off the reference plane have to be separated and reconstructed independently. Note, this
“separation” is not necessary if the reference plane is the “correct” plane at infinity, since
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all finite points in the 3D world do not lie on the reference plane. How this “separation”
can be done automatically and how the linear system can be formulated in a numerically
optimal way will be discussed in chapter 6. Furthermore, the linear system may include
infinite cameras as well, where the cameras’ centre lies on the reference plane. This is
discussed in sec. 6.1.1, where different versions of the DRP method are presented.

Let us summarize the three main advantages of this approach for multiple view re-
construction: All points not on the reference plane and all camera centres are reconstructed
simultaneously, the process is linear and missing data is handled naturally. A linear process
has the great advantage that only one non-trivial solution exists (for non-critical configura-
tions). In contrast to this, the space of all solutions of a non-linear process, e.g. bi-linear,
might have many local minima. The task of finding the global minimum is in general
complex and known as non-linear optimization (Press et al., 1988).

One remaining question is: What is the minimum number of points and cameras needed
for reconstruction? As we have seen, the number of unknowns is 3(m+n)�4 for n points
and m views. If all points are visible in all views, the number of constraints is 2mn. A
projective reconstruction is possible if the number of unknowns is equal to or smaller than
the number of constraints, i. e.

2mn � 3(m+ n)� 4 or n � 2� m� 2

2m� 3
: (3.21)

Since the method uses all projection constraints, two points outside the reference plane are
sufficient for any (m � 2) number of views. In chapter 7 we will give a formal proof. This
result is consistent with the investigation in sec. 2.4: The focus of expansion, which is the
camera centre with unknown scale, can be determined from 2 image points. If more than
two 3D points or views are used, the linear system is over-constrained.

A further application of the linear system is to verify the consistency of the parallax
geometry. As a preprocessing step, 3D points on the reference plane, i.e. points which do
not move on the stabilized images, have to be detected and removed from linear system. A
necessary condition for a consistent parallax geometry is then that all minors in eqn. 3.17
of size 3(m + n) � 4 � 3(m + n) � 4 vanish. An equivalent more compact condition
is that the 4th singular value is zero. In the presence of image noise this is never exactly
true and therefore the ratio between the 5th and 4th singular value should be considered.
We may state: If the linear system is over-constrained, e.g. there are 3 points in 2 views,
and the ratio between the 5th and 4th singular value is large, then the configuration is
either consistent or critical. Note, the 5th singular value is zero for critical configurations.
However, as we will see in chapter 7, the number of critical configuration is very limited
in practice. Such a consistency check could be used to detect moving 3D points in a rigid
environment.

3.2.3 Multiple Views: Camera and Structure Constraints

The previous sec. 3.2.2 introduced the first approach for reconstructing multiple points
visible in multiple views. This section reviews two other approaches based on camera
constraints and the dual structure constraints. In contrast to the previous section, these
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approaches apply to general and reference plane configurations. Since most practical re-
construction methods are based on camera constraints (see chapter 4), we will review them
in detail. In the experiments (chapter 6), several camera constraints methods are compared
with our direct reference plane method (sec. 3.2.2).

The readers who are familiar with these two approaches might skip this section. How-
ever, we point out that the review of reference plane configurations for both camera and
structure constraints is less well known.

General configurations

The projection constraints in the general case (see eqn. 3.6) involve image measurements
x, 3D points X and camera centres Q. Since 3D points and cameras have a bi-linear rela-
tionship, it is not possible to determine them directly from image measurements as in the
multi-view reference plane case. In this section, we will derive constraints which involve
only cameras and image measurements. On the basis of these constraints, the cameras can
be derived linearly. Furthermore, we introduce dual constraints which involve only 3D
points and image measurements. In this case, 3D points may be obtained linearly from
the structure constraints. If either the cameras or the structure is known, the remaining un-
known structure or cameras can be determined linearly. For simplicity, we investigate these
constraints by using the special projective basis introduced in sec. 3.2.1, which is formed
by reference points (Carlsson, 1995; Carlsson and Weinshall, 1998). An analysis indepen-
dent of reference points has been presented by Triggs (1995) and Heyden (1998). In the
following, only the main results about camera and structure constraints are summarized
(see Hartley and Zisserman (2000) and Faugeras and Luong (2001) for an overview).

Consider a 3D point X, projected into multiple cameras with centres �Q1; : : : ; �Qm as
2D points x1; : : : ; xm. All 2m projection relations (3.6) may be written in the form:

0
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CCA = 0 : (3.22)

The linear system in 3.22 can be used to reconstruct a 3D point from known cameras
and image measurements. This represents the linear solution to the intersection problem.
Since the 3D point is only unique up to scale, the rank of the left matrix in eqn. 3.22 has
to be less then 3. This means that all 4 � 4 minors have to vanish, i.e. have to be zero.
These minors give constraints on cameras and image measurements, which are the so-
called camera constraints or matching constraints. The camera constraints have been
the subject of many publications in the last decade (e.g. Faugeras, 1992; Hartley, 1992;
Hartley, 1994; Shashua, 1994; Triggs, 1995; Hartley, 1995; Carlsson, 1995; Faugeras and
Mourrain, 1995; Heyden, 1998). The first observation about camera constraints is that
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Figure 3.3. The geometry of two views and a 3D point X.

any constraint cannot involve more than 4 views, since any minor in eqn. 3.22 contains
a maximum of 4 different rows. Furthermore, any constraint is bi-, tri-, or quadri-linear
in the homogeneous image coordinates xi; yi; wi. As a consequence, we will see that the
constraints for 2; 3 and 4 views can be written compactly in matrix or tensor form.

In the 2-view case, the left matrix in eqn. 3.22 is of size 4 � 4 and we obtain one
constraint, which is called the epipolar constraint. This can be written in matrix form for
the two image points x1 and x2 in camera 1 and 2 respectively as

xT2 F x1 = 0 : (3.23)

The matrixF is denoted the fundamental matrix. The vector l2 = F x1 can be interpreted
as a line in the second image (see fig. 3.3). It is denoted the epipolar line to point x1. The
epipolar constraint says that the point x2 has to lie on l2, i.e. xT2 l2 = 0. Vice versa,
lT1 = xT2 F defines the epipolar line in image 1 to the point x2. The line connecting the two
camera centres is called the baseline. Furthermore, the plane containing the two camera
centres and an arbitrary 3D point X is called the epipolar plane of X. The projection of
the second camera centre into the first image is denoted the epipole e12 and the projection
of the first camera centre into the second image as the epipole e21. This means that they
are defined as (see eqn. 2.29)

e12 � H1

1 (I j � �Q1) Q2 � H1

1 (�Q2 � �Q1) and

e21 � H1

2 (I j � �Q2) Q1 � H1

2 (�Q2 � �Q1) : (3.24)

Consequently, if �Q1 is chosen as 0, any camera i can be written as Pi = [H1

i j �ei1]. The
epipoles can be obtained from the right nullspace of F and F T :

F T e12 = 0 and F e21 = 0 : (3.25)
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Furthermore, the epipolar constraint may be written in terms of the infinite homographies
as

xT2 H1�T
2 [�Q2 � �Q1]�H

1�1
1 x1 = 0 : (3.26)

Note, the matrix [a]� defines the cross product: [a]�b = a � b. It can be written as the
skew-symmetric matrix

[a]� =

0
@ 0 �a3 a2

a3 0 �a1
�a2 a1 0

1
A : (3.27)

Eqn. 3.26 can be interpreted as follows. The vectors x01 = H1�1
1 x1 and �Q2 � �Q1 define

the normal of the epipolar plane, i.e. n = x01 � (�Q2 � �Q1). Eqn. 3.26 says that the vector
x02 = H1�1

2 x2 has to be orthogonal to this plane, i.e. x0T2 n = 0. This can be verified with
fig. 3.3 and the fact that x02 represents the vector between �Q2 and X. From eqn. 3.26 we
may derive a further property of the fundamental matrix. Since the skew-symmetric matrix
[�Q2 � �Q1]� is of rank 2, F has to be of rank 2 as well.

The fundamental matrix has 9 elements and 8 independent ratios of elements, since it
is homogeneous. Therefore, 8 point matches are sufficient to determine the fundamental
matrix linearly (e.g. Hartley, 1997). We have seen from eqn. 3.22 that the fundamental
matrix comprises solely of camera parameters, i.e. the unknown camera centres. It can be
written in tensor notation2 and in terms of unknown camera matrices P1 and P2 as

Fij = (�1)i+j
����

~P i
1
~P j
2

���� ; (3.28)

where ~P i
j is the camera matrix Pj without the ith row. If the fundamental matrix F is

known and therefore the epipole e21 as well, the two cameras may be retrieved as

P1 = (I j 0) and P2 = ([e21]�F j e21) : (3.29)

This definition was suggested by Luong and Viéville (1996) and is independent of the
choice of reference points. Carlsson (1995) discusses how the cameras, i.e. camera cen-
tres, are derived from F for the case of a projective basis formed by reference points. If the
cameras are known, the structure, i.e. 3D points, can be determined linearly by intersection
(see eqn. 3.22). This was probably the first fundamental discovery (Faugeras, 1992; Hart-
ley, 1992) in uncalibrated structure and camera recovery:

The structure (3D points) and two uncalibrated cameras can be determined
(linearly) in projective space on the basis of image measurements only.

Let us consider the minimum number of points needed to reconstruct the scene. The num-
ber of unknowns for n points andm views is 11m+3n�15, since a camera has 11 degrees

2The understanding of tensor notation (Hartley and Zisserman, 2000) is not necessary for the understanding
of the thesis.
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of freedom and the projective space 15 degrees of freedom. The number of constraints de-
rived from n 3D points visible in all m views is 2mn. Since the number of constraints has
to be equal or higher the number of unknowns, the following condition has to be satisfied:

2mn � 11m+ 3n� 15 or n � 5 +
m

2m� 3
: (3.30)

With 2-views a minimum of 7 points is sufficient. Furthermore, since F has 8 independent
ratios of elements and consists of camera parameters only, it has to satisfy 8 � (2 � 11 �
15) = 1 extra constraint. As we have seen, this extra constraint is that F has rank 2, i.e.
det(F ) = 0. However, this is a non-linear constraint on the elements of F and therefore
either one or three real solutions for F exist in the 7 point case.

Let us continue with the 3-view case. For three cameras and one 3D point, the left
matrix in eqn. 3.22 is of size 6� 4. This means that there are

�
6
4

�
= 15 possible minors of

size 4 � 4, which have to be zero. However, it turns out, that there are only four linearly
independent constraints which involve three views. These tri-linear constraints can be
written, using a 3� 3� 3 tensor T jk

i , as

xi1 xj2 xk3 �jqu �krv T qr
i = 0uv ; (3.31)

where x1; x2; x3 are the projections of a 3D point in camera 1; 2 and 3 respectively. Note,
only four of the nine tri-linear point relations are linearly independent. The tensor is called
the trifocal tensor and encodes completely the geometry of 3 views. This means that T
consists solely of camera parameters and may be written as

T qr
i = (�1)i+1

������
~P i
1

P q
2

P r
3

������ ; (3.32)

where whereP i
j represents the ith row of camera matrix j. Note that with the trifocal tensor

there is one distinguished view, in this case view 1. Equivalent to the fundamental matrix,
the 3 cameras may be derived from a known trifocal tensor (e.g. Hartley and Zisserman,
2000). Since T has 26 independent ratios (27 elements minus an overall scale), it can be
obtained linearly with eqn. 3.31 from the images of 7 3D points. Eqn. 3.30 says that T
can be determined with a non-linear process from a minimum of 6 3D points. In the 6
points case, either one or three real solutions for T exist. Furthermore, T has to satisfy
26 � (3 � 11 � 15) = 8 extra constraints. On the basis of the trifocal tensor, the 3 pairs
of fundamental matrices of the 3 cameras can be determined. One remaining question is:
Can the trifocal tensor be replaced by the 3 pairs of fundamental matrices? It can be shown
that the 3 F-matrices uniquely determine T (Hartley and Zisserman, 2000). However, the
trifocal tensor is needed for the task of matching the images of a 3D point in 3 views. If a
3D point lies on a certain plane, the 3 epipolar constraints of each pair of views is satisfied
but not the trifocal constraints of eqn. 3.31. This special plane is the trifocal plane defined
by the 3 camera centres. According to eqn. 3.31, this result can be expected since 4 of the
9 constraints involve 3 image points and not only 2.
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We have seen that the maximum number of views involved in a camera constraint is
four. In the 4-view case the left matrix in eqn. 3.22 is of size 8� 4. This gives

�
8
4

�
= 70

possible minors of size 4 � 4, which have to vanish. It has been shown, that there are
no algebraically new constraints which involve 4 views. Therefore, the 4-view case is
less important for matching and has raised less interest. As in the 2 and 3-view cases, a
3� 3� 3� 3 tensor, the so-called quadrifocal tensor, can be used to express the quadri-
linear relationship in the image coordinates:

xi1 xj2 xk3 xl4 �ipw �jqx �kry �lsz Qpqrs = 0wxyz : (3.33)

Eqn. 3.33 has 16 linearly independent equations. The minimum number of points to
computeQ is 6 (see eqn. 3.30). In this case, the 81 elements ofQ can be obtained linearly
from eqn. 3.33. Furthermore,Q has to satisfy 80� (4 � 11� 15) = 51 extra constraints.
The quadrifocal tensor encodes the geometry of 4 views and the camera matrices may be
derived from it (e.g. Hartley and Zisserman, 2000). Furthermore, it can be specified in
terms of camera matrices as

Qpqrs =

��������

P p
1

P q
2

P r
3

P s
4

��������
: (3.34)

We have seen that the camera geometry may be determined linearly from image mea-
surements in 2, 3 or 4 views. However, how do we reconstruct a scene from n > 4 views?
One strategy is to divide the set of all images into subsets of a maximum of 4 views. Af-
ter obtaining a projective reconstruction of each subset, they have to be merged to obtain
one complete reconstruction. Different techniques for doing this are discussed in the next
chapter. However, this strategy is obviously sub-optimal since not all cameras are consid-
ered simultaneously. One way to overcome this problem is to use the so-called joint image
closure constraints introduced by Triggs (1997b). These constraints represent a bi-linear
relationship between matching tensors and cameras, i.e. their projection matrices. This
means that all cameras can be obtained directly and linearly from a set of known bi-, tri- or
quadri-focal tensors. However, in order to use the tensors, they have to be scaled correctly.
This is a non-trivial task especially for the case of missing data (Triggs, 1997b). A further
well known technique is bundle-adjustment (Slama, 1980), which will be explained in the
next chapter 4. Since it is based on non-linear optimization, a good initial reconstruction
is necessary.

All geometric constraints we have discussed so far involved cameras and image mea-
surements and were derived from the linear system in 3.22. If we interchange the role of
3D points and 3D camera centres we obtain a set of equations which is similar to 3.22. The
projection of n � 4 3D points in one camera gives 2(n � 4) projection relations (3.6) of
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where xi represents the projection of the 3D point Xi. Note, the first 4 points X1�4 were
used for the projective basis. This linear system can be used to determine a camera from
known 3D points, which was denoted the resection problem. Since the camera centre is
only unique up to scale, all the 4 � 4 minors of the left matrix in 3.35 have to vanish.
These minors consist of 3D point coordinates and image measurements only. Therefore,
the constraints derived from the minors are denoted as structure constraints. More im-
portantly, they are identical to the minors derived from eqn. 3.22 by the substitution:
(X;Y; Z;W )$ (A�1; B�1; C�1; D�1). This leads to the following fundamental duality
theorem (Carlsson, 1995):

Theorem 6 (Structure and camera duality) The constraints for camera reconstruction
from n points in m views are mathematically identical to the constraints for structure
reconstruction from m+ 4 points in n� 4 views.

A consequence of the duality theorem is, that to all camera constraints and multi-view
tensors there are dual structure constraints and structure tensors with the same properties.
Therefore, any reconstruction algorithm for n points and m cameras can be used as well
to reconstruct m + 4 points and n � 4 cameras. Furthermore, the 3D structure can be
determined from known structure tensors. If the 3D structure is known, the cameras may be
obtained be resection. For example, the same linear algorithm to compute the fundamental
matrix from 2 views and n points (e.g. Hartley, 1997) can be used to compute the dual
fundamental matrix, the so-called G-matrix, from 6 points and n � 4 views (Carlsson and
Weinshall, 1998). On the basis of the G-matrix, the 6 3D points and consequently the n
cameras can be reconstructed. The discussion on dualizing reconstruction algorithms (e.g.
Hartley and Debunne, 1998) is continued in the next chapter. Obviously, the joint image
closure constraints could be formulated on the basis of structure constraints as well. This
would give the “joint structure closure constraints” which, however, have not been studied
so far.

In the above discussion, camera, structure and closure constraints have been investi-
gated for the for the general case of projective cameras. The same study can be carried out
for more specific camera models or scenarios. The camera constraints and the correspond-
ing tensors for affine views have been studied in (e.g. Bretzner and Lindeberg, 1998; Kahl
and Heyden, 1999; Thorhallsson and Murray, 1999). The closure constraints for affine
cameras were investigated by Kahl and Heyden (1999). Let us now consider the camera
constraints for the special reference plane scenario.
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Reference plane configurations

In the following we will briefly review the camera and structure constraints for the refer-
ence plane case. Probably the most complete study of the camera constraints in this case
has been done by Triggs (2000). Furthermore, a thorough study of the dual structure con-
straints (and camera constraints) has been carried out by Irani et al. (1998) and Criminisi
et al. (1998).

For simplicity, we assume that the infinite homography H1

i of a camera i is non-
singular and known so that it can be used to obtain calibrated translating cameras. The
projection relations of this special camera type were derived in eqn. 3.13. Let us write
these equations as in the general case (eqn. 3.22) for one 3D point X andm camera centres
�Q1; : : : ; �Qm. For simplicity, we use only the first two constraints in 3.13 and obtain the
following linear system, which consists of 2m equations:0
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CCA = 0 : (3.36)

Note, in this case the 3D point X can be written in homogeneous form. As in the general
case, all the 4 � 4 minors for m-views have to vanish. However, the constraints derived
from the minors are in this case significantly simpler. Eqn. 3.36 shows, that any camera
constraint is linear in the unknown coordinates of a camera centres �Qi, i.e. �Ai; �Bi or
�Ci. As a consequence, these constraints can be used to solve for the unknown cameras
from a linear system. Therefore, the complete projection matrix of a camera i is given as
Pi = H1

i [I j � �Qi]. If necessary, the multi-view tensors can be computed directly from
the known cameras with eqns. 3.28, 3.32 and 3.34 respectively. Let us reconsider these
ideas for the 2, 3 and 4 view cases in more detail.

In the 2-view case, eqn. 3.36 gives one constraint of the form

�A1(w1y2 � y1w2) + �A2(y1w2 � w1y2) + �B1(x1w2 � w1x2) +

�B2(w1x2 � x1w2) + �C1(y1x2 � x1y2) + �C2(x1y2 � y1x2) = 0 : (3.37)

Eqn. 3.37 shows an important property of camera constraints in the reference plane case.
For any 3D point X = (X;Y; Z; 0)T which lies on the reference plane, any camera con-
straint is satisfied independently of the camera centre. In the 2-view case, this can be
verified from eqn. 3.37 by substituting x1 � (X;Y; Z)T � x2. For 2 3D points, we obtain
a linear system with two equations of the form (3.37):

M ( �A1; �B1; �C1; �A2; �B2; �C2)
T = 0 or compactly M t = 0 : (3.38)

Since the reference plane fixes 11 of the 15 degrees of freedom of the projective space,
the unknown cameras have 2 � 3 � 4 = 2 degrees of freedom. Therefore, 2 3D points in
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general position are sufficient to determine 2 uncalibrated cameras in the reference plane
case. This is the minimum number of 3D points, as can be seen from eqn. 3.21. The
nullspace of M gives four linearly independent solutions for t. These are the three trivial
and the one non-trivial solution discussed in sec. 3.2.2. Eqn. 3.37 can be written more
compactly as

xT2 [�Q12]� x1 = 0 ; (3.39)

where �Qij = �Qi� �Qj . The derivation of eqn. 3.39 may be verified from eqn. 3.26 and the
substitution H1

1 = H1

2 = I , i.e. calibrated translating cameras. Furthermore, from eqn.
3.24 we see that the translation vector �Q12 represents the epipoles, i.e. e12 � e21 � �Q12.
The epipoles are as well denoted the focus of expansion e (see sec. 2.4). Therefore, the
fundamental matrix for calibrated translating cameras may be written as

F � [�Q12]� � [e12]� � [e21]� � [e]� : (3.40)

As we have seen in fig. 2.9, the focus of expansion is defined by the projections of two
distinct 3D points. If xij is the projection of a 3D point Xi into view j, we may write

e = l1 � l2 where l1 = x11 � x12 and l2 = x21 � x22 : (3.41)

This is true if the image points x11; x12 and x21; x22 do not coincide and the epipolar lines
l1; l2 are not collinear. These conditions mean that the two 3D points must not lie on the
reference plane and that the two camera centres and the two 3D points are not coplanar. We
will prove in chapter 7 that these configuration are actually the only critical configurations
in the 2-view case.

In the 3-view case we obtain
�
6
4

�
= 15 minors of size 4�4 from eqn. 3.36, which have

to vanish. According to Triggs (2000) these tri-linear constraints may be written as

(x1 � x2) (�Q13 � x3)T � (�Q12 � x2) (x1 � x3)T = 03�3 ; (3.42)

where the first image is the distinguished view. It is straightforward to show that only 3
of the 9 constraints are linearly independent. Therefore, 2 3D points outside the reference
plane and in “general position” are sufficient to determine linearly the 3 �3�4 = 5 degrees
of freedom of the cameras, and consequently the trifocal tensor. Furthermore, 2 3D points
give even one additional, independent constraint, which is not necessary to determine the
geometry. It can be used to verify the consistency of the geometry. We will return to this
property later.

For 4 views, eqn. 3.36 gives
�
8
4

�
= 70 minors of size 4� 4 which have to vanish. All

the quadri-linear constraints may be written in tensor notation as

xi1 xj2 xk3 xl4 �ipw �jqx �kry �lsz ( �qrs �Q
p
14 � �prs �Q

q
24 + �pqs �Q

r
34 ) = 0wxyz : (3.43)

In this case only 5 of the 81 constraints are linearly independent. As in the 2- and 3-view
case, 2 3D points outside the reference plane and in “general position” are sufficient to
solve for the remaining 4 � 3 � 4 = 8 degrees of freedom of the cameras using a linear
system.
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In summary, configurations with a known reference plane need 2 3D points outside
the reference plane and in “general position” to obtain the 2; 3 or 4 cameras linearly from
the camera constraints. If necessary, the cameras can be used to derive the bi-, tri-, or
quadri-focal tensor. However, the linearity condition of the camera constraints can be
further exploited. Hartley et al. (2001) suggested to use the multi-view camera constraints,
to compute all camera centres simultaneously from one linear system of equations. The
constraints between each possible pair (3.39), triplet (3.42) or quadruplet (3.43) of views
can be stacked into a linear system of the form:

M ( �A1; �B1; �C1; : : : ; �Am; �Bm; �Cm)
T = 0 or compactly M t = 0 : (3.44)

The four dimensional nullspace of M gives all unknown cameras directly. However, in
contrast to the reconstruction method in sec. 3.2.2, only the cameras and not the cameras
and structure are reconstructed simultaneously. The original formulation of Hartley et al.
(2001) uses tensor notation and does not stabilize the images, i.e. may be applied to finite
and infinite cameras. The camera constraints in the general case for 2, 3 and 4 views, i.e.
3.23, 3.31 and 3.33, are linear in the elements of the respective tensor. Let us write a cam-
era j as Pj = (H1

j j tj), where the infinite homography H1

j is known. If we substitute
Pj into the definition of a multi-view tensor, i.e. 3.28, 3.32 and 3.34, it is straightforward
to show that any tensor element is a linear combination of the unknown camera parame-
ters contained in t. Consequently, multiple points give a linear system of the form 3.44,
using either F -matrices, trifocal tensors or quadrifocal tensors. According to Hartley et al.
(2001), the complexity of the linear system in 3.44 may be reduced by reducing the number
of equations derived from each subset of views. For example, n points visible in a subset
of 2 views give an over-constrained linear system of the form n�6. This linear system has
a maximum of 6 linearly independent equations, which may be obtained by row reduction
(see Hartley et al., 2001). Instead of the original n equations, these 6 equations may now
be stacked into the linear system in 3.44.

The dual linear system to 3.36, which consists of one camera and multiple 3D points
Xi projected as xi, may be written as

0
BBBBBBBBBBB@

�w1 x1 w1
�X1 � x1 �Z1

�w1 y1 w1
�Y1 � y1 �Z1

...

�wm xm wm
�Am � xm �Zm

�wm ym wm
�Bm � ym �Zm

1
CCCCCCCCCCCA

0
BB@

A
B
C
D

1
CCA = 0 : (3.45)

The two systems 3.36 and 3.45 are dual according to the substitution (X;Y; Z;W ) $
(A;B;C;D). Consequently, the duality theorem in the reference plane case is simpler
than in the general case.
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Theorem 7 (Structure and camera duality – reference plane) The constraints for cam-
era reconstruction from n points inm views are mathematically identical to the constraints
for structure reconstruction from m points in n views by substituting X with Q.

Using the duality theorem, the dual structure constraints may be derived directly from the
camera constraints by substitution. For example, in the 2-view case the structure constraint
dual to 3.39 is

xT2 [�X1 � �X2]� x1 = 0 : (3.46)

Furthermore, the dual epipole ed of the two distinct 3D points �X1 and �X2 can be computed
with formula 3.41. On the basis of the duality theorem, we may conclude that all structure
constraints for 2, 3 and 4 points are linear in the 3D point coordinates. This means that the
3D points can be reconstructed from a minimum of 2 views. If necessary, the dual tensors
can be derived from the known 3D points. As for camera constraints, the structure con-
straints may as well be used to compute the complete 3D point structure linearly. However,
a significant disadvantage of the dual system 3.45 is that the structure constraints are only
valid for points outside the reference plane. The same applies to the dual counterpart 3.36,
which is only valid for camera centres outside the reference plane. This is not surprising,
a requirement for reconstructing 2 points in 2 views, with e.g. the dual epipolar constraint
3.46, is that the two points lie outside the reference plane. Therefore, the structure con-
straints have to be used carefully for the task of structure recovery, especially for scenarios
where the 3D points are “close to” or on the reference plane. Furthermore, in general the
number of 3D points is larger than the number of unknown cameras. This means that a
complete linear system to obtain the unknown structure is larger in the dual case.

Irani et al. (1998) and Weinshall et al. (1998) computed the dual fundamental matrix
from two 3D reference points outside the reference plane. On the basis of this, they derived
a formula to compute directly the relative height of a third 3D point from the reference
plane. In their representation the reference plane is not moved to infinity, which is good for
“nearly flat” scenes. This idea is based on earlier work by Sawhney (1994), Kumar et al.
(1994) and Kumar et al. (1995), which study the task of shape recovery from projective
and affine cameras using plane+parallax. A similar direct formula of height computation
from 3 3D points has been suggested by Criminisi et al. (1998). It is based on properties
of the planar homology, which will be introduced later. Such height measurements can
be obtained as well from a 3D reconstruction where the reference plane is at infinity, e.g.
using the linear system in 3.17. In this case, the 3D reconstruction has to be transformed so
that the reference plane is a finite plane, e.g. Z = 0. Furthermore, the correct Euclidean
height of the 3D points can be derived if the Euclidean heights of the two reference points
are known and additionally some affine measurements on the world plane, e.g. two parallel
lines on the plane (Weinshall et al., 1998; Criminisi et al., 1998).

The camera and structure constraints for 2 and 3 views in the reference plane case have
been studied as well in (Irani and Anandan, 1996; Irani et al., 1998; Weinshall et al., 1998;
Criminisi et al., 1998). Irani et al. (1998) and Criminisi et al. (1998) gave them a concrete
physical meaning by projecting the scene onto the reference plane, which is equivalent
to stabilizing the images. Figure 3.4 shows the geometry of 3 points P;Q;R in 2 views,
where the stabilized images are superimposed. The three parallax vectors p1�p2; q1�q2



58 Chapter 3. Projective Multi-View Geometry: General versus Reference Plane
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Figure 3.4. The images of three 3D points P;Q and R in two views define a Desargues configu-
ration.

and r1 � r2 intersect in the epipole e. The intersection of two pairs of points p1 � q1
and p2 � q2 define the dual epipole edpq. The three dual epipoles edpq , edpr and edqr lie on a
line. This is true since the 6 image points define a Desargues configuration (Semple and
Kneebone, 1952). Criminisi et al. (1998) showed that the mapping: p1 ! p2, q1 ! q2
and r1 ! r2 defines a planar homology (Semple and Kneebone, 1952). Since 3 3D points
over-constrain the homology, which has 5 degrees of freedom, this mapping has to satisfy
certain “homology constraints”, which verify the parallax geometry. This means, that the
image measurements of 3 points in 2 views or dually 2 points in 3 views can be used
directly to check the consistency of the parallax geometry. This is not surprising since
2 parallax vectors, i.e. p1 � p2; q1 � q2, define explicitly the epipole e, which has to lie
on the third parallax vector, i.e. r1 � r2, (see fig. 3.4). However, the advantage of a direct
check on the homology is that it is not necessary to compute the epipole whose location
might be ill-conditioned. Irani and Anandan (1996) introduced an alternative formula to
check directly the consistency of the parallax geometry. Such a consistency check can for
instance be used to detect moving objects in a rigid scene. We have seen in sec. 3.2.2
that the consistency of the parallax geometry can as well be checked by a singular value
analysis of the linear system in 3.17. A further useful application of the simplified camera
and structure constraints in the reference plane case is the direct generation of novel views,
i.e. new view synthesis, as shown in (Irani et al., 1998; Irani et al., 2002). However, this
topic is beyond the scope of this thesis.

A discussion of the closure constraints, as in the general case, is not necessary when
a reference plane is available. The cameras of m � 4 views (or n � 4 3D points) can
be determined simultaneously and linearly from the camera constraints (or the structure
constraints).
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3.2.4 Multiple Views: Factorization of Cameras and Points

This section reviews a fourth approach for reconstructing multiple points visible in multiple
views. Since factorization methods are important for practical applications (see chapter 4),
the following discussion is detailed. It contains well known methods for both general and
reference plane configurations and may be skipped by readers familiar with the topic.

Consider all image points being collected into a large measurement matrix. A 3D point
is projected onto an image point by multiplying it with the respective camera (see eqn. 3.1).
Therefore, the measurement matrix is the product of a matrix consisting of all cameras and
a matrix consisting of all 3D points. The basic idea of the factorization approach is to
factorize, decompose, the known measurement matrix into the unknown camera and point
matrices. This already shows the main drawback of all factorization methods, to factorize
the measurement matrix all image data has to be available. The assumption of all 3D points
being visible in all views is a major restriction in practice. Several methods to overcome
this limitation have been suggested in the literature and will be discussed in chapter 4.

As in the previous sections we consider projective cameras first. Although, factoriza-
tion for affine cameras has been introduced before factorization for projective cameras.

General configurations

Let us assume that all 3D points are visible in all views, i.e. there is no missing data.
The projection relations (eqn. 3.1) of n 3D points Xi and m cameras Pj can be written
compactly in the form
0
B@

�11x11 : : : �1nx1n
...

. . .
...

�m1xm1 : : : �mnxmn

1
CA =

0
B@

P1
...
Pm

1
CA (X1; : : : ;Xn) or W = P X : (3.47)

The matrix W depends only on the unknown scales �ij (projective depths) and known
image measurements and is therefore called the unscaled measurement matrix. Let us
assume that by some means the unknown scales are determined. The unscaled measure-
ment matrix is then denoted the measurement matrix. The measurement matrix has the
fundamental property that its rank is 4, since it is the product of two rank 4 matrices. As
a consequence, the unknown structure and cameras may be obtained directly from W by
factorization. Explicitly, the singular value decomposition (SVD) of W = UDV T gives

P = [�1u1 �2u2 �3u3 �4u4] and X = [v1 v2 v3 v4]T ; (3.48)

where ui and vi represents the ith column in U and V respectively and �i is the ith largest
singular value in D. Note, since W is of rank 4 only the first 4 singular values in D are
different from zero. The space of all projectively equivalent solutions can be obtained by
a transformation H4�4, since W = P X = PH�1HX . This idea of projective structure
and camera recovery is due to Sturm and Triggs (1996) under the name of projective
factorization. Various ways to compute the projective depths have been suggested and
will be discussed in chapter 4.
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The original idea of “factorizing” the structure and camera recovery problem was pre-
sented by Tomasi and Kanade (1992) for the case of affine cameras. Let us reconsider the
non-homogeneous mapping 2.31 of a 3D point �Xi by an affine camera Pj onto the image
point �xij :

�xij =Mj
�Xi + tj : (3.49)

The first observation is that the camera vectors tj may be derived directly from those image
points which are represented in all views. A property of affine cameras is, that they map
the centroid of a set of 3D points onto the centroid of their projections. Let us define
tj = 1

n

Pn
i=1 �xij as the centroid of all image points in view j. By moving all the image

points in each view, the vector tj can be eliminated, i.e. tj = (0; 0)T . The transformed
image points are then �x0ij = �xij � tj . This means that the origin of the 3D space is
projected onto tj , i.e. the origin of the transformed images. As in the projective case, the
transformed image points may now be stacked into a measurement matrix of the form0

B@
�x011 : : : �x01n

...
. . .

...
�x0m1 : : : �x0mn

1
CA =

0
B@

M1

...
Mm

1
CA �

�X1; : : : ; �Xn

�
or W =M X : (3.50)

However, in contrast to the general projective case, the unknown projective depths disap-
pear. The structure and cameras can now be determined as a rank 3 factorization. Explic-
itly, if W = UDV T is the Singular Value Decomposition of W , the affine cameras and
3D points are given as

M = [�1u1 �2u2 �3u3] and X = [v1 v2 v3]T : (3.51)

This reconstruction method is known as affine factorization. As in the projective case, the
space of all affine equivalent solutions is obtained by a matrix A3�3, since W = M X =
MA�1AX . Note, the origin of the 3D affine space was already fixed.

Reference plane configurations

For reference plane configurations, Triggs (2000) suggested an alternative factorization
method, which is more efficient than the projective version. Let us reconsider the projection
relation 3.9 of a 3D point Xi onto the image point xij for a calibrated translating camera
with centre �Qj :

�ij xij = ( I j � �Qj) Xi = X0i � �QjWi ; (3.52)

where Xi = (X0i;Wi)
T . Let us assume that the projective depths �ij have been deter-

mined in a pre-processing step as in the projective case. We may choose the origin of the
projective space as the centroid of all camera centres3:

0 =
1

m

mX
j=1

�Qj : (3.53)

3The weighting of the camera centres may be chosen differently.
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A first observation is that X0i can be determined directly from image measurements. If the
point Xi is visible in all views, we may compute X0i =

1
m

Pm
j=1 �ijxij , since

1

m

mX
j=1

�ijxij =
1

m

mX
j=1

(X0i � �QjWi) =
1

m

mX
j=1

X0i �
1

m

mX
j=1

�QjWi =
1

m

mX
j=1

X0i = X0i :

(3.54)
With known X0i, new image points x0ij may be derived from eqn. 3.52 as

x0ij = X0i � �ijxij = �QjWi : (3.55)

These new image points may now be used to obtain the measurement matrix0
B@

x011 : : : x01n
...

. . .
...

x0m1 : : : x0mn

1
CA =

0
B@

�Q1

...
�Qm

1
CA (W1; : : : ;Wn) : (3.56)

Consequently, all camera centres and unknown 3D point “depths”Wi may be derived from
a rank 1 factorization of the measurement matrix. Since the centre of projection is already
fixed, the remaining ambiguity in the projective space is a simple scaling: �Qj ! ��Qj and
Wi ! Wi=�. One advantage of this plane+parallax factorization method, in contrast to
the direct reference plane method (see sec. 3.2.2), is that points on and off the reference
plane are reconstructed simultaneously. As already discussed, this is advantageous for
“nearly flat” scenes.

3.3 Lines

The relationship between multiple cameras and 3D lines will be discussed in the same way
as for point features. Since lines are less frequently used for 3D reconstruction than points,
this discussion is shorter than in the previous sec. 3.2. We begin the investigation with
a comparison of general configurations and reference plane configurations in the single
view case (sec. 3.3.1). As for 3D points, the novel observation is that the relationship
between cameras and 3D lines is bi-linear in the general case and linear in the reference
plane case. Furthermore, we will show that 2 parameters of a 3D line (its orientation)
may be derived from a given reference plane. This leads to three different approaches of
writing the relationship between multiple 3D lines observed in multiple cameras. First,
as a single linear system consisting of image lines only (sec. 3.3.2), secondly, as camera
constraints including cameras and image lines (sec. 3.3.3) and thirdly, as a large image
line measurement matrix (sec. 3.3.4). The first approach is a novel contribution and not
part of any of our previous publications. We call it the direct reference plane approach for
lines (Line-DRP). The last two approaches are known and reviewed here for both general
and reference plane configurations. Note that cameras and 3D lines do not have a dual
relationship which means that there are no structure constraints including 3D lines and
image lines. Furthermore, practical algorithms of the Line-DRP approach are outlined in
sec. 6.2.1.
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Figure 3.5. The projection of a 3D line L, which is represented by the two points X and X0 , on
the image line l by a camera with centre �Q. The plane �P is defined as �P = PT l.

3.3.1 Single View: General versus Reference Plane

General configurations

Unlike our approach for points, when using line features we will not choose a specific
projective basis in the world P3 and in the image plane P2. A camera will be represented
by a general 3� 4 matrix P . Section 2.1.2 introduced several representations of a 3D line.
Represent a 3D line by two distinct 3D points X and X0 (see fig. 3.5). The two points are
projected into camera P as x � P X and x0 � P X0. The condition that the 3D points lie
on the 3D line L can be expressed as

xT l = 0 or (P X)T l = 0 and

x0T l = 0 or (P X0)T l = 0 : (3.57)

This shows, that the relation between a 3D line (represented by two 3D points) and a
camera is bi-linear. The projection relation 3.57 for e.g. point X can be rewritten as well
as

XT P T l = 0 or XT �P = 0 ; (3.58)

which means that P T l represents the plane �P . We will see that in the multiple view
case extra constraints are needed to specify the two distinct 3D points of a line uniquely in
space.

If a 3D line is represented by a Plücker matrix L, it can be shown (Hartley and Zisser-
man, 2000) that it projects onto the image line l by the camera P as

� [l]� = P L P T =M : (3.59)
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L
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v

Figure 3.6. The projections of a 3D line L onto three cameras (a) intersect in the vanishing point
v (b), which is the projection of the direction of the line.

If we eliminate the unknown scale � in eqn. 3.59, we obtain 3 projection relations of the
form

l1M13 + l2M23 = 0

l1M12 � l3M23 = 0

l2M12 � l3M13 = 0 : (3.60)

Obviously, only two of the three projection relations are linearly independent since an
image line has 2 degrees of freedom. As in the previous case, the coordinates of a 3D line
and the camera are bi-linear related. In this case it is even quadratic in the elements of the
camera matrix. For instance the element M12 is

M12 = L12(P11P22 � P21P12) + L13(P11P32 � P31P12) + L14(P11P42 � P41P12)

+L23(P21P32 � P31P22) + L42(P41P22 � P21P42) + L34(P31P42 � P41P32) : (3.61)

Reference plane configurations

With a reference plane the infinite homography H1 between the reference plane and a
certain view is known. For simplicity, we assume that H1 is a non-singular matrix which
can be used to stabilize the image points, as x0 � H1�1 x. Note that this restriction
is relaxed in sec. 6.2.1. The stabilizing process gives a calibrated camera of the form
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P = [I j � �Q] (see sec. 2.4). According to proposition 2 (sec. 2.1.1), an image line l is
stabilized as l0 � HT l. In the following, the stabilized images are used as input images
and therefore are the dashes dropped, i.e. l instead of l0.

As in the general case, we begin by representing a 3D line L by two distinct 3D points
X and X0 (see fig. 3.5). The constraint that a 3D point lies on L may in this case be written
as

xT l = 0 or �XT l � �QT l = 0 and

x0T l = 0 or �X0T l � �QT l = 0 ; (3.62)

where x � P X; x0 � P X0 and l is the projection of L. The main difference to the general
case is, that the relationship between a 3D line (represented by two 3D points) and a camera
is now linear. Eqn. 3.62 holds if both the camera centre and the two 3D points do not lie
on the plane at infinity. In particular, the 3D line, i.e. both 3D points, should not lie on the
plane at infinity. This special case will be considered later.

The requirement that neither 3D point X;X0 lies on the reference plane limits the ap-
plicability of the linear projection constraints in eqn. 3.62. In order to increase the scope,
we have to consider in more detail a 3D line seen in several views in more detail. Figure
3.6(a) shows three translating cameras which observe one 3D line L. The 3 images are
superimposed in fig. 3.6(b). We saw in sec. 2.4 that points at infinity are stationary in the
superimposed images. Therefore, the 3 image lines have to intersect in one image point
v which is the vanishing point of the line, i.e. the projection of the point at infinity V of
the line. The infinite point V represents as well the direction of the line. In the multi-view
case, v may be determined linearly from the image lines l1; : : : lm by the linear system

0
B@

lT1
...

lTm

1
CA v = 0 or M v = 0 : (3.63)

The 1-dimensional nullspace of M gives the correct solution, provided the image point is
unique. Note that the nullspace is 2-dimensional if all image lines are collinear, i.e. the
3D line lies on the plane at infinity. From the image lines of several views it is possible
to determine the point at infinity of the line L as V = (v; 0)T . Note that for calibrated
translating cameras the vanishing point v in the image is identical to the direction of the
3D line in space. Consequently, V may be chosen as one 3D point X0 of the line. Therefore,
it is sufficient to reconstruct only the point X, in order to determine the line L completely.
Given V and assuming that L does not lie on the plane at infinity yields a further advantage,
namely that we know that any other point X on L cannot be infinite, i.e. eqn. 3.62 is valid.

However, this is an over-parameterization since L has 2 degrees of freedom once V
is known, and X has 3 degrees of freedom. Let us derive a minimal representation of L.
Since the direction v of the 3D line is known, we may derive the normals n and n0 of two
different planes�;�0 (see fig. 3.7). The linear system

vT n = 0 or M n = 0 (3.64)
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Figure 3.7. The 3 planes �;�0;�P must intersect in the 3D line L.

has a 2-dimensional space of solutions n; n0, which can be obtained from the nullspace of
M . Therefore, any 3D line L may be uniquely described be the two planes � = (n; d)T

and �0 = (n0; d0)T . This representation of the line is minimal since d and d0 are the only
unknown parameters. The condition that L projects onto l is equivalent to the constraint
that the 3 planes �;�0;�P intersect uniquely in the line L (see fig. 3.7). The plane �P

is, according to eqn. 3.58,�P = P T l = (l;��QT l)T . Let us stack the planes into a 4� 3
matrix

M = [�P ��0] =

0
BB@

lx nx n0x
ly ny n0y
lz nz n0z

��QT l d d0

1
CCA : (3.65)

Algebraically, the constraint that the three planes intersect in L means that the rank of M
is 2. This can be proved by considering all points X which lie on the 3D line L. A 3D point
X lies on all three planes if MT X = 0. Since a 3D line forms a one-dimensional subspace
of P3, MT has a 2 dimensional nullspace. This means that M is of rank 2. Therefore,
the 4 subdeterminants of size 3 � 3 have to be zero. Those 3 determinants which involve
unknown parameters give three constraints of the form:������

lx nx n0x
ly ny n0y

��QT l d d0

������ = 0 ;

������
lx nx n0x
lz nz n0z

��QT l d d0

������ = 0 ;

������
ly ny n0y
lz nz n0z

��QT l d d0

������ = 0 :

(3.66)

The main observation is that the constraints are linear in the unknown camera centre �Q
and the unknown 3D line parameters d and d0.
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An alternative derivation of these constraints is based on the dual Plücker matrix rep-
resentation L� of a 3D line. Let us represent the 3D line with the two planes �;�0 as
L� = ��0T � �0 �T . It can be verified that only 6 elements, L�1�3;4 and L�4;1�3, con-
tain the unknown parameters d or d0. We may transform L� into L according to eqn. 2.12.
As in the general case (see eqn. 3.59), the projection of a line L in a camera P = [I j � �Q]
is given as

� [l]� = [I j � �Q] L [I j � �Q]T : (3.67)

Explicitly, this gives the three equations

dn0x � d0nx + �B (nxn
0

y � n0xny) +
�C (nxn

0

z � n0xnz) = � lx

dn0y � d0ny + �A (n0xny � nxn
0

y) +
�C (nyn

0

z � n0ynz) = � ly (3.68)

dn0z � d0nz + �A (n0xnz � nxn
0

z) + �B (n0ynz � nyn
0

z) = � lz ;

where �Q = ( �A; �B; �C)T . � may be eliminated by taking ratios of these equations, yielding
three constraints of which two are independent. Similar to eqn. 3.66, these constraints are
linear in the unknown camera centre �Q and the unknown line parameters d; d0.

In summary, 3D lines and general cameras have a linear relationship if a reference
plane is known. The linear relationship holds even for a minimal representation of a 3D
line with 2 parameters. This is true for all 3D lines which do not lie on the reference plane.
3D lines on the reference plane can be detected with a singular value analysis of the matrix
M in eqn. 3.63. As with points, such 3D lines may be determined directly by 2 3D points
X = (x; 0)T and X0 = (x0; 0)T , where x and x0 are two arbitrary points of the image line l
in an arbitrary view.

3.3.2 Multiple Views & Reference Plane:
Linear System of Cameras and Lines

We introduces now our direct reference plane approach (Line-DRP) for multiple lines ob-
served in multiple views. Note that the practical algorithms of this approach are outlined
in sec. 6.2.1.

Let us consider the reference plane case for multiple 3D lines and multiple cameras. A
3D line Li is projected by a camera with centre �Qj onto the image line segment lij , which
has endpoints xij and x0ij . Since the relationship between lines and cameras is linear, we
can build a single linear system consisting of all projection relations in terms of image
coordinates. In the previous chapter we derived different projection relations depending on
the representation of the 3D lines. These different relations lead to 3 different approaches
to reconstruct the lines and cameras simultaneously in a linear system.

The first approach represents a 3D line Li with two distinct points Xi and X0i. In this
case the two projection constraints in 3.62 have to be fulfilled. However, these projection
relations do not specify the position of the two points on the line, i.e. the two points have 2
degrees of freedom. The remaining degrees of freedom can be fixed by using additionally
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the projection constraints for points (eqn. 3.13) for one reference view. For n lines in m
views the linear system takes the form:

0
BBBBBBBBBBBB@

S11 0 : : : �S11 0 : : :
0 S011 : : : �S011 0 : : :

...
lT11 0 : : : �lT11 0 : : :

0 lT11 : : : �lT11 0 : : :

lT12 0 : : : 0 �lT11 : : :

0 lT12 : : : 0 �lT11 : : :
...

1
CCCCCCCCCCCCA

0
BBBBBBBBBBBB@

�X1
�X0

1
...
�Xn

�X0

n
�Q1

...
�Qm

1
CCCCCCCCCCCCA

= 0 ; (3.69)

where Sij and S0ij (for x0ij ) are defined as in eqn. 3.18. In this case the first view is used
as a reference view. The system matrix S in eqn. 3.69 is of size 2n(m+ 2)� 3(2n+m).
Throughout the thesis, this method is denoted the Line-DRP method, i.e. Direct Reference
Plane method for lines.

It has been shown that the direction of a 3D line Li can be determined directly from
multiple image lines li1; : : : ; lim. This means that one point Xi is sufficient to determine
Li. This gives the second method of reconstructing lines and cameras from the reduced
linear system:

0
BBBBBB@

S11 0 : : : �S11 0 : : :
...

lT11 0 : : : �lT11 0 : : :

lT12 0 : : : 0 �lT11 : : :
...

1
CCCCCCA

0
BBBBBBBB@

�X1

...
�Xn
�Q1

...
�Qm

1
CCCCCCCCA

= 0 : (3.70)

The system matrix S is now of size n(m + 2) � 3(m + n). The extension to general
cameras is as in the previous approach. We will call this variation of the Line-DRP method
the Line-DRP(1p) approach, since only one point per 3D line is reconstructed by the
linear system.

Finally, a 3D line Li may be represented by the minimum number of unknown param-
eters: di; d0i. With this representation, the relationship between a camera and a line is still
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linear, which can be used to derive the linear system:

0
BB@

...
formed from eqns. 3.66

...

1
CCA

0
BBBBBBBBBBBB@

d1
d01
...
dn
d0n
�Q1

...
�Qm

1
CCCCCCCCCCCCA

= 0 : (3.71)

For this approach, the system matrix S is of size 3mn� 2n+ 3m. This variation will be
denoted the Line-DRP(min) method, since it is based on a minimal representation of a
line.

All three linear systems can be used to determine the unknown lines and cameras
directly from image measurements. This can be done by applying the SV D to S, i.e.
S = U D V T . S has a 4-dimensional nullspace since the reference plane fixes 11 of the 15
degrees of freedom of the projective space P3. The non-trivial solution may be obtained
by summation of the 4 last singular vectors of V . In practice only the matrix V is com-
puted which reduces the computation time considerably, as will be discussed in sec. 6.1.
As already mentioned, the three systems are only valid for 3D lines outside the reference
plane. Those lines on the reference plane can be detected and reconstructed separately (see
sec. 3.3.1). The advantages of this linear reconstruction approach are the same as in the
point case: All lines not on the reference plane and all camera centres are reconstructed
simultaneously, the process is linear and missing data is handled naturally.

However, the three different linear approaches have their advantages and disadvan-
tages. Let us assume that all lines are visible in all views and e.g. n = 100 and m = 10.
The first approach is obviously the simplest one since the image data is used directly. Un-
fortunately, it gives a very large system of equations, i.e. S is of size 2400 � 630. In
addition, it cannot be used if any 3D line might be on or close to the reference plane. The
second approach is not sensitive to this issue. Furthermore, the number of unknowns is
smaller, i.e. S is of size 1200� 330. The disadvantage of this approach is that the direc-
tions of the lines are derived directly from the reference plane. Therefore, uncertainty in
the reference plane leads to inaccurately estimated line directions and consequently affects
the solution obtained from the linear system negatively. The third approach has even fewer
unknowns, i.e. S is of size 3000� 230. The drawback of the third approach in compar-
ison with the second is that it uses more information which is derived directly from the
reference plane. However, it has the advantage, that the “artificial” extra constraints for a
reference view are dispensable. An experimental comparison of the three approaches will
be given in sec. 6.2.

The three linear systems use all available projection relations of the lines. Conse-
quently, a minimum number of 3D lines is sufficient. The remaining question is, how
many 3D lines are needed to determine a projective reconstruction? As we have seen, 3D
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lines and 2D image lines have fewer degrees of freedom in the reference plane case in com-
parison with the general case. Since a 3D line can be specified with 2 unknown parameters,
the total number of unknown camera and line parameters is 3m+2n� 4. A projected line
gives only one constraint, since it has to pass through the vanishing point v of the line. In
order to obtain a projective line reconstruction, the following condition has to be satisfied:

mn � 3m+ 2n� 4 or n � 3 +
2

m� 2
: (3.72)

This means that for 3 views 5 lines are need and for more than 3 views 4 lines are sufficient.

3.3.3 Multiple Views: Camera Constraints

The previous sec. 3.3.2 introduced the first approach for reconstructing multiple 3D lines
observed in multiple views. As with points, we review a second approach based on con-
straints which solely involve camera parameters. This approach is applicable to both gen-
eral and reference plane configurations.

General configurations

Let us first count the minimum number of 3D lines needed to determine the geometry.
We saw in sec. 3.3.1, that n lines and m cameras give 2mn constraints. The number of
unknown camera and line parameters is 11m+ 4n� 15, since a 3D line has 4 degrees of
freedom. In order to obtain a projective reconstruction the following relation has to hold:

2mn � 11m+ 4n� 15 or n � 11m� 15

2m� 4
: (3.73)

Therefore, as in the reference plane case, 2 views are insufficient to determine the geometry
on the basis of line correspondences only. Furthermore, with 3 views at least 9 lines are
needed and with 4 views a minimum of 8 lines is required. For these minimal cases no
practical non-linear reconstruction method is known so far. In the following we will review
linear methods.

With 3 views, a 3D line L is projected by a camera Pi on the image line li. Let us
consider the three planes�1 = P T

1 l1;�2 = P T
2 l2 and �3 = P T

3 l3 (see fig. 3.5). Since
they must intersect uniquely in the 3D line L, the 4� 3 matrix

M = [�1 �2 �3] = [P T
1 l1 P T

2 l2 P T
3 l3] (3.74)

is of rank 2. Therefore, all 4 subdeterminants of M of size 3 � 3 must vanish. Moreover,
eqn. 3.74 shows that each subdeterminant is tri-linear in the image line coordinates. As a
consequence, these constraints may be written using a trifocal tenor T as

l1p l2q l3r �piw T qr
i = 0w : (3.75)

Only 2 of the 3 constraints are linearly independent. This means that 13 lines are needed
to obtain the trifocal tensor linearly, which has 26 independent ratios of elements. Further-
more, the trifocal tensor T is identical to the trifocal tensor in 3.32 derived from constraints
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on 3D points. This is an important result since the remaining 3D line reconstruction task
is now identical to the point case. The three cameras, and consequently the 3D lines,
may be derived from T . Other approaches which are based on the trifocal tensor, like the
joint-image closer constraint method (Triggs, 1997b), may be applied as well for 3D lines.

With 4 views, the 4 planes�1�4 = P T
1�4 l1�4 have to intersect uniquely in the 3D line

L. Combining the planes into the 4� 4 matrix M gives

M = [�1 �2 �3 �4] = [P T
1 l1 P T

2 l2 P T
3 l3 P T

4 l4] : (3.76)

As with 3 views, M is of rank 2, since the linear system MT X = 0 has a 2-dimensional
space of solutions. Therefore, a first condition is that the 4 � 4 determinant of M has
to vanish. This gives a quadri-linear constraint on the image line coordinates. However,
this condition is insufficient, since all 3 � 3 subdeterminant must vanish as well. There-
fore, the quadri-focal tensor Q has to satisfy the following tri-linear constraints for each
combination of three lines:

l1p l2q l3r Qpqrs = 0s ; l1p l2q l4s Qpqrs = 0r ;

l1p l3r l4s Qpqrs = 0q ; l2q l3r l4s Qpqrs = 0p : (3.77)

Only 9 of the 12 constraints are linearly independent. Therefore, 9 lines determine linearly
the quadri-focal tensor, which has 80 independent ratios of elements. Note that there are
no algebraically new constraints which involve 4 views.

As already seen for points, the representation of the camera geometry by multi-view
tensors is limited to 4 views. The matrix M , which combines all planes �i = P T

i li, is in
the m-view case M = [�1 : : : �m]. The constraint that an arbitrary 4 � 4 (and 3 � 3)
subdeterminant has to vanish involves a maximum of 4 views. The camera constraints
for 3D lines in 3 and 4 views have been studied together with the point case in (Triggs,
1995; Hartley, 1995; Faugeras and Mourrain, 1995; Heyden, 1998; Schmid and Zisserman,
2000). Furthermore, mixtures of 3D points and 3D lines have been investigated (see sec.
3.5).

Reference plane configurations

Let us consider the camera constraints for the reference plane case. A camera i can be
written as Pi = [I j � �Qi] if the invertible, infinite homography H1

i is known. The
plane �i, which includes the image line li of a 3D line L in camera i (see fig. 3.5), is
�i = P T

i li = (li;��QT
i li)T . We may combine the planes�i form views into the matrix

M = [�1 : : :�m] =

�
l1 � � � lm

�QT
1 l1 � � � �QT

1 l1

�
: (3.78)

As in the general case, M is of rank 2. The condition that all 3�3 subdeterminants have to
vanish gives the different camera constraints. The main observation is here that all camera
constraints are linear in the unknown camera centres. As with points, these constraints
can be used to reconstruct 3 or 4 cameras from a linear system of camera constraints. If
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the cameras are known, the tensors can be computed directly from the known cameras
with eqns. 3.32 and 3.34 respectively. Furthermore, the constraints between any triplet or
quadruplet of views can be used to compute all cameras simultaneously. This leads to a
similar approach as described by Hartley et al. (2001) for points.

According to Triggs (2000), the trifocal constraints can be written as

(l1 � l2) (lT3 �Q13) � (lT2 �Q12) (l1 � l3) = 0 ; (3.79)

where �Qij = �Qi � �Qj . It can be shown that only one of the three constraints is linearly
independent. Therefore, 5 lines are needed to compute linearly the camera geometry, which
has 3 � 3� 4 = 5 degrees of freedom. In the 4-view case the the matrix M is of size 4� 4.
As in the general case, all 3 � 3 subdeterminants have to vanish, which gives 4 tri-linear
constraints for each combination of 3 lines:

(l2 � l3) (lT1 �Q14) + (l3 � l1) (lT2 �Q24) + (l1 � l2) (lT3 �Q34) = 0 ;

(l2 � l4) (lT1 �Q13) + (l4 � l1) (lT2 �Q23) + (l2 � l1) (lT4 �Q34) = 0 ;

(l4 � l3) (lT1 �Q12) + (l4 � l1) (lT3 �Q23) + (l1 � l3) (lT4 �Q24) = 0 ;

(l4 � l3) (lT2 �Q12) + (l2 � l4) (lT3 �Q13) + (l2 � l3) (lT4 �Q14) = 0 : (3.80)

However, only 2 of the 12 constraints are linearly independent. As a consequence, 4 3D
lines are needed to resolve the 4 � 3 � 4 = 8 degrees of freedom of the camera geometry.
As we have seen in sec. 3.3.2, this represents the minimum number of lines needed to
determine the geometry in the 3- and 4-view case.

3.3.4 Multiple Views: Factorization of Cameras and Lines

As with points, a third approach for reconstructing multiple 3D lines and cameras is factor-
ization. We will review this technique for both general and reference plane configurations.

General configurations

Triggs (1996) suggested extending the projective point factorization algorithm (sec. 3.2.4)
for lines by hallucinating 2 3D points. Let us choose two well spaced image points on
the image line in a reference view. If the multi-view tensors are known, their position on
the image line can be established in any view. This means that a set of 3D lines can be
reconstructed by a set of two distinct 3D points using the projective point factorization
algorithm. However, this approach requires that the multi-view camera tensors are deter-
mined in a pre-processing step. Note, in the point case such a pre-processing step can be
avoided (see sec. 4.2.3). Another point is that the points can be ill-conditioned.

With affine views, Quan and Kanade (1997), Kahl and Heyden (1999) and Bretzner
and Lindeberg (1998) suggest a factorization method which uses the image lines directly.
However, this is not a one-step method as in the point case. Let us represent a 3D Line L by
two non-homogeneous points �X1; �X2 as in eqn. 2.8, i.e. L : �X = �X1+�(�X2� �X1). The
vector �D = �X1 � �X2 is the direction of the line. The affine projection (2.31) of a 3D line
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L, represented by all points �X, onto the image line l, represented by all non-homogeneous
image points �x, is

�x =M �X+ t =M (�X1 + ��D) + t =M �X1 + �M �D+ t = �x1 + �M �D : (3.81)

Therefore, the image line l can be represented as �x = �x1+�M �D. This means that the 2D
direction vector �d of the image line is

��d =M �D : (3.82)

In contrast to the affine projection equation for points (3.49), lines have an additional un-
known scale factor �. As in the point case we may formulate the measurement matrix for
n line and m views:0

B@
�11�d11 : : : �1n�d1n

...
. . .

...
�m1

�dm1 : : : �mn
�dmn

1
CA =

0
B@

M1

...
Mm

1
CA �

�D1; : : : ; �Dn

�
: (3.83)

In a first step, all unknown scales have to be determined. Kahl and Heyden (1999) pre-
sented a method which uses subsets, e.g. triplets, of views. On the basis of this, the
directions �Di of the 3D lines and the affine cameras Mi are determined by affine factor-
ization. The remaining two degrees of freedom of each 3D line, i.e. the point �X1, are
obtained in the last step.

Reference plane configurations

For a known reference plane, Triggs (2000) suggested to hallucinate 2 3D points as in
the general projective case. Since the direction of the lines, i.e. the intersection with
the plane at infinity, can be determined in advance, only one 3D point per line has to be
reconstructed. However, as in the general case, the major drawback of hallucinating points
is that the multi-view tensors have to be known in advance.

3.4 Planes

For the task of reconstructing multiple 3D planes and cameras, there is no considerable
difference between general configurations and reference plane configurations. Any 3D
plane may serve as the reference plane. Note, as in the previous sections the (virtual)
reference plane might represent the correct plane at infinity. The only difference between
the two configurations is that the reference plane has to be visible in all views. In the
following, we assume that this condition is satisfied – at least for a subset of views.

Plane features are substantially different to line or point features. First, the projection
of a 3D plane “onto” an image does not give an image feature like e.g. an image point.
Therefore, a 3D plane is represented by a homography between two views (see sec. 2.4).
Secondly, the detection of a 3D plane in multiple images, i.e. its homographies, is dif-
ferent to the point or line case. The homographies can be derived from point and/or line
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features which are already matched. However, this needs an additional process of group-
ing coplanar point and/or line features. Alternatively, homographies can be determined
directly from greylevels in a sequence of images (e.g. Bergen et al., 1992; Irani and Anan-
dan, 1999b). Thirdly, the task of reconstructing multiple 3D planes and cameras can be
solved by any reconstruction algorithm for points and/or lines presented in sec. 3.2 and 3.3
respectively. On the basis of the detected homographies, point and/or line correspondences
can be hallucinated. These hallucinated 3D points and/or lines describe uniquely the 3D
plane in space. Consequently, the task of plane reconstruction from homographies may be
circumvented by using the hallucinated 3D points and/or lines instead (e.g. Szeliski and
Torr, 1998). The advantages and drawbacks of this technique will be discussed in more
detail in sec. 3.4.3. Finally, the task of reconstructing 3D planes and cameras from ho-
mographies only has not been addressed frequently in the past. The reason is that in most
practical applications point and line features are first matched and then grouped according
to coplanarity properties (e.g. Baillard and Zisserman, 1999; Bartoli et al., 2001b). This
gives the task of performing a constrained 3D reconstruction: reconstructing 3D points,
3D lines and cameras with additional coplanarity constraints (see sec. 3.5).

In this section we will investigate different plane reconstruction methods which are
based directly on homographies induced by scene planes, as opposed to hallucinating
scene points. We will begin the discussion by considering a single plane observed in two
views (sec. 3.4.1). On the basis of the known homography, we will derive different novel
constraints which are linear in the unknown plane and camera parameters. Furthermore,
we will show that 3 parameters of a 3D plane (its normal/orientation) may be derived
from a given reference plane. As with points and lines, this makes it possible to recon-
struct multiple planes and cameras simultaneously from a linear system of equations (sec.
3.4.2). This direct reference plane method (Plane-DRP) is the main and novel contribution
for plane features and not published yet. Furthermore, we will review two other multi-
view reconstruction approaches. The first is reconstruction based on camera constraints
(sec. 3.4.3) and the second on factorization of cameras and planes (sec. 3.4.4). Both ap-
proaches use the known homographies directly. The camera constraints method is part of
our publication (Rother et al., 2002) and the factorization technique has been presented in
(Triggs, 2000; Rother et al., 2002). As for points and lines, these methods are discussed
theoretically here. Practical algorithms of the Plane-DRP, camera constraints and factor-
ization method are in sec. 6.3.1.

3.4.1 Two Views: Single Plane

As already mentioned, we will assume throughout this section that a real or virtual refer-
ence plane is visible in all (subset of) views. Therefore, the corresponding infinite homo-
graphies H1

i are known. We have seen, that the transformation x0i � H1�1
i xi stabilizes

the reference plane in the images. Let us assume that a second plane �k is given by its
homography Hk

ij between view i and j, i.e. xj � Hijxi (see sec. 2.4). For stabilized
images points x0, the corresponding homographyH 0k

ij , i.e. x0j � H 0

ijx
0

i, is given as

H 0k
ij = H1�1

j Hk
ij H

1

i : (3.84)
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As in the previous sections, we assume that the reference plane is already stabilized and
therefore H 0k

ij will be denoted Hk
ij . Furthermore, any camera may be written as Pi =

[I j � �Qi].
Following (Szeliski and Torr, 1998), we will derive a relationship between a given

homography, its plane parameters and the camera.

Proposition 3 The homography Hk
ij of a plane �k = (nk; dk)T between the cameras

Pi = [I j � �Qi] and Pj = [I j � �Qj ] may be expressed as

Hk
ij = �

�
I + (nTk �Qi + dk)

�1 (�Qj � �Qi) nTk
�
; (3.85)

where I is the 3� 3 identity matrix and � an unknown scalar. The vector nk represents the
plane’s normal and dk the distance to the origin.

Proof Consider a non-homogeneous point �X which is projected into camera Pi and Pj
as xi and xj :

�ixi = �X� �Qi ; i.e. �X = �ixi + �Qi; and (3.86)

�jxj = �X� �Qj : (3.87)

The point �X may be eliminated using eqns. 3.86 and 3.87, which gives

�jxj = �ixi + �Qi � �Qj ; i.e. �j�
�1
i xj = xi � ��1i (�Qj � �Qi) : (3.88)

The constraint that �X lies on�k is nTk �X+ dk = 0. Using eqn. 3.86, this can be written as

nTk �X+ dk = nTk (�ixi + �Qi) + dk = 0 : (3.89)

To obtain the scalar factor ��1i , eqn. 3.89 may be rewritten as

��1i = �(nTk �Qi + dk)
�1 nTk xi : (3.90)

Combining eqn. 3.88 and 3.90 gives

�j�
�1
i xj = xi + (nTk �Qi + dk)

�1 nTk xi (�Qj � �Qi) : (3.91)

Finally, eqn. 3.91 may be reformulated as

�j�
�1
i xj =

�
I + (nTk �Qi + dk)

�1(�Qj � �Qi) nTk
�

xi : (3.92)

The 3� 3 matrix in eqn. 3.92 represents the homographyHk
ij as in eqn. 3.85.

2

Proposition 3 is valid for all planes �k, e.g. the plane at infinity � = (0; 0; 0; 1)T

gives Hk
ij = I . It has been shown (e.g. Johansson, 1999; Triggs, 2000), that the unknown

scalar � may be determined directly from Hk
ij . Eqn. 3.85 may be rewritten as

Hk
ij � �I = � (nTk �Qi + dk)

�1 (�Qj � �Qi) nTk : (3.93)

Since this matrix is the product of two rank 1 matrices, Hk
ij has the double eigenvalue �.

This is related to the fact that Hk
ij is a planar homology (Criminisi et al., 1998).
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Figure 3.8. The 3 finite points �X1; �X2; �X3 define the plane �k uniquely. Furthermore, they
define the lines L1 = (�X1; �X2) and L2 = (�X1; �X3). The directions of the lines may be
determined from the vanishing points v1 and v2 .

Eqn. 3.85 shows that the relationship between unknown plane parameters and camera
parameters is bi-linear. In the following we will investigate how to linearize this relation-
ship. As with lines, we will derive information about a plane directly from its homography
and the given infinite homographies. Consider 3 finite 3D points �X1; �X2 and �X3, which
uniquely define the 3D plane�k (see fig. 3.8). They are projected into camera Pi as x1�3 i

and Pj as x1�3 j . Furthermore, the 3 points define the two 3D lines L1 = (�X1; �X2) and
L2 = (�X1; �X3). As we saw in sec. 3.3.1, the vanishing points v1 and v2 of the lines are

v1 = (x1i � x2i)� (x1j � x2j)

v2 = (x1i � x3i)� (x1j � x3j) : (3.94)

For calibrated translating cameras, a vanishing point in the image represents the direction
of the corresponding 3D lines in space. Therefore, the normal nk of the plane�k is defined
as

nk = v1 � v2 : (3.95)

This means that the normal of a plane �k may be derived directly from its homography
and the known infinite homographies. This is true for all planes except the plane at infinity,
where nk = 0. The only remaining unknown parameter of a plane is dk, which is the
distance of the plane from the origin. This is the same observation as with line. If the
plane at infinity is known, the orientation of 3D lines and planes is given. In practice the
question arises, which 3 points should be “hallucinated” in order to obtain a stable estimate
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the plane’s normal? Szeliski and Torr (1998) showed that it is important to hallucinate
points inside the image area from which the homography has been derived. This is an
obvious conclusion since a homography is less accurate for the case of point extrapolation,
i.e. points outside this image area. Additionally, it is important to check that the 3 points
do not lie on the plane at infinity.

We are now able to linearize the relationship between planes and cameras. Let us
rewrite eqn. 3.85 and define Ĥk

ij as

Ĥk
ij = ��1Hk

ij � I = (nTk �Qi + dk)
�1 (�Qj � �Qi) nTk : (3.96)

Since Ĥk
ij and nk are now known, the following 9 constraints have to be fulfilled:

�Ai (ĥ1l n1 � nl) + �Bi (ĥ1l n2) + �Ci (ĥ1l n3) + �Aj nl + dk ĥ1l = 0

�Ai (ĥ2l n1) + �Bi (ĥ2l n2 � nl) + �Ci (ĥ2l n3) + �Bj nl + dk ĥ2l = 0

�Ai (ĥ3l n1) + �Bi (ĥ3l n2) + �Ci (ĥ3l n3 � nl) + �Cj nl + dk ĥ3l = 0 (3.97)

for l = 1; 2; 3, where Ĥk
ij = (ĥ)ml, nk = (n1; n2; n3)

T and �Qi = ( �Ai; �Bi; �Ci)
T . These

constraints are linear in the unknown plane and camera parameters. It is straightforward
to show that only 3 of the 9 equations are linearly independent. As a consequence, one
plane, which is observed in two views, is sufficient for a projective reconstruction, i.e. to
determine the 2 � 3 + 1� 4 = 3 degrees of freedom of the geometry. Furthermore, a scene
consisting of one plane and any number of views (at least 2) can be reconstructed since the
number of constraints is 3(m� 1) and the number of unknowns 3m+ 1� 4 = 3(m� 1).
This result is not surprising. In all views a plane can be used to hallucinate 2 or more points,
which are not at infinity. As we have seen, this is sufficient for a projective reconstruction
of 3D points and cameras.

Finally, let us consider the special case where one camera centre is the origin of the
projective space, e.g. Q1 = (0; 0; 0; 1)T . Consequently, the fourth coordinate of any plane
�k, i.e. dk, may be chosen as 1 since the camera centre Q1 = (0; 0; 0; 1)T cannot lie on
�k, i.e. �T

k Q1 6= 0. If we apply this to proposition 3, we obtain the following well known
relation (e.g. Luong and Viéville, 1996)

Corollary 1 The homography Hk
1j of plane �k = (nk; 1)T between the cameras P1 =

[I j 0] and Pj = [I j � �Qj ] may be expressed as

Hk
1j = �

�
I + �Qj nTk

�
: (3.98)

As in the general case, � is the double eigenvalue of Hk
1j . However, the normal nk, which

can be computed from eqn. 3.95, must not be inserted into eqn. 3.98, since the condition
that dk = 1 would no longer be valid. We will see that the bi-linear relationship of planes
and camera parameters in eqn. 3.98 can be used for 3D reconstruction by factorization.

To summarize, if a reference plane is known, the plane’s normal and the unknown scale
of the plane’s homography may be derived directly. On the basis of this information, the
general bi-linear relationship between 3D planes and cameras may be linearized.
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3.4.2 Multiple Views: Linear System of Cameras and Planes

We introduces now our direct reference plane (Plane-DRP) method for multiple planes
observed in multiple views. The practical algorithm of the method is outlined in sec. 6.3.1.

Consider the case of n planes which are partly visible in m views. Note that the ref-
erence plane is an additional plane which has been used to transform the cameras into
calibrated translating cameras. The input data is a set of homographies Hk

ij , which repre-
sent a plane �k between the views i and j. We have seen that the normal nk of any plane
and the unknown scale � in eqn. 3.85 may be derived directly from Hk

ij and the known
reference plane. With this information we established a linear relationship between plane
and camera parameters (eqn. 3.97). This makes it possible to reconstruct all distances dk
and all cameras simultaneously from a single linear system of equations. The system has
the form

0
BB@

...
formed from eqns. 3.97

...

1
CCA

0
BBBBBBBB@

d1
...
dn
�Q1

...
�Qm

1
CCCCCCCCA

= 0 : (3.99)

Since the projective space with a fixed plane at infinity has 4 degrees of freedom, all cam-
eras and planes can be obtained from the 4 dimensional nullspace of S as with points and
lines. Note that the only plane which cannot be reconstructed in this way is the plane at
infinity �1, since n1k = 0 and therefore d1 is not unique. Let us summarize the main
advantages of this approach: All planes and all camera centres are reconstructed simulta-
neously, the process is linear and missing data is handled naturally. The main drawback
of this approach is that some information about the planes, i.e. their normals and �, has to
be derived in advance, in order to linearize the problem. With noisy input data, errors in
the recovery of these parameters could reduce the accuracy of the solutions for dk and �Qj

considerably. If we assume, that all planes are visible in all views, i.e. all possible Hk
ij are

known, the system matrix S is of size 9
2nm(m� 1)� 3m+ n. For instance, with n = 20

and m = 10, the size of S is 8100� 50. As with points and lines only the matrix V of a
SVD of S = UDV T has to be computed. As we will see in sec. 6.1, the complexity of this
computation depends mainly on the number of unknowns, i.e. 50, and less on the number
of equations, i.e. 8100. In the following, this method is denoted the Direct Reference Plane
method for planes, the Plane-DRP method.

3.4.3 Multiple Views: Camera Constraints

Here we present two different approaches for deriving the unknown cameras. given the
homographies. First, we will present a linear method which computes all the camera cen-
tres simultaneously based on camera constraints involving homographies only. This is the
counterpart to Hartley et al.’s (2001) camera constraint reconstruction method for point
features. In contrast to the linear method in 3.4.2 it does not need the normals of the planes
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to be known. However, the drawback of this approach is that cameras and planes are recon-
structed separately, first all cameras are found before all planes are recovered in a second
step. Secondly, we will address the question of how the multi-view tensors may be derived
from the homographies. i.e. 2; 3 and 4, is encoded by the multi-view tensors. As we have
seen in sections 3.2.3 and 3.3.3, the multi-view tensors encode the geometry of a limited
number (2, 3 or 4) of cameras.

Let us begin with the linear reconstruction method based on camera constraints pre-
sented in (Rother et al., 2002). From the SVD of the matrix Ĥk

ij = UDV T (see eqn. 3.96)
we obtain

�Qj � �Qi = �kij �1 u1 (3.100)

nk =
1

�kij
(nTk �Qj + dk)

�1 v1; (3.101)

where �1 is the first singular value of D and u1 and v1 are the first columns of U and V
respectively. The scalar factor �kij is undetermined in this case. From eqn. 3.100 we may
derive the following three relations which are linear in the camera parameters:

�1uy( �Aj � �Ai)� �1ux( �Bj � �Bi) = 0

�1uz( �Aj � �Ai)� �1ux( �Cj � �Ci) = 0

�1uz( �Bj � �Bi)� �1uy( �Cj � �Ci) = 0 ; (3.102)

where �Qi = ( �Ai; �Bi; �Ci)
T and u1 = (ux; uy; uz)

T and �1 as the first singular value.
Therefore, each homography Ĥk

ij provides 2 linearly independent equations of the form
(3.102). The reason for keeping �1 in the equations is that they are satisfied automatically
for the plane at infinity where Ĥk

ij = 0 and therefore �1 = 0. The linear equations give the
following system: 0

BB@
...

formed from eqns. 3.102
...

1
CCA
0
B@
�Q1

...
�Qm

1
CA = 0 : (3.103)

As with the linear reconstruction method for points (sec. 3.2.3), all camera centres are de-
termined by the 4 dimensional nullspace of the system matrix S using SVD. For efficiency,
only the matrix V of S = UDV T needs to be computed. Furthermore, constraints derived
from points which lie on the plane at infinity do not influence the solution. The scalar fac-
tors �kij can now be derived from the camera centres using eqn. 3.100. If the scalar factors
�kij and the camera centre �Qi are known, each plane �k = (nk; dk)T may be determined
directly from eqn. 3.101. Optionally, these two steps can be performed iteratively. This
means that the scalar factors �kij are recalculated from the plane�k and used to recompute
all the camera centres simultaneously.

Let us now address the second question of computing the multi-view tensors from
homographies only. There are two options, either use the homographies directly or hallu-
cinate point and/or line correspondences. If the multi-view tensors are known, the cameras
and eventually the planes may be derived by hallucinating 3 3D points.
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We begin with the first approach, and initially consider 2 views (Luong and Faugeras,
1993). A plane is visible in two views and its homographyH12 is given. Two image points
which are related by H12, i.e. x2 � H12 x1, define a 3D point which lies on the plane.
Furthermore, the two image points have to fulfill the epipolar constraint: xT2 F12 x1 = 0
(eqn. 3.23). Combining both constraints gives the following equation:

x1 HT
12 F12 x1 = 0 : (3.104)

Since this condition has to be fulfilled for all x1, the matrix HT
12 F12 has to be skew-

symmetric and therefore

S = HT
12 F12 + F T

12 H12 = 0 : (3.105)

This gives 6 constraints on the 9 unknown elements of F12:

sij =
X
k

hkifkj + fkihkj = 0 for i; j = 1; 2; 3 ; (3.106)

where H12 = (h)ki and F12 = (f)ki. These constraints can be used to determine F12
linearly from one or more planes as shown in (Luong and Faugeras, 1993). Note that eqn.
3.106 can also be used to verify if a given homography represents a “real” plane in the
scene. Since we assume stabilized images, the F -matrix is of the form F12 = [e12]�.
Obviously, eqn. 3.106 holds for the original images as well. Luong and Faugeras (1993)
reported that this method of determining the F -matrix is not very stable. Later, Szeliski
and Torr (1998) showed that two constraints in 3.106 correspond to constraints which can
be derived from the two hallucinated image points (1; 0; 0)T and (0; 1; 0)T . Obviously,
this is a bad choice since points at infinity do not lie inside the image area from which the
homography has been derived. As previously mentioned, a homography is less accurate
for point extrapolation than for point interpolation. Szeliski and Torr (1998) demonstrated
that F can be determined stably if the hallucinated image points lie inside the image area of
the homography, Consequently, the second alternative of computing the multi-view tensors
from hallucinated points is probably preferable to the first option. Therefore, we will not
investigate methods to determine the tri- or quadrifocal tensor from homographies only.

An alternative way of computingF12, i.e. the epipole e12, from the planar homography
H12 was introduced by Johansson (1999). We saw (eqn. 3.98) that the homography H12

has a double eigenvalue �. Johansson showed that the eigenvector corresponding to the
remaining eigenvalue is the epipole e12 (up to scale). Furthermore, the fundamental matrix
derived in this manner and the planar homographies can be used directly for 3D reconstruc-
tion of two views and multiple planes. Additionally, Johansson presented a simple method
for view synthesis of a piecewise planar scene from one view. Xu et al. (2000) exploited
the same idea to obtain a Euclidean reconstruction of two planes visible in two views.

Let us briefly review the second method of determining the camera geometry, i.e. the
multi-view tensors, from hallucinated image points. The approach of hallucinating image
points is simple and in some cases (Szeliski and Torr, 1998) more stable than using H di-
rectly. On the basis of 2 (or more) hallucinated image points and a known reference plane,
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any relevant technique described in sec. 3.2 can be used to reconstruct the scene and/or
the multi-view tensors. However, at least 2 of the image points must not lie on the plane at
infinity. Alternatively, 3 (or more) hallucinated image points can be used directly, i.e. with-
out a reference plane, to obtain the multi-view tensors and/or the projective reconstruction
(see relevant methods in sec. 3.2). The comparison of direct methods and hallucinating
image points methods will be continued in the experiments in sections 6.3.2 and 6.3.3.

3.4.4 Multiple Views: Factorization of Cameras and Planes

Finally, we present a factorization method based on homographies. As with all factor-
ization approaches, no missing data is allowed, all planes have to be visible in all views.
Let us choose the first view P1 as a reference view: P1 = [I j 0 ]. With the assump-
tion that the reference plane represents the plane at infinity, the projective space has only
15� 11� 3 = 1 degree of freedom. By choosing �Q1 as 0, any plane which does not pass
through �Q1 may be defined as�k = (nk; 1)T . In the following, only homographies of the
type Hk

1j will be used. A homography Hk
1j relates the reference view with view j via the

plane �k. For simplicity, Hk
1j will be denoted Hk

j . For this special scenario, corollary 1
(sec. 3.4.1) defines an equation which relates Hk

j , the plane’s normal nk and a camera’s

centre �Qj . Since � is the double eigenvalue of Hk
j , we may compute Ĥk

j from eqn. 3.98
as

Ĥk
j = ��1 Hk

j � I = �Qj nTk : (3.107)

We are now able to construct a measurement matrix of size 3m� 3n, which is the product
of two vectors: one vector containing all the camera centres and another vector containing
all the planes:

W =

0
B@
Ĥ1
2 : : : Ĥn

2
...

...
Ĥ1
m : : : Ĥn

m

1
CA =

0
B@
�Q2

...
�Qm

1
CA�nT1 ; : : : ; nTn� : (3.108)

The matrix W has rank at most 1, which corresponds to the single degree of freedom of
our specific projective space. As with all factorization methods, the final reconstruction of
the cameras and planes can be obtain from the SVD of W . The idea of factorizing planes
and cameras from given homographies was introduced by Triggs (2000). However, the
approach is explained very briefly and without experiments. Rother et al. (2002) provided
a more extensive description of the theory and additionally presented experimental results.

A less compact factorization method was introduced by Shashua and Avidan (1996)
for the case of 2 views. From eqn. 3.98, the homography between view 1 and 2 via a plane
k is Hk = �k I +�k �Q nTk , where Hk = Hk

12 and �Q = �Q1. Writing the homographyHk

as a vector hk of size 9� 1, the following relation holds:0
@h1 � � � hn

1
A

9�n

=

0
@

�Q 0 0
I 0 �Q 0

0 0 �Q

1
A

9�4

�
�1 � � � �n

�1 n1 � � � �n nn

�
4�n

(3.109)
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where I is written as a 9-vector as well. This means, that all plane normals nk and all
unknown scalar factors �k may be obtained from a rank-4 factorization. Furthermore, the
space of all the homographies is a 4 dimensional subspace of P8. The same observation
was used by Zelnik-Manor and Irani (1999) for the alignment of multiple planes in multiple
views.

With the assumption of calibrated cameras, Sturm (2000) presented several reconstruc-
tion algorithms for multiple planes visible in multiple views. In a first step, the planes’
orientations and the cameras’ rotations are computed simultaneously by factorization. In a
second step, the positions of the cameras and planes are determined.

3.5 Combining Feature and Scene Constraints

This section will address two issues, combining point, line and plane features for recon-
struction, and applying scene constraints to the reconstruction process. The main observa-
tion will be that our direct reference plane (DRP) reconstruction method extends straight-
forward to all three types of features and may include several interesting scene constraints,
such as incidence relationships. Since our method is based on a linear system, it obviously
extends to all feature or scene constraints which are linear in the unknown feature and cam-
era parameters. Note that other linear methods like (Hartley et al., 2001) can not integrate
scene constraints since 3D features are reconstructed separately. We would like to point
out that neither issue is part of the main contribution of the thesis nor are they necessary
for the understanding of the following chapters. Both issues are not part of any of our
previous publications. Furthermore, the techniques discussed below are not novel and are
not evaluated experimentally in this thesis.

So far, we have discussed several methods of reconstructing multiple points, lines or
planes separately in multiple views. A natural and practical question is whether it is possi-
ble to combine these methods? Combined methods have the advantage that, two (or three)
feature types constrain the camera’s position simultaneously. This issue is addressed in
sec. 3.5.1.

The second issue, discussed in sec. 3.5.2, concerns the task of applying constraints
on the scene. Consider reconstructing a man-made environment. Such an environment
has salient properties like parallelism, orthogonality, symmetry or coplanarity of features.
These properties are constraints on the scene, the so-called scene or geometric con-
straints, e.g. parallel planes or points lying on a plane. To create realistic looking re-
constructions, it is important that these properties are preserved. This may be denoted
constrained reconstruction. To this end, we will show that all incidence relationships of
points, lines and planes can be incorporated in our DRP reconstruction method. Further-
more, constraints concerning known 3D features can be applied, for instance the coordi-
nates of a 3D line being known.
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3.5.1 Combination of Features

As in the previous chapters, the combination of feature types are discussed separately for
the three different reconstruction approaches: the direct reference plane method, applying
camera constraints and factorization. Note that the structure constraints are irrelevant here
since they only exist for point features. Furthermore, the “camera constraint” and “fac-
torization” approaches are discussed for both general configurations and reference plane
configurations. We will begin with our direct reference plane approach.

Linear system of points, lines and planes

With a known reference plane, the relationship between 3D points and cameras (sec. 3.2.2),
3D lines and cameras (sec. 3.3.2) and 3D planes and cameras (sec. 3.4.2) are all linear.
Thus it is simple to combine the three different feature types into one linear system. For n
points, k lines, p planes and m cameras the linear system has the form

0
BBBBBBBBBBBB@

...
formed from eqns. 3.13

...
formed from eqns. 3.66

...
formed from eqns. 3.97

...

1
CCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

�X1

...
�Xn

l1
l01
...
lk
l0k
d1
...
dp
�Q1

...
�Qm

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

= 0 ; (3.110)

where li and l0i denote the two unknown line parameters, which were denoted di and d0i in
sec. 3.3.1. A solution for all three feature types and the cameras can be obtained simulta-
neously using SVD. The four-dimensional nullspace of the system matrix gives the unique
reconstruction, provided the configuration is not degenerate.

Alternatively, a 3D line may be represented by two points Xi and X0i, instead of li and
l0i, which means that eqn. 3.66 is replaced by eqn. 3.69. Furthermore, a 3D plane may be
represented by three finite points, which means that di is replaced by �Xi; �X

0

i;
�X00

i and eqn.
3.97 is used instead of eqn. 3.13.
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Camera constraints

As was seen in sections 3.2.3 and 3.3.3, the camera constraints may be represented by
multi-view tensors which encode the camera geometry. Point and line features give con-
straints on the tensors which are linear in the tensor elements, e.g. eqn. 3.23. If planes are
represented by 3 hallucinate points (or lines), they give linear constraints on the tensors as
well. Furthermore, it is possible to use incidence equations relating point and line corre-
spondences to each other in 3 or 4 views. Note that chapter 4 includes a literature survey
of camera constraints. For example, consider three cameras which observe a 3D line and
a 3D point, where the point lies on the line. The 3D point is projected into one view as x1
and the 3D line into the two other views as l2; l3. This gives one trifocal constraint of the
form

xi1 l2q l3r T qr
i = 0 : (3.111)

Further examples are listed in (Hartley and Zisserman, 2000). As a consequence, points,
lines and planes can be used together to determine linearly the geometry of 2; 3 or 4 views.
Furthermore, the joint-image closer constraint method (Triggs, 1997b) may be used the
derived the geometry of all views from points, lines and planes together.

The same observations are valid for the reference plane case. Furthermore, the cam-
era constraints in this case have the main advantage that they are linear in the unknown
camera parameters. This has been shown for points (eqn. 3.39, 3.42 and 3.43), lines
(eqn. 3.79 and 3.80) and planes (eqn. 3.102). Optionally, 3 points may be hallucinated
for planes. Even the trifocal constraint (Triggs, 2000) for a 3D point lying on a 3D line is
linear for calibrated translating cameras Pj = [I j �Qj ]:

(lT2 x1) (lT3 �Q13) � (lT2 �Q12) (lT3 x1) = 0 ; (3.112)

where �Qij = �Qi � �Qj . It is expected that all mixtures of point and line features give
constraints which are linear in the unknown camera parameters, although we do not provide
an analysis here. Therefore, all camera constraints derived from points, lines and planes
and all possible all mixtures may be used to reconstructed all cameras simultaneously. This
idea is a straightforward extension of Hartley et al.’s (2001) point-based reconstruction
approach described in sec. 3.2.3. However, it has not to our knowledge been presented or
evaluate experimentally in a previous publication.

Factorization

The simplest way of extending a point based factorization method for lines and/or planes is
by representing a line with 2 points and a plane with 3 points. For planes, the 3 correspond-
ing image points can be determined from the homographies. The correspondence problem
is, however, more tricky for lines. To obtain corresponding image lines either the endpoints
of the image line segments are in correspondence or some multi-view tensors are known
in advance. The idea of combining features for factorization has been investigated in the
affine case by Morris and Kanade (1998). They represented image features with a direc-
tional uncertainty model. Furthermore, they included the coplanarity constraint of multiple
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features in the factorization framework. In the projective case, Triggs (1996) suggested the
combination of point and line features on the basis of known multi-view tensors.

Combining points and lines for affine factorization was investigated in (Quan and
Kanade, 1997; Bretzner and Lindeberg, 1998; Kahl and Heyden, 1999). Kahl and Hey-
den (1999) included also conics in this framework. As seen in sec. 3.3.4, they did not
represent a 3D line by 2 3D points. The combined affine factorization method for points
and lines is then a simple combination of the two measurement matrices in eqns. 3.50 and
3.83. However, as was seen in sec. 3.3.4, the unknown scales �ij of the lines have to be
determined first.

For a known reference plane, Triggs (2000) suggested combining the three individual
factorization methods for points (sec. 3.2.4) , lines (sec. 3.3.4) and planes (sec. 3.3.4).
However, a 3D line has to be presented by 2 3D points, which means that some multi-view
tensors have to be known. Using the measurement matrices in eqn. 3.56 and 3.108, this
gives for n points, k lines, p planes and m cameras:
0
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(3.113)

where Wi are the 3D point “depths”, Li; L
0

i are the two 3D point “depths” of the lines and
ni are the planes’ normals.

3.5.2 Scene Constraints

The goal of this section is to investigate how scene constraints may be incorporated into
the reconstruction process. Several well known techniques and reconstruction systems are
presented and discussed. Furthermore, we classify the most important scene constraints.
In particular, we are interested in constraints which are linear in the unknown feature pa-
rameters. We will show that the incidence relationships, e.g. a point lies on a plane, and the
constraints concerning known 3D features, for instance the coordinates of a 3D line being
known, are linear. Therefore, they can be integrated into our DRP method for multiple
features presented in sec. 3.5.1.

Scene constraints may be classified into three categories: projective invariant, affine
invariant and metric (or Euclidean) invariant constraints. The main invariant properties or
constraints of the three different spaces are listed in table 2.1. Note that a constrained,
projective reconstruction can only incorporate projective invariant constraints. Further-
more, a constrained reconstruction using affine properties needs a known plane at infinity.
Similarly, for a constrained reconstruction including metric or Euclidean constraints, the
cameras have to be calibrated. This shows that the tasks of self-calibration and constrained
reconstruction are tightly coupled. In general, scene constraints can be enforced or used in
the reconstruction process in three different ways:

� Use scene constraints in the calibrated or uncalibrated reconstruction process (con-
strained reconstruction).
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� Use scene constraints in self-calibration, which upgrades a projective to an affine or
Euclidean one.

� Enforce scene constraints on a reconstructed 3D model in a post-processing step.

The task of constrained reconstruction is beyond the scope of this thesis. Since it has
a long history in computer vision and photogrammetry, we only review some methods and
systems.

First consider the task of constrained reconstruction. With pre-calibrated cameras,
Shum et al. (1998) and Robertson and Cipolla (2002) presented reconstruction methods
which use many different metric scene constraints, like lines with known direction. The
task of constrained, uncalibrated reconstruction using 3D points and 3D planes was inves-
tigated by Bartoli et al. (2001b) for the 2-view case. The basic idea of this approach is to
represent planes, points and cameras in an optimal way, so that the condition that certain
points lie on certain planes is fulfilled and that the reprojection error of 3D points is op-
timized. This work was extended to multiple views in (Bartoli et al., 2001a). Sturm and
Maybank (1999) investigated the case of multiple points lying on different, multiple planes
seen in one view of a calibrated camera. They demonstrated, that points and planes can
be obtained simultaneously by factorization from the condition that certain points lie on
certain planes

The second idea is to use the scene constraints for (self-)calibration. This was dis-
cussed in (e.g. Caprile and Torre, 1990; Liebowitz and Zisserman, 1999; Svedberg and
Carlsson, 1999; Bondyfalat et al., 2001). Caprile and Torre’s (1990) method is based on
three orthogonal vanishing points and will be explained in more detail in sec. 5.1.2. The
calibration information may be used to upgrade a projective reconstruction to a metric
reconstruction. However, the metric reconstruction might not fulfill all given scene con-
straints perfectly. Usually a post-processing step is needed to enforce all scene constraints.

The third approach of enforcing the constraints on the reconstructed 3D model in a
post-processing step can be achieved in many different ways. Robertson and Cipolla (2000)
expressed the scene constraints of a 3D point reconstruction as linear equations. These
equations may be stacked into a linear system which gives a new 3D point reconstruction
that satisfies the constraints. This idea will be explained later in more detail. An alternative
way of incorporating scene constraints is to consider the reconstruction process as a model
based recognition task. Models are defined using a set of primitives, such as windows
for buildings. Obviously, these models already satisfy the scene constraints, like orthogo-
nality. Model based reconstruction approaches are often based on a coarse unconstrained
3D reconstruction. In the field of architecture, two popular system are Façade (Debevec
et al., 1996) and the commercial product Canoma (Canoma, n.d.). Werner and Zisserman
(2002) automated the Façade system. Recently, Dick and coauthors (2001, 2002) used a
Bayesian framework to tackle the model based reconstruction problem.

A further aspect of applying scene constraints is the autonomy of the reconstruction
system. The reconstruction techniques we have described in sections 3.1 to 3.4 are solely
based on matched image features. Many techniques, see (Tell, 2002) for an overview, have
been presented to solve the matching process automatically and robustly. Chapter 8 will
introduce such a system. In contrast, most scene constraints have to be specified explicitly
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by a user in an interactive system. Such interactive systems might be of particular interest
for difficult reconstruction tasks like large scale environments, e.g. cities. The task is then
to produce a high quality reconstruction with a minimum of user interaction.

Finally, let us analyze the main scene constraints for points, lines and planes. In partic-
ular we will investigate which of these constraints are linear in the unknown point, line or
plane parameters. The main observation will be that all incidence relationships of points,
lines and planes are linear. These constraints can be used for our linear system in eqn.
3.110. This gives a simple, yet, powerful constrained reconstruction method for the refer-
ence plane case. Note that the linear reference plane method based on camera constraints
(sec. 3.5.1) can not integrate scene constraints since 3D features are reconstructed sepa-
rately. However, one has to keep in mind, that the reference plane has to be the correct
plane at infinity if affine invariant constraints are used. For the use of metric (or Euclidean)
invariant properties, the calibration matrix Ki and the rotation Ri of a camera Pi have to
be known, i.e. the infinite homography has to be H1

i = Ki Ri.

Projective invariant constraints

Let us represent a finite 3D point by �X, a 3D line by two planes �l = (n; l) and �0

l =
(n0l; l

0) (sec. 3.3.1) and a 3D plane as � = (n; d). We have seen that the orientation of a
lines (nl and n0l) and planes (n) may be derived directly from the known reference plane.
Therefore only the parameters l; l0 and d are unknown.

The most interesting projective invariant constraints are the incidence relationships of
points, lines and planes. We will see that these constraints are linear in the unknown feature
parameters. The scene constraint of a 3D points �X lying on a 3D plane � is:

nT �X + d = 0 : (3.114)

A 3D point �X lying on a 3D line L gives two scene constraints,

nT �X + l = 0 and n0T �X + l0 = 0 : (3.115)

Finally, the case of a 3D line L lying on a 3D plane � can be investigated using the 4� 3
matrix M = [� �l �

0

l], which comprises of three planes (see eqn. 3.65). The condition
that L lies on � means that M has rank 2. This implies that the following 3 determinants
have to vanish:

������
nx nlx n0lx
ny nly n0ly
d l l0

������ = 0 ;

������
nx nlx n0lx
nz nlz n0lz
d l l0

������ = 0 ;

������
ny nly n0ly
nz nlz n0ly
d l l0

������ = 0 :

(3.116)

The determinants are linear in the unknown parameters l; l0 and d.
Consequently, the linear constraints in eqns. 3.114, 3.115 and 3.116 may be incorpo-

rated into the linear system in eqn. 3.110.
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Affine invariant constraints

An important affine invariant property is parallelism. Constraining 3D lines or planes to
be parallel means that their orientations must be adjusted. However, we have seen that the
plane at infinity, i.e. the reference plane, provides the orientation of planes and lines (see
sections 3.3.1 and 3.4.1). For the linear system in eqn. 3.110 we have chosen a minimal
representation of the features, which includes that the orientation of lines and planes is
fixed. The only freedom is their position in space. Therefore, the constraint of 2 (or more)
lines or planes being parallel can not be included in the linear system in eqn. 3.110.

Furthermore, an over-parameterized representation of a line or plane gives a non-linear
constraint on the unknown parameters. Let two lines L1 and L2 be represented by two
finite points, i.e. L1 = (�X1; �X

0

1) and L2 = (�X2; �X
0

2). The condition that both lines are
parallel may be expressed as

�X1 � �X0

1 = � ( �X2 � �X0

2) : (3.117)

After eliminating the unknown scalar �, this constraint is non-linear in the unknown point
coordinates. Therefore, such a scene constraint can only be handled by non-linear process.

Metric & Euclidean invariant constraints

There are many important metric and Euclidean properties like lengths, angles and ratios
of lengths. However, all of them are non-linear in the unknown feature parameters except
of constraints concerning known 3D feature. For example, the constraint that the distance
between two points �X1 and �X2 is � may be expressed as

�X1 � �X2 = �
�X1 � �X2

jj�X1 � �X2jj2
; (3.118)

where jj � jj2 represents the Euclidean norm. Eqn. 3.118 is obviously non-linear in the
unknown point parameters. Let us assume that some 3D features are given: A point �Xg , a
line Lg as �l = (nl; lg), �0

l = (n0l; l
0

g) and a plane as �g = (n; dg). The condition that a
certain 3D feature is identical with a given 3D feature can be formulated as

�X = �Xg ; l = lg ; l
0 = l0g and d = dg : (3.119)

These constraints are, in contrast to all previous constraints, non-homogeneous. Conse-
quently, incorporating these constraints means that our linear system is non-homogeneous
as well, which, however, can still be solved using SVD (Hartley and Zisserman, 2000).
Note that the orientation of lines and planes is fixed.

In the following we will briefly discuss how to formulate constraints on lines and planes
so that their orientation may be also adapted to a given orientation. These constraints were
used for instance by Robertson and Cipolla (2000) to determine linearly a constrained 3D
point reconstruction from an unconstrained reconstruction. If a 3D line is represented by
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general – points general – lines ref plane – points ref plane – lines planesviews
linear non-lin. linear non-lin. linear linear linear

2 8 7 – – 2 5 1
3 7 6 13 9 2 4 1
4 6 6 9 8 2 4 1
> 4 – – – – 2 4 1

Table 3.1. Summary of the minimum number of 3D points, lines or planes needed to obtain
directly a projective reconstruction of the cameras and optionally of the 3D features in closed-
form. General configurations are compared with reference plane configurations.

two points �X and �X0, its orientation may be adapted to a given orientation �Xg by the
constraint

( �X� �X0 ) � �Xg = 0 : (3.120)

This gives 2 linear independent equations in the unknown point coordinates. The same
applies to a 3D plane, which is represented by three points �X; �X0 and �X00. A plane has a
given orientation, i.e. the normal ng, if the following two conditions hold

( �X� �X0 ) ng = 0 and ( �X� �X00 ) ng = 0 : (3.121)

In man-made environments, 3D lines and 3D planes are often known to be vertical or
horizontal to a ground plane. This gives constraints of the form 3.120 and 3.121 with �Xg

and ng as (0; 0; 1)T and (x; y; 0)T respectively.
Let us summarize the projective and Euclidean constraints which are linear in the un-

known feature parameters. Probably the most important constraints are the (projective)
incidence relationships of features (eqn. 3.114, 3.115 and 3.116). Furthermore, the Eu-
clidean (non-homogeneous) constraints concerning known 3D features are also linear (eqn.
3.119). Finally, if lines and planes are represented by points, their orientation may be
constrained to a given orientation (eqn. 3.120 and 3.121). All these constraints may be
incorporated in our DRP method for different feature types (sec. 3.5.1). This gives a very
powerful constrained reconstruction method for the reference plane case.

3.6 Summary

We have compared general configurations with reference plane configurations of multiple
views and multiple features like points, lines and planes. The relationship between cameras
and features is bi-linear in the general case. If a reference plane is known, this relationship
becomes linear in an affine space where the reference plane represents the plane at infinity.
This makes it possible to simultaneously reconstruct all cameras and all features in a single
linear system. This system embodies the core of our direct reference plane (DRP) recon-
struction approach and represents the main and novel contribution of the thesis (Rother and
Carlsson, 2002a). Furthermore, the linear system handles missing data naturally. Features
on the reference plane can be reconstructed directly, since their positions are independent
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of the cameras’ positions. Additionally, the technique permits the simple incorporation of
incidence relationships, e.g. a point lies on a plane, and constraints concerning known 3D
features, for instance the coordinates of a 3D line being known. Moreover, we have seen
that with a known reference plane, i.e. plane at infinity, the orientation of 3D features may
be determined directly. Consequently, a 3D line can be represented by only 2 parameters
(4 in general) and a 3D plane by one parameter (3 in general).

For general configurations we have reviewed three well known approaches of solving
the reconstruction problem: using (a) camera constraints, (b) structure constraints, and
(c) factorizing cameras and features from a measurement matrix. We have seen that the
assumption of having a known reference plane simplifies considerably these approaches
(Triggs, 2000). In particular, the camera constraints can be used to reconstruct all cam-
eras simultaneously from a linear system (Hartley et al., 2001). A comparison of these
approaches, and our direct reference plane approach, for both general and reference plane
configurations is carried out in the next chapter 4.

With the assumption of no missing data, table 3.1 depicts the minimum number of
3D features needed to reconstruct directly the cameras and optionally the 3D features in
closed-form. The first observation is that in the general case more 3D features are needed.
Secondly, the reference plane case offers simple, linear methods which give a unique solu-
tion for non-critical configurations. Thirdly, in the general case there is no direct, closed-
form camera reconstruction method for more than 4 views.

All these different aspects of the above discussion suggest that reference plane recon-
struction methods are superior to general reconstruction methods. The experiments in
chapter 6 will reveal that for difficult reference plane scenarios this is indeed the case.
However, one has to keep in mind that reference plane methods heavily rely on the qual-
ity of the determined reference plane, i.e. the infinite homographies. How this restriction
influences the reconstruction results is a further important aspect investigated in the exper-
iments.
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Chapter 4

Structure and Camera Recovery
– A Review and Comparison

In the previous chapter we discussed different approaches of solving the reconstruction
problem for point, line and plane features. The emphasis was not to review practical meth-
ods, but, to review and categorize theoretical approaches of solving the reconstruction
problem. These different categories were analyzed for general configurations and refer-
ence plane configurations. In order to simplify the presentation, some assumptions were
made, like image features being match correctly or specific 3D points forming a projective
basis in P3. In practice, these assumptions are either violated or might lead to numerically
unstable methods in the presence of noisy input data. In this chapter, we review practical
reconstruction methods which tackle these “real world” problems. The different methods
are classified according to the categories presented in the previous chapter. In particular, for
the general configurations (sec. 4.2) we will review methods based on camera constraints
(sec. 4.2.1), structure constraints (sec. 4.2.2) and factorization (sec. 4.2.3). For refer-
ence plane configurations (sec. 4.3), we discuss methods which use our direct reference
plane approach (sec. 4.3.1), camera constraints (sec. 4.3.2) and factorization (sec. 4.3.3).
This chapter is structured differently to the previous chapter. The emphasis of the previous
chapter was to compare general configurations with reference plane configurations. In this
chapter, methods for these two types of configurations are divided into separate sections.
The emphasis is here to review and compare methods which assume the same scenario,
i.e. either general or reference plane. Furthermore, the main focus of this chapter is a not
only to review, but also to compare practical reconstruction methods. In order to achieve
this, several different criteria will be introduced (sec. 4.1). As was seen in the previous
chapter, the different categories have different properties which are inherit by any recon-
struction algorithm of a certain category. For example, factorization methods do not allow
missing data which is a problem that has to be addressed by any method of this category.
Therefore, in order to simplify the comparative study on the essential aspects, solely the
different categories will be compared.
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Before reviewing different reconstruction methods, we would like to point out that ref-
erence plane methods have to address the task of determining a reference plane, i.e. the
infinite homography of each camera, in a pre-processing step. We will describe in the next
chapter that there are many different ways of solving this problem. For example, for gen-
eral scenes the assumption of affine cameras is sufficient to obtain the infinite homography
of each camera. Consequently, reference plane methods can be applied to general config-
urations as well. Note that the converse is also true. General reconstruction methods can
obviously be used as well for reference plane configurations. However, in order to keep a
coherent structure throughout the thesis, the general case and the reference plane case are
discussed separately in the following.

4.1 Criteria for Reconstruction Methods

In order to develop an automatic reconstruction system for practical applications, certain
design issues have to be considered. These issues are summarized in the following nine
criteria. The first eight criteria apply to both the general and the reference plane cases. The
last criterion applies only to methods which assume a known reference plane.

Missing data
We saw in chapter 1, that in most “real world scenarios” some 3D points are not visible
in all views. Therefore, it is inevitable that a reconstruction algorithm has to deal with the
problem of missing data. In practice, the amount of missing data may vary: all features
are visible in all views (no missing data), some features are visible in all views, a reference
plane is visible in all views or no feature is visible in all views. Obviously a minimum
number of features have to be visible in some views (e.g. Quan et al., 1999).

Number of used features and cameras
Ideally a multi-view reconstruction algorithm should compute all features and all cameras
simultaneously. The category of factorization algorithms comprises of such closed-form
methods. Sequential algorithms, which exploit only a subset of cameras or features at a
time are potentially inferior for the case of noisy and missing input data.

Robustness (outlier rejection)
If the image features in multiple views are matched automatically (see overview Tell,
2002), it may not be assumed that all matches are correct. Mismatched features are denoted
as outliers and might have a bad influence on the result of any reconstruction method. For
tracked image features, the proportion of outliers is in practice very low. In general, any
reconstruction algorithm which uses automatically matched image features needs an out-
lier rejection process. A popular strategy for outlier rejection is to apply a method called
“random sample consensus” (RANSAC) by Fischler and Bolles (1981) as a possible pre-
processing step (e.g. Torr, 1995). The general idea of RANSAC is to randomly select a
minimal dataset to compute a candidate solution. The model can be used to classify the
remaining data into in- and outliers. The ratio of in- and outliers represents the quality of
the estimated model. After a certain number of iterations, the best candidate is selected.
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Objective function
In practice, the image measurements are corrupted by noise, which means that the pro-
jection x of a 3D point X by a camera P does not satisfy exactly the projection relation
x � P X . The task of any reconstruction algorithm is to find a solution for the projec-
tion relation for multiple, unknown features and cameras. However, this process can be
achieved by applying different objective (cost or error) functions. A meaningful geometric
error is the distance between the image point x and its reprojection PX:

jj �x � PX jj2 ; (4.1)

where jj � jj2 is the Euclidean distance. The objective function is then the summation of
this geometric error for all points visible in all possible views. If the image noise is as-
sumed to be isotropic zero mean Gaussian, this gives the Maximum Likelihood solution.
For our direct reference plane method in sec. 3.2.2, the transformed projection relations
in 3.13 have been used. Therefore, this method minimizes a suboptimal algebraic error.
A possible post-processing step for a suboptimal method is bundle adjustment (e.g. Triggs
et al., 1999), which is a standard method in photogrammetry (Slama, 1980). It is a non-
linear optimization with the geometric error in eqn. 4.1 as its objective function. Since
most reconstruction methods do not minimize the geometric error in eqn. 4.1, it is a com-
mon post-processing step. The reason why bundle adjustment is not used directly for re-
constructing unknown features and cameras is that non-linear methods need a good initial
guess.

Combining features and scene constraints
Most of the existing reconstruction methods are formulated for point features. However,
we have motivated in the previous chapter that a natural and practical issue is the extension
to lines, planes or other features. A further extension is the use of scene constraints as
discussed in sec. 3.5.2.

Distinguished cameras or features
Ideally a multi-view reconstruction method should treat all image features and all views
uniformly. This is not always the case. In sec. 3.2.1 the projective basis in P3 was rep-
resented by specific 3D points, which are therefore treated differently to the remaining
points. The reconstruction is therefore more sensitive to noisy projections of these dis-
tinguished features than other points. Another example is an algorithm which processes
multiple views sequentially. Such a process might perform differently depending on the
order of the images.

Specifying the projective basis
In sec 3.2.1 the projective basis was specified by 3D points. Alternatively, choosing two
cameras matrices as in eqn. 3.29 uniquely defines the projective space. Ideally, a recon-
struction method should not choose a specific projective basis, since it might be an unfortu-
nate choice. For example, the measurement matrix W for factorization methods represents
all possible projective bases by the transformation H , since W = P X = PH�1HX .
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Computational effort and implementational complexity
Obviously, a reconstruction method should be as fast as possible. A faster, though inferior,
method might produce the same result after bundle adjustment as a slower, but superior,
method. A further aspect, probably worth mentioning, is how difficult is is to implement.

Specific reference plane criteria
Reconstruction methods which exploit the knowledge about a given reference plane might
treat features or cameras which lie on this distinguished plane differently to all other fea-
tures. We saw in sec. 3.2.1 that features on the reference plane do not give any information
about the cameras’ position and may therefore be reconstructed separately and directly.
Consequently, only the features which do not lie on the reference plane are needed to
determine the multi-view geometry. However, especially for “nearly flat” scenes, such a
separation of features might affect the quality of the result. Therefore, ideally all features
are reconstructed simultaneously. Furthermore, it is worth specifying if a certain reference
plane method applies as well to cameras where the projection centre lies on the reference
plane.

4.2 General Configurations

The task of uncalibrated camera and structure recovery for general scenes has been one of
the main subjects in the field of computer vision in the last decade. The result is a long list
of publications. In the following, only some important publications are reviewed. These
are grouped into the 3 categories: camera constraints (sec. 4.2.1), structure constraints
(sec. 4.2.2) and factorization (sec. 4.2.3). The basic, theoretical concepts of these methods
were presented for point features in sec. 3.2.3 (camera and structure constraints) and sec.
3.2.4 (factorization). In the following, we concentrate on techniques which are capable of
reconstructing “large-scale” environments, e.g. buildings, from a set of images with a wide
baseline. Therefore, methods which are based on small baseline images using optical flow
or recursive filters, e.g. Kalman filer, to update a 3D reconstruction sequentially (for an
overview (Zucchelli, 2002)) are not reviewed here.

4.2.1 Camera Constraints

Constraints which involve only cameras parameters and image measurements are called
camera constraints. Most existing uncalibrated reconstruction algorithms are based on
camera constraints. The most likely reason is that camera constraints provide a linear and
closed-form solution for multiple features visible in a limited number of views via the
multifocal tenors. However, the main drawback is that multifocal tensors do not exist for
more than four views. Therefore, it then becomes necessary to stitch multifocal tensors of
subsets of views together.

The camera constraints of points, lines and planes visible in 2; 3 and 4 projective views
were discussed in detail in sec. 3.2.3, 3.3.3 and 3.4.3. Faugeras (1992) and Hartley (1992)
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simultaneously introduced the fundamental matrix for 2 views. This was the starting point
for the study of the tri- and quadri-focal tensor for point and line features (e.g. Hartley,
1994; Shashua, 1994; Triggs, 1995; Hartley, 1995; Carlsson, 1995; Faugeras and Mourrain,
1995; Heyden, 1998). Furthermore, other feature types have been investigated like planes
(e.g. Luong and Faugeras, 1993; Szeliski and Torr, 1998) and conics (e.g. Kahl and Heyden,
1999; Schmid and Zisserman, 2000). A summary of the camera constraints can be found in
the books of Hartley and Zisserman (2000) and Faugeras and Luong (2001). On the basis
of the camera constraints, the geometry of multiple views may be formulated (e.g. Heyden
and Åström, 1995a; Faugeras and Mourrain, 1995; Luong and Viéville, 1996; Heyden and
Åström, 1995b). If the input data consists of outliers, robust estimator techniques like
RANSAC (Fischler and Bolles, 1981) can be applied to robustly determine the camera
geometry (e.g. Torr, 1995; Torr and Zisserman, 1997; Torr and Murray, 1997).

Robust and automatic projective multi-view reconstruction systems have been pre-
sented by Beardsley et al. (1996) and Fitzgibbon and Zisserman (1998). Beardsley et al.’s
(1996) linear reconstruction approach is sequential and based on an “intersection-resec-
tion” scheme. A new view is integrated into an existing 3D reconstruction by resection. In
the next step, new 3D structure may be derived from the new view and some other views
by intersection. Finally, a bundle adjustment step might be applied. The initial reconstruc-
tion may be obtained from the fundamental matrix of 2 views. Fitzgibbon and Zisserman
(1998) improved this method by introducing a hierarchical framework which optimally
distributes the error over the set of images. The set of all views is divided into manage-
able subsets of 2 or 3 images, where a closed-form solution is computed. On the basis of
overlapping structure and cameras, two subsets may be merged into a larger subset. This
merging process is done in a hierarchical fashion to spread the error equally over the set
of views. Additionally, the bundle adjustment algorithm may be applied at various stages.
These two methods have been successfully applied to sequences of images. However, in
order to handle longer image sequences, it is recommended to skip intermediate frames
with a small baseline (e.g. Nistér, 2000a). Variations of these ideas have been discussed
and used, together with self-calibration methods, to build complete 3D metric reconstruc-
tions from image sequences (e.g. Heyden and Åström, 1995b; Pollefeys et al., 1998; Polle-
feys, 1999; Nistér, 2000b; Nistér, 2001; Georgescu and Meer, 2002; Pollefeys et al., 2002).
An alternative method of merging subsets of 2; 3 or 4 views into a complete multi-view
reconstruction has been suggested by Triggs (1997b) for projective cameras and (Kahl and
Heyden, 1999) in the affine case. These methods are based on the so-called joint image
closure constraints, which represent a bi-linear relationship between matching tensors and
cameras. These constraints make it possible to reconstruct all cameras directly and linearly
from a set of known bi-, tri- or quadri-focal tensors. The drawback of the projective clo-
sure constraints method is that the multi-view tensors have to be scaled correctly, which is
a non-trivial task.

The application of these multi-view reconstruction methods is obviously not restricted
to a sequence of images. They might be applied as well to a set of unorganized images with
a considerable amount of missing data for e.g. large scale reconstructions like city blocks.
However, due to a lack of available features, such applications demand a lot of the “se-
quential” multi-view reconstruction methods. We will see in sec. 6.1.3 that a “sequential”
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reconstruction method based on camera constraints can fail for difficult scenarios where a
large scale environment is reconstructed from a few manually matched image features of
very wide baseline images.

The main characteristics of projective multi-view reconstruction methods based on
camera constraints may be summarized as following:

Advantages

� Missing data is treated naturally, since a subset of 2; 3 or 4 views contains in general
very little missing image data.

� It is possible to design a robust reconstruction method.

� Since most of the camera constraint methods are sequential, the geometric error in
4.1 may be minimized using bundle adjustment after each “step”.

� Other features like lines and planes may be integrated.

� The computational effort of a linear reconstruction method (e.g. Beardsley et al.,
1996) is small. However, intermediate non-linear processes like bundle adjustment
increase the computation time considerably. A simple version of a robust multi-view
reconstruction method is straightforward to implement.

Drawbacks

� Only a limited number (2� 4) of cameras may be computed in closed-form. On the
basis of the 2; 3 and 4 view tensors, the joint image closure constraints may be used
to derive all cameras in closed-form.

� Since not all cameras are considered simultaneously, the result depends on the or-
dering of the images.

� The projective space is in general defined by the first subset of 2�4 views, e.g. using
eqn. 3.29 in the 2-view case.

4.2.2 Structure Constraints

The dual counterpart to the camera constraints are the structure constraints. They involve
only 3D features and image measurements and were introduced in sec. 3.2.3. The structure
constraints only exist for point features. These constraints make it possible to switch the
role of points and cameras. Consequently, all cameras may be reconstructed on the basis
of 6; 7 or 8 3D points. In order to achieve this, the image points of four reference points
must represent the canonical image basis defined in eqn. 3.3.

The dualization of reconstruction algorithms was investigated by Hartley and Debunne
(1998) from both a theoretical and practical point of view. They found that the main draw-
back of dual reconstruction algorithms is the fact that a specific, canonical image basis has
to be chosen. It was shown in (Hartley, 1997) that it is essential to choose a “normalized”
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basis in each image. Later, Schaffalitzky et al. (2000) represented a robust reconstruction
method for multiple views based on structure constraints. They demonstrated a simple
algorithm for reconstructing 6 points in m � 3 views which minimizes the geometric
error in 4.1. This algorithm for the minimal case may be used as a “search engine” for
RANSAC to robustly compute all cameras and finally all 3D points. The main drawback
of this approach is that a sufficient number (� 6) of points must be visible in all views.

Let us summarize the main characteristics of this category of reconstruction method:

Advantages

� All cameras are computed simultaneously.

� Dual reconstruction methods may be designed robustly if a sufficient number (� 6)
of points are available for RANSAC.

� It is possible to minimize a meaningful geometric error.

� The computational effort is small. All cameras may be obtained in a first step and all
points in a second step by triangulation. Note that no pre-processing step like outlier
rejection is needed. Furthermore, the robust 6 point algorithm by Schaffalitzky et al.
(2000) is “fairly” simple to implement.

Drawbacks

� Only a limited number of 6 to 8 points may be computed simultaneously.

� Missing data is allowed only partly: A sufficient number (� 6) of points have to be
visible in all views.

� An extension to other feature types is not possible.

� Dual reconstruction methods distinguish the 6� 8 reference points.

� The projective basis is specified by the reference points.

4.2.3 Factorization

The idea of factorizing cameras and structure from a measurement matrix was introduced
by Tomasi and Kanade (1992) (sec. 3.2.4). Reid and Murray (1996) showed that under the
assumption of isotropic zero mean Gaussian noise independent and equal for each image
point, factorization achieves a Maximum Likelihood affine reconstruction, which means
that the reprojection error (eqn. 4.1) is minimized. Irani and Anandan (2000) and Mor-
ris and Kanade (1998) extended the factorization method by representing point features
by a correlated, directional uncertainty model. Hence, the objective function minimizes a
covariance-weighted squared-error, i.e. the Mahalanobis distance. Affine factorization was
extended to para-perspective cameras by Poelman and Kanada (1994). Sparr (1996) pre-
sented a method, similar to factorization, based on the idea of “kinetic depths” introduced
in (Sparr, 1994).
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A perspective version of the factorization method was first presented by Sturm and
Triggs (1996). In contrast to the case of parallel projection, the measurement matrix con-
tains unknown projective depths, i.e. the “unscaled” measurement matrix (sec. 3.2.4).
However, these scale factors are not arbitrary, they must satisfy certain internal constraints.
Sturm and Triggs (1996) suggested determining the projective depths sequentially from
the fundamental matrices of pairs of views. However, this step is not trivial since com-
puting the fundamental matrices is equivalent to solving the complete reconstruction prob-
lem. An alternative and more simple way is to determine the projective depths iteratively
(Triggs, 1996; Qian and Medioni, 1999; Heyden et al., 1999; Hartley and Zisserman, 2000).
All projective depths are initially set to 1, which corresponds to affine cameras. Given an
estimate of the projective depths, factorization is applied to obtain the cameras and 3D
structure. The projective depths can then be re-estimated by reprojection of the recon-
structed 3D points. This approach produces good results (e.g. Heyden et al., 1999; Hartley
et al., 2001). However, if the number of points or views is large, this method is very time
consuming.

The main drawback of all factorization methods is that it is awkward to handle missing
data. Tomasi and Kanade (1992) suggested choosing the largest full submatrix of the
measurement matrix for an initial reconstruction. The missing elements may be derived
from the initial reconstruction by intersection. However, searching for this submatrix is
an NP-hard problem. Jacobs (1997) improved this method of filling in missing data, by
fitting a rank-3 matrix to the measurement matrix. This fitting is achieved by considering
randomly small submatrices of the full measurement matrix. Consequently, no image data
is distinguished as in (Tomasi and Kanade, 1992). Recently, Martinec and Pajdla (2002)
suggested combining Jacobs (1997) method of handling missing data and Sturm and Triggs
(1996) method of deriving the projective depths from known epipolar geometry. This gives
a general projective factorization method which handles occlusions.

Let us summarize the main characteristics of factorization methods:

Advantages

� All cameras and all point features are reconstructed simultaneously.

� For affine cameras, the geometrically meaningful reprojection error is minimized.
Even more advanced error models might be incorporated in the affine factorization
framework. In the projective case, an algebraic error is minimized.

� All cameras and features are treated uniformly when there is no missing data.

� No specific projective basis is chosen.

� With of no missing data, the affine factorization method is very simple to imple-
ment. For projective cameras and missing data, factorization methods become more
complex.

Drawbacks

� Missing data must be “hallucinated” by a non-trivial pre-processing step.
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� Outlier rejection requires an additional pre-processing step. However, this issue has
not been addressed to our knowledge.

� Using lines or other features together with point features or separately is possible in
the affine case (e.g. Quan and Kanade, 1997; Kahl and Heyden, 1999), but, not in
a one-step factorization as for point features only (sec 3.3.4). Alternatively, lines or
planes may be represented by 2 or 3 3D point features (e.g. Triggs, 1996; Morris and
Kanade, 1998). However, this means that for lines some multi-view tensors have to
be known. Projective factorization of planes and cameras from planar homographies
only has been suggested by (Shashua and Avidan, 1996; Triggs, 2000; Rother et al.,
2002).

� In the projective case, the “projective depths” have to be derived in a non-trivial
pre-processing step.

� Factorization methods are in general slow, since the size of the measurement matrix
grows linearly with the number of features and cameras, i.e. W = 3m � n, for n
points and m cameras.

4.3 Reference Plane Configurations

The idea of investigating multi-view structure and camera recovery from a plane+parallax
point of view has a long history (e.g. Carlsson and Eklundh, 1990; Luong and Faugeras,
1993; Shashua and Navab, 1994; Sawhney, 1994; Kumar et al., 1994; Kumar et al., 1995;
Oliensis, 1995; Boufama and Mohr, 1995; Irani and Anandan, 1996; Shashua and Avi-
dan, 1996; Avidan and Shashua, 1998; Irani et al., 1998; Szeliski and Torr, 1998; Wein-
shall et al., 1998; Criminisi et al., 1998; Cross et al., 1999; Johansson, 1999; Triggs, 2000;
Sturm, 2000; Xu et al., 2000; Rother and Carlsson, 2001; Hartley et al., 2001; Rother and
Carlsson, 2002b; Irani et al., 2002; Robertson and Cipolla, 2002; Rother et al., 2002; Rother
and Carlsson, 2002a). In the following we will review those works which exploit a known
reference plane for the reconstruction task. Publications which discuss the task of deter-
mining the reference plane are reviewed in chapter 5. Most of the reference plane methods
which address the task of 3D reconstruction have already been discussed in sec. 3.2.3.
They use either camera or structure constraints to solve the problem. In the following this
discussion is briefly summarized. Moreover, we review reference plane methods belong-
ing to the 3 categories: Direct reference plane approach (sec. 4.3.1), camera constraints
(sec. 4.3.2) and factorization (sec. 4.3.3). The basic, theoretical concepts of these methods
were presented for point features in sec. 3.2.2 (direct reference plane method), sec. 3.2.3
(camera constraints) and sec. 3.2.4 (factorization). In particular we compare our direct
reference plane method (Rother and Carlsson, 2002a), with the factorization method of
Triggs (2000) and the camera constraints method of Hartley et al. (2001). In our opinion,
these are the best techniques from each category.

The papers of (Irani and Anandan, 1996; Irani et al., 1998; Weinshall et al., 1998;
Criminisi et al., 1998) analyzed the structure and camera constraints for 2 and 3 views.
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The developed techniques can be used for different tasks: verifying the consistency of
the parallax geometry, computing the Euclidean height from the reference plane or view
synthesis (Irani et al., 2002). These papers are based on early work (Sawhney, 1994; Kumar
et al., 1994; Kumar et al., 1995), which studied shape recovery from projective and affine
cameras using plane+parallax. Note that these methods and its applications were discussed
in sec. 3.2.3 in more detail. Another interesting early paper by Shashua and Navab (1994)
investigates the 3D scene including a reference plane. They introduce the term “relative
affine structure”, which represents the affine 3D space with the reference plane as the plane
at infinity. Furthermore, they propose a multi-view, point-based reconstruction method
which computes first the epipolar geometry and secondly the 3D structure depending on a
reference view. Cross et al. (1999) investigated the multi-view geometry of smooth objects
together with a reference plane. The task of reconstructing multiple planes and cameras
(see sec. 3.4) has been studied in (Luong and Faugeras, 1993; Shashua and Avidan, 1996;
Szeliski and Torr, 1998; Johansson, 1999; Sturm, 2000; Xu et al., 2000).

Oliensis (1995) (also Oliensis, 1999; Oliensis and Genc, 1999) applied the idea of
linearizing the reconstruction problem from known infinite homographies to continuous
image sequences. We illustrated in fig. 2.3(c) that two images of a purely rotating camera
are related by an infinite homography. This will be proved formally in sec. 5.2.4. The
basic assumption in Oliensis’s (1995) work is a small movement of the camera between
successive frames, i.e. small baseline. This means that the infinite homography may be
determined approximately. As was seen in sec. 3.2.1, this information is enough to deter-
mine a linear relationship between points and cameras. This may be used to initialize an
iterative reconstruction algorithm (Oliensis, 1999). Furthermore, if the camera calibration
is known, i.e. K, the rotation R can be determined since H1 = KR, and a Euclidean
reconstruction may be obtained (Oliensis and Genc, 1999).

We now compare three different reference plane reconstruction methods in detail:
Rother and Carlsson (2002a)(sec. 4.3.1), Triggs (2000)(sec. 4.3.3) and Hartley et al.
(2001)(sec. 4.3.3). Since all approaches compute the solution from a large measurement
matrix using SVD, their computational effort may be compared. According to Golub and
Van Loan (1996) a full SVD of a matrix of size a � b requires 4a2b + 8ab2 + 9b3 flops.
For some methods it is sufficient to compute solely V and D of the SVD of a matrix
S = UDV T . This requires only 4ab2 + 8b3 flops. Specifically, we consider a realistic
scenario of n = 400 points visible in all m = 10 views, a scenario which corresponds
roughly to the “house” example in sec. 6.1.3.

4.3.1 Direct Reference Plane Approach

The idea of reconstructing points and cameras simultaneously from one linear system was
originated with Rother and Carlsson (2001). Rother and Carlsson (2002b) improved nu-
merical issues of the method (see also (Rother and Carlsson, 2002a)). We call our method
the Direct Reference Plane (DRP) method. It was introduced in sec. 3.2.2 for points fea-
tures and extended to line (sec. 3.3.2) and plane features (sec. 3.4.2) in sec. 3.5.1. For the
special case of calibrated cameras with known orientation, the fact that points and cam-
eras have a linear relationship was previously mentioned in (Debevec et al., 1996; Shum
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et al., 1998; Robertson and Cipolla, 2000). However, they did not exploit this idea to re-
construct structure and cameras simultaneously. Recently, (Robertson and Cipolla, 2002)
used our DRP reconstruction method together with a 2D map for the reconstruction of
large-scale architectural environments (sec. 5.1.3).

The main difference between the DRP method and other reference plane approaches
presented in this section is that features and cameras are reconstructed simultaneously.
However, as explained in sec. 3.2.1, this is only true for features which do not lie on the
reference plane. Therefore, features on and off the reference plane have to be separated in
a pre-processing step. How this task is solved in practice is discussed in chapter 6. Note
that this issue is irrelevant if the reference plane is the correct plane at infinity.

Let us discuss the main characteristics of the DRP method:

Advantages

� Missing data is handled naturally, since the projection equations are used directly.

� All features (not on the reference plane) and all cameras are determined simultane-
ously.

� Since points, lines, planes and cameras give linear projection relations, all three
feature types may be reconstructed together with all cameras in a single linear system
(sec. 3.5.1). Furthermore, the methods allows the simple incorporation of incidence
relationships, e.g. a point lies on a plane, and constraints concerning known 3D
features, for instance the coordinates of a 3D line being known (sec. 3.5.2).

� All cameras and features are treated uniformly if the reference plane is known.

� The method may use infinite cameras on the reference plane as well (sec. 6.1).

� The method is simple to implement, especially if no point lies on or close to the
reference plane, for instance the reference plane is the correct plane at infinity.

Drawbacks

� The outlier rejection process is a required pre-processing step. RANSAC may be
applied here as well. The advantage is here that the DRP method simplifies the
non-linear step of determining a minimal multi-view reconstruction. This will be
discussed in more detail in chapter 8.

� An algebraic error is minimized. Therefore, a final bundle adjustment step is recom-
mended.

� Choosing the reference plane as the plane at infinity fixes 11 of the 15 degrees of
freedom of the projective space. The remaining 4-dimensional space of solutions is
represented by the 4-dimensional nullspace of the system matrix. However, this spe-
cific projective space biases the linear system, especially for “nearly flat” scenes. 3D
points which are very close to the reference plane have very large coordinates. Such
a negative effect can be eliminated by weighting the linear equations as discussed in
chapter 6.
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� Features on and off the reference plane are reconstructed separately.

� The linear system is of size 3mn� 3(m+ n) = 12000� 1230. Since it is sufficient
to compute only V of the SVD, this requires approximately 87:5 Gflops. This is
slowest of all 3 methods considered here, which is due to the fact that both features
and cameras are reconstructed simultaneously.

4.3.2 Camera Constraints

Using the camera constraints for computing all cameras simultaneously was suggested by
Hartley et al. (2001), which is based on a brief description in (Hartley and Zisserman,
2000). In contrast to all other reconstruction methods which use either camera or structure
constraints (e.g. Shashua and Navab, 1994; Irani and Anandan, 1996; Irani et al., 1998),
Hartley et al.’s (2001) method derives all cameras simultaneously. For the case of point
features, this approach was explained in sec. 3.2.3. The extension to line (sec. 3.3.3) and
plane (sec. 3.4.3) features is straightforward (sec. 3.5.1), since they give linear equations
for the camera centres as well.

Most of the characteristic of this method have already been discussed for the general
case (sec. 4.2.1). The different and reference plane specific characteristics are:

Advantages

� All cameras are determined simultaneously from camera constraints of points, lines
and planes.

� No difference between features on and off the reference plane.

� Hartley et al. (2001) suggested reducing the computation time by reducing the linear
system of each subset of views. With the worst case assumption of no missing data,
the final linear system after reduction is of size 12

�
m
4

� � 3m = 2520� 30, which
requires 9:3 Mflops. As with the previous method, only V of the SVD has to be
computed. The time required for reducing a 4-view system of size 81 � 400 � 12
is 18:6 Mflops. Therefore, the total computation time is (18:6

�
m
4

�
+ 9:3) Mflops

= 3:9 Gflops. Consequently, this approach is faster than our DRP method. The
computation of the point structure in the second stage may be neglected. This is not
surprising since only the cameras and not the features are reconstructed. Note that
with missing data the computation time is considerably smaller.

� The method may use infinite cameras on the reference plane as well.

Drawbacks

� The features are not determined simultaneously with the cameras.

� Since the structure is computed in a post-processing step, no scene constraints may
be included in the approach.

� The method is more complicated to implement than the DRP method, since combi-
nations of views have to be considered.
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4.3.3 Factorization

Triggs (2000) suggested a point-based factorization method for the reference plane case
(see sec. 3.2.4). Furthermore, he introduced line (sec. 3.3.4) and plane (sec. 3.4.4) fac-
torization methods, which can be combined into one system (sec. 3.5.1). Later, Rother
et al. (2002) explained the plane-based factorization approach in more detail and presented
experimental results. These factorization methods share most of the characteristics of the
general factorization approaches listed above. Especially, the problems of missing data and
“projective depths” computation have to be addressed. An important aspect of the point-
based factorization method is that the heights of the points from the reference plane are
reconstructed. Consequently, this method is not applicable for infinite reference planes.
For the reference plane case, the factorization methods have the following different or ad-
ditional characteristics:

Advantages

� All features and all cameras are determined simultaneously. Note that for the inte-
gration of lines, the multifocal tensors must be known.

� Features on and off the reference plane are reconstructed simultaneously. This is
possible since all information about the features, except their distance to the plane,
is derived in advance. The only remaining unknown, i.e. the distance, is a finite
value for points on and “close to” the plane. Note, the DRP method uses the inverse
depth, i.e. points on the reference plane are at infinity.

� The measurement matrix is, in contrast to the other 2 reference plane methods, small,
i.e. 3m � n = 30 � 400. In this case a full SVD has to be performed which
requires 0:6 Gflops. Consequently, this is the fastest of all 3 reference plane methods
considered here. Factorization might only be slower than Hartley et al.’s (2001)
method if a very large number of points is used.

Drawbacks

� Only applicable for finite reference planes.

� Triggs (2000) suggested fixing 14 of the 15 degrees of freedom of the projective
space in advance.

� The methods have not been formulated for cameras on the reference plane1.

1It might be possible to reformulate the approach for infinite cameras as well.
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4.4 Conclusion

Several practical, multi-view reconstruction methods for general and reference plane con-
figurations were reviewed and compared. The basic, theoretical concepts of these methods
were introduced in the previous chapter. The discussion was based on several criteria
which “real world” multi-view reconstruction systems have to fulfill. For general con-
figurations, existing methods have been categorized into three categories, methods using
camera constraints, structure constraints and factorization methods. The main characteris-
tic of camera constraint methods is that they are sequential. Structure constraint methods
have the limitation that a minimum number of 6 points has to be visible in all views.
The main drawback of factorization methods is that missing data has to be hallucinated.
If a reference plane is known, three different methods representing three different cate-
gories were reviewed. These were our direct reference plane (DRP) method (Rother and
Carlsson, 2002a), the camera constraint method (Hartley et al., 2001) and the factorization
method (Triggs, 2000). All three methods reconstruct the scene directly from a singular
value decomposition of a measurement matrix. The DRP method and factorization method
compute both features and cameras simultaneously. In contrast to this, the camera con-
straint method determines only the cameras simultaneously. The main drawback of our
DRP method is that features on the reference plane have to be reconstructed separately.
Note that this is not a problem if the reference plane is the actual plane at infinity. The
main disadvantage of the factorization method is that it is not applicable for infinite refer-
ence planes, and missing data is not treated naturally.

The main conclusion of the comparative study is that each category has its advantages
and drawbacks. This is valid for general and reference plane configurations. Therefore,
the decision of the best method is application dependent. In section 6.1, the performance
of several existing methods of different categories are evaluated in experiments. They are
applied to different 3D scenarios ranging from simple small-scale environments to difficult
large-scale environments. The experimental study will support the conclusion that the
choice of method depends heavily on the 3D scenario.



Chapter 5

Determining a Real or Virtual
Reference Plane

The basic idea of the reference plane approach is to divide the reconstruction task into
two steps. First, determine a real or virtual reference plane and second, use the reference
plane to reconstruct the structure and cameras linearly and simultaneously. The second
step was discussed for different feature types in chapter 3 and we presented our direct ref-
erence plane (DRP) approach. Chapter 6 will analyze experimentally this approach. This
chapter investigates the first step of determining a real or virtual reference plane. As was
seen in sec. 3.2.1, four or more coplanar 3D points define a real reference plane. Their
projection into an image is sufficient to determine uniquely the infinite homography of this
view. With known infinite homographies, 3D features and cameras may be reconstructed
simultaneously from a linear system. This leads to the important observation: The key to
simplifying the problem of structure and camera recovery is the infinite homography. Nat-
urally the question arises: What source of information is needed to determine the infinite
homography. Obviously, 3D features lying on a real reference plane are sufficient, how-
ever, are there alternative ways? For all alternatives, the infinite homography represents a
virtual reference plane. Virtual reference planes allow us to apply the reference plane re-
construction approach to many practical scenarios where no real reference plane is visible.
The source of information needed to determine the infinite homography can be broadly
classified into: Information about the scene (sec. 5.1) and information about the cameras
(sec. 5.2). The first class consists of scenes which have: a real reference plane (sec. 5.1.1),
three mutually orthogonal directions (sec. 5.1.2) or an additional orthographic “over”view
(sec. 5.1.3). The second class consists of cameras which have: constant or known rota-
tion and calibration (sec. 5.2.1), parallel projection (affine camera) (sec. 5.2.2), known
epipolar(multi-view) geometry (sec. 5.2.3) or a small baseline (sec. 5.2.4). Table 5.1
summarizes this collection of possible techniques together with the type of reconstruction,
metric, affine or projective. Note that we do not claim that this collection is complete.

105



106 Chapter 5. Determining a Real or Virtual Reference Plane

These general techniques to determine the infinite homography are part of earlier pub-
lications and (mostly) well known. Our main contribution is twofold. First, we unify
these different techniques to determine the infinite homography with the term reference
plane. Secondly, we point out that both real and virtual reference plane configurations can
be reconstructed with e.g. our direct reference plane approach. This contribution is part
of (Rother and Carlsson, 2002b). This publication also introduces a novel algorithm for
the simultaneous computation of the infinite homographies from known epipolar geometry
(sec. 5.2.3).

For readers who are unfamiliar with the concept of real and virtual reference planes,
we would like to stress the following. All configurations for which the infinite homography
of each camera can be derived are reference plane configurations. The infinite homogra-
phy may be induced by a real reference plane. In all other cases, the infinite homography
represents a virtual reference plane in the scene. The virtual reference plane can be a finite
plane or the correct plane at infinity. Consequently, the two expressions “known infinite
homographies” and “known real or virtual reference plane” are equivalent. For succinct-
ness the former is used more frequently in the thesis. Moreover, for 3D reconstruction
using a reference plane, it is not important if the plane is real or virtual. Therefore, the pre-
fix “real or virtual” is commonly omitted, thus “real or virtual reference plane” becomes
the “reference plane”. However, it is important to remember that a reference plane does
not only refer to a real reference plane.

5.1 Information About the Scene

The first source of information to determine the infinite homographies, i.e. a real or vir-
tual reference plane, is the scene or objects in the scene. We will analyze certain scene
properties and constraints which allow the calculation of the infinite homographies.

5.1.1 Real Reference Plane

(a) (b) (c)

Figure 5.1. An example of a real scene plane where 4 coplanar 3D points (circles) are visible in
all views.
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Fig. 5.1 shows a scenario with a real finite reference plane. The four corners of the
box define the plane and are visible in all views. As discussed in sec. 3.2.1, these 4
points may be used to determine the infinite homographies H1

i for each view i from eqn.
3.10. If the real reference plane is already stabilized, according to eqn. 2.33, the infinite
homographies are H1

i = I . This means that we obtain calibrated, translating camera with
an identity calibration matrix. This real reference plane scenario has been considered as
well in (Shashua and Navab, 1994; Heyden and Åström, 1995a; Triggs, 2000). Obviously,
more 3D points give an over-constrained linear system which can be solved using SVD
(e.g. Hartley and Zisserman, 2000). Lines may be used instead of points. If a camera
centre lies on the reference plane, the corresponding infinite homography is singular (see
fig. 2.6). This is, however, an unrealistic scenario for a real reference plane.

Furthermore, it is not necessary to have the same 3D features visible in all views.
A certain number of known inter-image homographies H1

ij = H1

j H1�1
i (sec. 2.4),

between view i and j, is sufficient as well. However, the set of known homographies
has to be consistent, i.e. H1

ij = H1

ikH
1

kj . One way of deriving the individual infinite
homographies H1

i from the inter-image homographies H1

ij is to assume that H1

1 = I ,
which gives H1

i = H1

1i . However, depending on the image coordinates, some inter-
image homographies might be inaccurate. This could introduce a substantial numerical
instability in the reconstruction process. How this issue is solved in an optimal way is
not discussed in the thesis. However, we will see in the experiments (chapter 6) that for
practical applications it is important to obtain accurate homographies. In order to avoid this
source of error, we will concentrate in the experiments on the case of 4 or more coplanar
scene points visible in all views.

The process of automatically determining the inter-image homographies of a real scene
plane can be solved in different ways. The dominant scene plane might be found on the
basis of point matches (e.g. Tell, 2002; Hartley et al., 2001). In a first step all potential
point matches are determined. The second step finds robustly the dominant homography
which has the highest number of inliers, i.e. point matches. Alternatively, direct methods
to determine the inter-image homographies have been suggest (Bergen et al., 1992; Irani
and Anandan, 1999a; Irani and Anandan, 1999b). Note that both methods might return
a homography which does not correspond to a real plane in the scene. This can be seen
from the fact that 4 corresponding image points, which are in “general” pose, do always
specify a homography. However, there is no constraint that the 4 corresponding 3D points
are coplanar. A homography which is induced by a real scene plane has to satisfy eqn.
3.105.

5.1.2 Orthogonal Scene Directions

In the previous sec. 5.1.1 we assumed that a real scene plane is visible in all views. Obvi-
ously, this is a considerable restriction. The motivation of this section, and of subsequent
ones in this chapter, is to derive a virtual reference plane by some mean. This makes it
possible to apply the reference plane approach for 3D reconstruction to scenarios where
no real reference plane is visible. One way is to use points at infinity as reference points.
Such points are given by directions in the scene. Figure 5.2 shows such an example of a
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(a) (b) (c)

Figure 5.2. The royal castle in Stockholm. It is a building which has three dominant directions
(superimposed straight lines).
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Figure 5.3. The relationship between the camera coordinate system (CCS) and the Cartesian basis
coordinate system (BCS). The vanishing points vx; vy and vz correspond to mutually orthogonal
scene directions.

building which has 3 dominant directions. The projection of a point at infinity is a van-
ishing point (sec. 2.1). The advantage of using infinite instead of finite reference points is
that a scene direction might be observed from very different camera positions. In general,
4 infinite reference points can be used in the same way as in the finite reference point case
(sec. 5.1.1). Unfortunately, not many scenes have 4 different dominant directions which
can be detected in an image. However, man-made environments are often characterized by
3 mutually orthogonal directions (fig. 5.2). In the following we will show that 3 vanishing
points of orthogonal scene directions can be used to compute the camera’s rotation R and
calibration matrix K and therefore the infinite homographyH1 = KR. In sec. 6.1.3, we
use this approach to reconstruct buildings, like the city hall in Stockholm, from a collection
of images of very different viewpoints.

It is well known (Caprile and Torre, 1990) that a special camera with zero skew and
aspect ratio one,

K =

0
@ f 0 x0

0 f y0
0 0 1

1
A ; (5.1)
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can be calibrated from 3 vanishing points of orthogonal directions. We denote such a
camera as a “square pixel” camera. The first step of the calibration process is to deter-
mine the 3 vanishing points vx; vy and vz of mutually orthogonal scene directions. Section
8.2 describes an algorithm, based on (Rother, 2000; Rother, 2002), to perform this task
automatically. Assume that the 3 vanishing points have been detected successfully. The
corresponding scene directions define a Cartesian basis coordinate system (BCS) in the
scene. Fig. 5.3 shows the geometrical relation between the BCS and the camera coordi-
nate system (CCS). The orthogonality constraint of the 3 directions can be algebraically
expressed as

hK�1vx;K�1vyi = 0 ; hK�1vx;K�1vzi = 0 and hK�1vy;K�1vzi = 0 ; (5.2)

where h�; �i denotes the scalar product. From these equations the focal length f and the
principal point (x0; y0) of the specific camera model in eqn. 5.1 can be computed (Caprile
and Torre, 1990). The focal length is given as

f =
p

vxxvyx + vxyvyy : (5.3)

Alternatively, two other pairs, (vx; vz) or (vy; vz), can be used to compute f . The princi-
pal point is the orthocentre of the triangle formed by vx; vy; vz. Liebowitz and Zisserman
(1999) use the absolute conic for this calibration process. However, if one or two of the
vanishing points are at infinity in the image (so-called degenerate cases) not all internal
camera parameters can be derived (Liebowitz and Zisserman, 1999; Rother, 2000). This
occurs when the image plane is parallel to the corresponding axis of the BCS. In practice,
we avoid these degenerated cases by assuming fixed internal camera parameters for the pro-
cess of acquiring images. This allows us to improve the camera calibration significantly by
averaging all those internal camera parameters which were derived from non–degenerated
cases.

With the knowledge of K, the rotation matrix R can be determined. Therefore, the
correspondence between the 3 vanishing points and the x-, y- and z-axis of the BCS has to
be known. Additionally, the “direction” given by each vanishing point has to be uniquely
determined, i.e. the sign of K�1vx;y;z. If this has been solved, we may define

R =
��K�1vxj �K�1vyj �K�1vz

�
with det(R) = 1 :

Since the condition det(R) = 1 has to be fulfilled, there are 24 possible rotation matrices
in case of unknown correspondence. If the correspondence between the vanishing points
and the axis of the BCS are known, however, their direction is unknown, there are still 4
possible rotation matrices. To determine R, 2 of the 3 vanishing points are sufficient since
K�1vz = (K�1vx) � (K�1vy). How to solve the task of computing R automatically,
given the 2 or 3 vanishing points, is explained in sec. 8.3. Furthermore, sec. 8.3 describes
the complete process of computing the rotation and calibration of multiple cameras which
observe an object with 3 dominant orthogonal directions.
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5.1.3 Using an Additional Orthographic “Over”view

The previous method to determine the infinite homographies, i.e. a virtual reference plane,
has the disadvantage that all objects in the scene must have the same 3 dominant orthog-
onal directions. Consider a city environment with many buildings. All buildings might
have a common vertical direction. However, a map of this environment might reveal that
they have a different orientation on the ground plane, i.e. different dominant directions.
Recently, Robertson and Cipolla (2002) considered this scenario. They derive the infinite
homographies from an additional orthographic “over”view like a 2D map. This is possible
if five or more corresponding points between the map and each image is identified. Ad-
ditionally, the vanishing point of the vertical direction in the scene has to be determined.
Moreover, they derive explicitly the camera’s rotation and focal length. This has been
achieved by assuming a “square pixel” camera with a known principle point. The camera’s
rotation is uniquely defined with the additional constraint that the picture was taken the
“right way up”. On the basis of the known infinite homographies, they applied our DRP
reconstruction method together with scene constraints on 3D lines with a known direction
(see eqn.3.120).

This idea can be further exploited for the reconstruction of any object where an ad-
ditional orthographic “over”view is available. One could think of technical drawings, i.e.
CAD drawings, which are orthographic views. Navab et al. (2000) considered the scenario
of lines in one orthographic and two perspective views. They applied their technique for
the reconstruction of pipelines in a power plant. In this case two views and a CAD drawing
have been accessible.

5.2 Information About the Camera

The second source of information to determine a virtual reference plane, i.e. the infinite
homographies, is the camera. Certain properties of the camera or its motion are sufficient
to retrieve the infinite homographies.

5.2.1 Constant or Known Rotation and Calibration

Consider the general projection of a point Xi by a Euclidean camera Pj with calibration
matrix Kj , rotation Rj and camera centre �Qj (see eqn. 2.25)

xij � Kj Rj ( I j � �Qj) T T�1 Xi : (5.4)

As discussed in sec. 2.4, the infinite homographyH1

j depends on the camera’s calibration
Kj and rotation Rj , H1

j = Kj Rj : The idea of this section is to compute H1

j from some
knowledge aboutKj andRj . Obviously, if bothKj andRj are known, the infinite homog-
raphy H1

j = Kj Rj is known as well. However, what happens if one or both of them are
constant? In eqn. 5.4 the 4�4 transformation matrix T is introduced, which represents, as
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discussed in sec. 2.3.2, the choice of the projective coordinate system. Consider the case
where T is an affine transformation

TA =

�
A t
0T 1

�
with 0 = (0; 0; 0)T : (5.5)

This transformation leaves the plane at infinity unchanged since T T
A�1 � �1. Note, in

eqn. 5.4 the transformation of a 3D point is T�1A X. If TA is the identity matrix, TA = I ,
the final reconstruction of the points and cameras is metric, since we assumed a Euclidean
camera. As explained in sec. 2.2.3, the reconstruction is still metric if TA is a similarity
transformation, i.e. A = �R where R is a rotation matrix. This reflects the freedom to
rotate and scale (�) the complete reconstruction. However, for an unconstrained matrix A
the final reconstruction is affine, as discussed in sec. 2.2.2. Eqn. 5.4 may be written for the
transformation matrix TA as

xij � Kj Rj A ( I j t� �Qj) T
�1
A Xi : (5.6)

The vector t defines the origin of the coordinate system and is not relevant in this context.
For calibrated cameras with a known rotation, i.e. Kj and Rj are known, we may choose
A = I and Hj is then given as Hj = Kj Rj . In this case TA = I and the reconstruction is
metric as discussed above. In case of calibrated, translating cameras, i.e. Kj is known and
Rj is constant (Rj = R), we may choose A = R�1 and Hj is given as Hj = Kj . The
matrix TA represents a similarity transformation and the final reconstruction is therefore
metric. Finally, for translating cameras with fixed internal camera parameters, i.e. Kj is
constant (Kj = K) and Rj is constant (Rj = R), we may choose A = (K R)�1 and
Hj = I . The reconstruction is affine since TA represents an affine transformation. An
experimental analysis showed, however not depicted here, that if the camera calibration is
approximately known, it is preferable to set Hj as Hj = K. Table 5.1 summarizes these
3 cases. For all three approaches the virtual reference plane is the correct plane at infinity
since the transformation T in eqn. 5.4 is either affine or metric. Consequently, no finite
3D point can lie on the virtual reference plane. This has the important advantage that our
DRP reconstruction method can be applied directly without excluding any finite 3D point
(or line) from the linear system.

In practice, the camera matrix Kj can be obtained, i.e. calibrated, in many different
ways from metric scene properties. The traditional way is to use a calibration object with
known properties, like a calibration grid. Section 5.1.2 explained how to calibrate a “square
pixel” camera from 3 vanishing points of mutually orthogonal scene directions. Note that
the task of auto- (or self-) calibration is not relevant in this context since the cameras have
to be calibrated before performing the reconstruction task.

The fact that purely translating cameras produce affine structure was first noted by
Van Gool et al. (1994). It was also discovered by Shashua and Navab (1994) under the
name of “relative affine structure”. Shashua and Navab (1994) and Beardsley et al. (1994)
suggested “sequential” reconstruction methods for this case. However, as we have seen
in sec. 3.2.2, this approach is sub-optimal since both cameras and 3D features may be
determined linearly and simultaneously. The reconstruction task for calibrated cameras
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with a known orientation has been studied in (Debevec et al., 1996; Shum et al., 1998;
Robertson and Cipolla, 2000; Antone and Teller, 2002). These publications once again
did not exploit the fact that known infinite homographies can be used to reconstruct both
cameras and 3D features simultaneously.

5.2.2 Affine Cameras
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X3 X4

Affine views
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x3
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Reference
plane

Reference
plane
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view
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Figure 5.4. (a) Determining the image of a fourth coplanar point X4 for affine cameras. (b) The
concept of moving the plane at infinity �1 from its “true” location to the reference plane.

In this section we will show that the simple assumption of having affine cameras can
be used to reconstruct general, unconstrained scenes where at least 3 points are visible in
all views. This approach to determine a reference plane together with our DRP method has
been introduced in (Rother and Carlsson, 2002b), and can be considered as an alternative
approach to affine factorization (Tomasi and Kanade, 1992) (sec. 3.2.4). Both approaches
determine the cameras and 3D points simultaneously from a measurement matrix. The
main drawback of factorization methods is that missing data is not handled naturally. The
main disadvantage of our method is that certain reference points are distinguished, i.e. have
a greater influence on the performance (see sec. 6.1.2).

The basic idea of this approach is to “hallucinate” a finite reference plane in the scene.
The reference plane is defined uniquely by 3 reference points visible in all views. As
shown in sec. 5.1.1, 4 coplanar 3D points are sufficient to determine uniquely the infinite
homographies. A fourth “virtual”, coplanar reference point can be determined with the
assumption of parallel projection. Assume that 3 reference points X1;X2;X3 in “general”
position are visible in all views. A fourth coplanar point X4 may be determined as X4 =
X3+X2�X1 (see fig. 5.4 (a)). Since affine cameras perform a parallel projection on scene
points, the affine image of X4 in view j is x4j = x3j + x2j � x1j . Alternatively, the fourth
point could be chosen as the centroid of the 3 reference points.

However, how are affine cameras embedded in our “reference plane concept”, where
the reference plane represents the plane at infinity? Consider the mapping of a general
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projective camera as defined by eqn. 2.27

xij �
0
@ m11 m12 m13 m14

m21 m22 m23 m24

v1 v2 v3 v4

1
A Xi : (5.7)

As described in sec. 2.3.2, the last row of the camera matrix is the principle plane �prin =
(v1; v2; v3; v4)

T of the camera. It contains the camera centre and is parallel to the image
plane. In a projective space where the plane at infinity is at its true location, the principle
plane of an affine camera is the plane at infinity, �prin = �1 = (0; 0; 0; 1)T (fig. 5.4(b)
left). However, we have seen in sec. 3.2.1 that the reference plane has to be the plane at
infinity in order to linearize the relationship between 3D features and cameras (fig. 5.4(b)
right). This means that in this particular projective space all camera centres lie on a plane
�prin which is different to �1. Therefore, affine cameras may be treated as projective
cameras. This leads to a unified treatment of parallel and perspective projection in a single
framework, which will be explained in more detail later. From the 4 coplanar reference
points, the infinite homographiesHj can be derived as discussed in sec. 5.1.1. The recon-
structed cameras provide the principle plane �prin, which contains all the camera centres.
Finally, by mapping �prin to �1 using eqn. 2.17 the projective reconstruction transforms
into an affine reconstruction.

How does this approach compare to other affine reconstruction methods? In our ap-
proach 6 parameters of each affine camera are determined directly by the infinite homog-
raphy. The remaining 2 unknown parameters, which represent the direction of an affine
camera, are reconstructed simultaneously with the scene points. In contrast, affine fac-
torization (Tomasi and Kanade, 1992) determines 2 parameters (m1�2;4) of each affine
camera directly. The remaining 6 parameters of each camera are determined simultane-
ously with the scene points. However, this method does not allow missing data. It has
been shown (Koenderink and Doorn, 1991; Heyden and Kahl, 2000) that all 8 unknown
parameters (m1�2;1�4) of an affine camera can be determined directly by choosing a spe-
cial affine basis of 4 3D points visible in all views. Each 3D point Xi gives two linearly
independent projection equations, derived from eqn. 5.7, which are sufficient to determine
the unknown camera parameters m1�2;1�4. However, from an numerical point of view
this is less favorable. An improvement of Heyden and Kahl’s (2000) method is to use only
the 6 parameters m1�2;1�3, which define the infinite homography. The remaining camera
parameters together with all 3D features can then be reconstructed with our DRP method.
Note that the homography is in this case singular since the last row consists of zeros. In sec.
6.1 we extend our DRP method to general homographies, i.e. singular and non-singular.

To apply this method of hallucinating a reference plane, we must answer the question:
Which are the best reference points to define the plane? In practice there may be many
possible reference points which are visible in all views. Consider the criteria for good
reference points. First, a camera centre must not lie on the reference plane. This means that
the 3 reference points must not be collinear in any view, since the homography is not unique
for 4 collinear image points. Second, in the presence of noise the infinite homography is
determined more accurately if the projected reference points are far apart in the image.
Since the two criteria are not contradictory, we choose as reference points those 3 points
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which are “least collinear”. This is done by considering the distance between one reference
point to the line defined by the other two reference points.

Finally, we address the question of how to extend this approach for affine cameras
to general projective cameras. Assume that a 3D reconstruction has been computed with
e.g. our DRP method and the assumption of affine cameras. One idea is to iterate the
reconstruction process in order to compensate for the perspective effects. A similar idea
has been suggested by (Triggs, 1996; Qian and Medioni, 1999; Heyden et al., 1999; Hartley
and Zisserman, 2000) to circumvent the pre-estimation of the projective depths, i.e. the
perspective effects, for projective factorization. In our case, this iterative process involves
the infinite homographies. This means updating the infinite homographiesHj on the basis
of known 3D points Xi and camera centres �Qj . The projection relation (eqn. 2.27) may be
written as

xij � Hj ( I j � �Qj) Xi � Hj x0ij ; (5.8)

where x0ij is the projection of point Xi by camera ( I j � �Qj). Since xij and x0ij are
known, the infinite homographyHj can be determined for each image j individually (e.g.
Hartley, 1997).

5.2.3 Known Epipolar (Multi-View) Geometry

�Qi
�Qj

plane
arbitrary

eji

view i view j

eij

X4

Figure 5.5. A fourth coplanar point X4 can be determined on any plane, e.g. the reference plane,
from the known epipoles eij and eji of projective cameras.

Hallucinating a finite reference plane can also be applied to general projective cameras
with known epipolar geometry. Consequently, our DRP reconstruction method can be
applied to general scenes, with at least 3 points visible in all views, and general projective
cameras (Rother and Carlsson, 2002b). This gives an alternative reconstruction method to
projective factorization (Sturm and Triggs, 1996) (sec. 3.2.4). Both approaches require that
the epipolar (or multi-view) geometry is known. However, projective factorization has to
pre-compute the projective depths and “hallucinate” missing data. As already mentioned,
the main disadvantage of our method is that certain reference points are distinguished,
which has an influence on the performance (see sec. 6.1.2).
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Assume that the 3 reference points X1;X2;X3 are in “general position” and have
canonical coordinates in the projective space and in the image as defined in eqn. 3.3.
The infinite homographyHj for each view j is then described as

Hj =

0
@ aj 0 0

0 bj 0
0 0 1

1
A : (5.9)

The assumption that no camera centre lies on the reference plane allows the arbitrary scale
of the matrix to be set, Hj(3; 3) = 1. The variables aj and bj are unknown in each view j
and can be considered as the mapping of point (1; 1; 1; 0)T onto view j: Hj (1; 1; 1)

T =
(aj ; bj ; 1)

T . This derivation of the infinite homography has been suggested earlier by
Boufama and Mohr (1995). Assume that the epipolar geometry is known, for instance the
fundamental matrices between each pair of views. As introduced in sec. 3.2.3, the epipole
eij = (eijx; eijy ; eijw)

T is denoted as the projection of camera centre j into view i (see
fig. 5.5). Moreover, the inter-image homography from view i to view j via the reference
plane is defined as H1

ij = H1

j H1�1
i . It is well known (e.g. Hartley and Zisserman, 2000)

that the epipoles of two views are in correspondence via any plane in the scene (see fig.
5.5). Consequently, we may write

eji � H1

ij eij , H1�1
j eji � H1�1

i eij : (5.10)

Using eqn. (5.9) and (5.10) we obtain two constraints between views i and j:

ai ejix eijw � aj eijx ejiw = 0

bi ejiy eijw � bj eijy ejiw = 0 : (5.11)

All the ai’s and bi’s may now be determined separately but simultaneously. Each pair of
images i and j, which are linked by a fundamental matrix, gives one linear equation in
ai; aj and bi; bj respectively. With m images we obtain two sets of linear equations:

La ha = 0 with ha = (a1; : : : ; am)
T and

Lb hb = 0 with hb = (b1; : : : ; bm)
T : (5.12)

The last singular vector of the SVD of La and Lb gives the solution for ha and hb respec-
tively. The vectors ha and hb have an arbitrary scale which corresponds to the fact that the
fourth unknown reference point on the reference plane has two degrees of freedom. As for
affine cameras, the question arises: Which 3 reference points should be used to hallucinate
the reference plane? This leads to the same algorithm as discussed for affine cameras (sec.
5.2.2).

This novel algorithm for determining the infinite homographies of multiple views from
known epipolar geometry has been introduced in (Rother and Carlsson, 2002b). It has
the advantage that all homographies are determined in one step which implies that the
complete information given by the geometry is used simultaneously. A similar algorithm
has been suggested by Avidan and Shashua (1998). They derive a consistent set of pro-
jective cameras from an image sequence by “threading” fundamental matrices. This is
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achieved sequentially on the basis of fundamental matrices only. As in our method, the
infinite homography of each camera matrix is determined by “hallucinating” a reference
plane. However, the main advantage of our method is that all infinite homographies are
computed simultaneously and not sequentially. Furthermore, we derive only the infinite
homographies of the projective cameras. The remaining camera centres are computed si-
multaneously with the 3D structure. The idea of hallucinating a reference plane by 3 scene
points has also been exploited by Boufama and Mohr (1995) to compute the fundamental
matrix.

5.2.4 Small Baseline

Two images of a rotating camera are related by an infinite homography (fig. 2.3(c) in sec.
2.2.1). Let us prove this now. Two views P1 = H1

1 (I j � �Q) and P2 = H1

2 (I j � �Q) of a
rotating camera have a common centre of projection �Q. The projection of a homogeneous
point X into these cameras can be written as (eqn. 2.27)

x1 � H1

1 ( I j � �Q) X and x2 � H1

2 ( I j � �Q) X : (5.13)

Substituting ( I j � �Q)X in the second of these equations gives the relation

x2 � H1

2 H1�1
1 x1 : (5.14)

Therefore H12 = H1

2 H1�1
1 is a homography between the two views via the correct

plane at infinity. The homography H12 may be determined from at least 4 corresponding
image points like x1; x2. Finally, the infinite homography H1

2 may be derived from H12

with the assumption that H1

1 = I .
Oliensis (1995) exploited this idea for 3D reconstruction from continuous image se-

quences (see as well Oliensis, 1995; Oliensis, 1999; Oliensis and Genc, 1999). The basic
assumption in this work is a small movement of the camera between successive frames, a
small baseline. This is an approximation of a rotating camera and means that the infinite
homographies may be determined approximately.

5.3 Summary

This chapter investigated alternative techniques to determine the infinite homographies,
i.e. a real or virtual reference plane. This increases the applicability of the reference
plane reconstruction approach to many different scenarios where no real reference plane is
visible. The idea of the reference plane reconstruction approach is to determine first a real
or virtual reference plane and then the cameras and structure with e.g. our direct reference
plane (DRP) approach. Table 5.1 summarizes possible techniques of deriving the infinite
homographies given information about either the scene or the cameras. Note that we do
not claim that this collection is complete. Most of these techniques are well known and part
of earlier publications. The main contribution of this chapter is twofold. First, we unify
these different techniques to determine the infinite homography with the term reference
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Real or Virtual Reference Plane Configurations Reconstruction
Real reference plane projective

3 mutually orthogonal scene directions metric
Additional orthographic “over”view metric

Calibrated cameras with known or constant rotation metric
Translating camera with constant calibration affine

Affine cameras affine
Known epipolar(multi-view) geometry projective

Small baseline projective

Table 5.1. Some possible techniques to determine a real or virtual reference plane.

plane. Secondly, we point out that both real and virtual reference plane configurations can
be reconstructed with our DRP method. A further contribution is a method to compute
simultaneously the infinite homographies from known epipolar geometry (sec. 5.2.3).

For a reference plane reconstruction method, it is not important whether the plane is
real or virtual.1 However, the position of the real or virtual reference plane is important.
Table 5.1 lists in addition to the reference plane configuration the type of reconstruction.
There is a considerable difference between those cases which give a metric or an affine
reconstruction and those that give a projective reconstruction. In the latter case, the plane
at infinity, i.e. the reference plane, is not at its correct position.2 This has important
consequences for our DRP reconstruction method, i.e. the second step of the reference
plane reconstruction approach. If the plane at infinity is at its correct position, no finite 3D
point can lie on the reference plane. Therefore, our reconstruction method can be applied
directly without excluding any finite 3D point from the linear system. Furthermore, since
no finite 3D point lies close to the reference plane, all reconstructed 3D points have the
same order of magnitude. As will be demonstrated in the experimental chapter 6, this
simplifies our method and improves the performance.

A further aspect about the different techniques of deriving a reference plane is that
they may be combined. For example, 3 points are used to hallucinate a reference plane as
described in sec. 5.2.2 and 5.2.3. The position of some of the cameras might be further
away from the scene than others. Consequently, the infinite homography of those views
which are far away may be determined directly by assuming parallel projection (sec. 5.2.2).
The infinite homographies of the other views, which are closer to the scene, may be derived
from known epipolar geometry (sec. 5.2.2).

Finally, there may be further techniques to determine a virtual reference plane. For
instance, is it possible to exploit symmetry properties or the contours of an object? More
generally, might it be enough to know that an object belongs to a certain class with some
“geometric” properties? These are interesting open questions for future research.

1This is the reason why in most parts of the thesis we simple use the term “reference plane” instead of “real
or virtual reference plane”.

2Note that affine cameras are an exception, where the plane at infinity is a real scene plane (sec. 5.2.2).



118



Chapter 6

Structure and Camera Recovery
using a Reference Plane

The previous chapters introduced many theoretical concepts for the task of 3D reconstruc-
tion. However, are these concepts really applicable to real world scenarios? This chapter
will demonstrate that our direct reference plane reconstruction method can be used to re-
construct the city hall in Stockholm from 37 real images, as motivated in chapter 1.

The idea of the reference plane approach is to divide the reconstruction task into two
steps. First, determine a real or virtual reference plane and second, use the reference plane
to reconstruct the structure and cameras simultaneously and linearly. The first step was
discussed in detail in the previous chapter. The theoretical background of the second step,
our direct reference plane (DRP) approach, was presented in chapter 3. This chapter has
two main goals. First, practical algorithms of our DRP methods are formulated for points
(sec. 6.1), lines (sec. 6.2) and planes (sec. 6.3). Secondly, the performance of our methods
are analyzed under real world conditions and compared with a variety of other methods.

In chapter 3, several practical issues were neglected, to simplify the presentation of
our methods. This included the task of separating features on and off a finite refer-
ence plane. Furthermore, it was assumed that the cameras are finite, i.e. the cameras’
centre must not lie on the reference plane, and that each image has a specific projec-
tive basis. These issues are addressed here which extends our methods to use normal-
ized image data and general cameras. The novel presentation for point features is based
on (Rother and Carlsson, 2002b; Rother and Carlsson, 2002a). Readers who are famil-
iar with this material should note that the aspects of normalized image points and gen-
eral cameras have not been published in our journal and conference papers. For lines,
we introduce novel methods which are not part of any of our previous publication. For
planes, three methods are presented, (a) our novel direct reference plane method, (b)
our linear, camera-constraint method (Rother et al., 2002), and (c) a factorization method
(Triggs, 2000; Rother et al., 2002).
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The main focus of the experimental study is on point features (sec. 6.1.2 and 6.1.3).
We are particularly interested in reconstructing large scale environments like the city hall
in Stockholm. Such scenarios are difficult since the amount of missing data is high, up
to 90%. The conclusion will be that for such difficult scenarios our method outperform
all non-reference plane and reference plane reconstruction methods. A further conclusion
will be that reference plane methods are inferior to general methods if the reference plane
is detected very inaccurately. The synthetic experiments compare various versions of our
method with two other reference plane methods (Triggs, 2000; Hartley et al., 2001). We
will show that our method performs very stably if the 3D points are not close to the refer-
ence plane, such as the reference plane is the correct plane at infinity. If 3D points are on or
close to the reference plane, it is on the basis of this examination not possible to select the
best reference plane method. Most of the experiments on real and synthetic data for point
features were presented in (Rother and Carlsson, 2001; Rother and Carlsson, 2002b; Rother
and Carlsson, 2002a). However, these publications do not contain the extensive compara-
tive study with other point based reconstruction methods (sec. 6.1.3). The detailed study
in (Rother and Carlsson, 2002b) about “hallucinating” a reference plane by assuming ei-
ther known epipolar geometry or affine cameras is not presented in full length here. This
has the reason that these general reconstruction methods do not perform very stably with
respect to noisy image data, due to the distinguishing of reference points. The experiments
on lines (sec. 6.2.2 and 6.2.3) have not been published previously. For planes, a simple
comparative study between methods using the planar-homographies directly and methods
which hallucinate image features is conducted (sec. 6.3.2 and 6.3.3). This discussion goes
beyond our publication (Rother et al., 2002) and is similar to (Szeliski and Torr, 1998).

6.1 Points

We begin this section by outlining a practical algorithm of our direct reference plane
method (sec. 6.1.1). Furthermore, several issues of optimizing this method are discussed.
After that, experiments are presented based on synthetic and real data (sections 6.1.2 and
6.1.3). For synthetic data, various aspects of our DRP method were analyzed and com-
pared with two other reference plane methods (Triggs, 2000; Hartley et al., 2001). The
main focus of this chapter is, however, on real world experiments. In this section, difficult
real world scenes, with a high percentage of missing data, are reconstructed with our DRP
method and several other point-based reconstruction methods. As already mentioned, for
some difficult scenarios our DRP method is significantly superior to all reference plane and
non-reference plane reconstruction methods.

6.1.1 Outline of the DRP Method & Optimization

Section 3.2.2 presented the direct reference plane (DRP) approach for the simultaneous
reconstruction of points and cameras from a single linear system. This systems forms the
core of the DRP method. However, we made a number of simplifications in order to obtain
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this linear system. First, the images were stabilized, i.e. a special image basis was cho-
sen. Consequently, the linear reconstruction method is not applicable for general cameras.
Furthermore, it is not possible to choose a different image basis, such as normalized image
points. Secondly, in case of a finite reference plane, points on and off the reference plane
must be separated. Note that the linear system does not provide the correct solution if one
of the 3D points lies on the reference plane. Furthermore, it can be expected that the linear
system becomes unstable if a 3D point is close to the reference plane. This can be pre-
vented by reducing the influence of such a point on the solution of the linear system. All
these practical issues are addressed in the following. After this discussion we will outline
our DRP method and variations of it.

Most of these ideas were published in (Rother and Carlsson, 2002b; Rother and Carls-
son, 2002a). However, the reader which is familiar with these publications should notice
that the normalization of point features was presented previously in a sub-optimal way.
This is corrected here.

Different types of projection equations

In the following we will derive four different projection relations for 3D points and cameras
in the reference plane case. The differences are related to general (or finite) cameras,
normalized (or non-normalized) images and with (or without) the explicit treatment of the
projective depths.

The projection relation of a 3D points �Xi and a finite camera Pj = H1

j (I j � �Qj) was
discussed in sec. 3.2.1. A finite camera is characterized by a non-singular homography
H1 and a centre of projection �Q which lies not on the reference plane. This relation may
be written in terms of the stabilized image points x0ij as (see eqn. 3.16)

x0ij � H1�1
j x � �Xi � �Qj : (6.1)

The unknown scale factor in eqn. 6.1 may be eliminate by taking ratios, which gives the 3
projection equations in eqn. 3.13. These equations are linear in the unknown parameters
�Qj and �Xi.

In general, a camera can be written as Pj = (H1

j jtj) (see sec. 2.3.2). This is true
for finite cameras, where H1

j is non-singular, and infinite cameras, where H1

j is singular.
For general cameras the projection relation (eqn. 6.1) may be written as

xij � H1

j
�Xi + tj : (6.2)

As before, the unknown scale factor can be eliminated, which gives the 3 equations

x (h21 �X + h22 �Y + h23 �Z + ty) � y (h11 �X + h12 �Y + h13 �Z + tx) = 0

x (h31 �X + h32 �Y + h33 �Z + tz) � z (h11 �X + h12 �Y + h13 �Z + tx) = 0 (6.3)

y (h31 �X + h32 �Y + h33 �Z + tz) � z (h21 �X + h22 �Y + h23 �Z + ty) = 0 ;

where the indices i and j are dropped for simplicity. These equations are, as for finite
cameras, linear in the unknown point parameters �Xi and camera parameters tj .
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Let us consider the issue of normalizing the image points. It was shown in Hartley
(1997) that the normalization of image coordinates can dramatically influence the result of
a computation, e.g. F -matrix, based on image coordinates. Normalization means that the
centroid of all image coordinates is the origin and the average distance of an image point
to the origin is equal to

p
2. This can be achieved by changing the basis in each image by a

matrix Bj , x0ij = Bjxij . The projection relation 6.2 of normalized image coordinates can
be written as

x0ij = Bj xij � Bj H
1

j
�Xi + Bj tj : (6.4)

Note that x0ij is now a normalized and not stabilized image point. After elimination of the
unknown scale, these projection equations are, as above, linear in the unknown parameters
�Xi and tj . Note that in case of stabilized image points (eqn. 6.1), the normalization is
canceled out. The matrix Bj was computed differently in (Rother and Carlsson, 2002b;
Rother and Carlsson, 2002a). It was suggested to choose the same matrix B for all images,
as the average of all Bj’s. However, this choice is obviously suboptimal.

Finally, consider the case of including the projective depths into the projection relation.
Let us rewrite the projection relation in eqn. 6.1 as

�ij x0ij = �Xi � �Qj ; (6.5)

where �ij is an unknown scale factor called projective depth. Obviously, the three equa-
tions in eqn. 6.5 are linear in the unknown parameters �ij , �Qj and �Xi. We denote these
projection equations extended equations, since they include additionally the unknown pa-
rameter �ij . Eqn. 6.4 may be written in extended form as

�ij x0ij = Bj H
1

j
�Xi + Bj tj : (6.6)

To summarize, we derived 4 different types of linear equations: 6.1 (stabilized, not
normalized), 6.4 (normalized), 6.5 (extended, stabilized), 6.6 (extended, normalized). All
relations may be used to formulate a single linear system to reconstruct multiple scene
points and cameras simultaneously.

Distance between scene points and a finite reference plane

We discussed in sec. 3.2.2 that points on and off a finite reference plane must be separated
in order to obtain a correct solution for all points and all cameras from a linear system. In
practice, points which are “close to” the reference plane potentially decrease the numerical
stability of the reconstruction as well. This separation process is in practice a non-trivial
issue. Assume that all scene points are sorted according to their distance to the reference
plane. One strategy is to choose a fix threshold to separate points on and off the plane. A
different, however, more time consuming method is to exclude successively points from
the linear system based on the ranking. The second method is completely automatic, i.e.
independent of a threshold parameter.

The remaining question is, how to estimate the distance dis(�X) of a point �X to the
reference plane. Consider a configuration with two cameras �Q1; �Q2, a 3D point �X and a
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Figure 6.1. Parallax geometry for (a) projective and (b) affine cameras.

reference plane �, where �X does not lie on � (fig. 6.1(a) depicts a top view). The inter-
image homography from the first to the second view via the reference plane is defined as
H12. The residual parallax vector in the second view is given as v = x2 �H12 x1. Obvi-
ously, v is null if �X lies on �. However, v vanishes as well if �X lies on the baseline of the
two views. Therefore, the distance of a point to the reference plane cannot be determined
directly from its parallax vector. Let us define 
i = hi

di
, where hi is the perpendicular dis-

tance of �Xi to the reference plane, and di is the depth of �Xi with respect to the first view
(see fig. 6.1(a)). It is known (Irani and Anandan, 1996) that the relative depth 
1


2
of two

points �X1 and �X2 can be derived directly from their parallax vectors v1; v2. This means
that the relative distance h1

h2
of two points depends on both their parallax vectors and their

depths. However, if we assume parallel projection, di is constant and we obtain the relative
distance of two points as


1

2

=
h1
h2

=
jjv1jj2
jjv2jj2 : (6.7)

Figure 6.1(b) depicts a configuration with affine cameras where h1 = h2 and therefore
v1 = v2. We will use eqn. 6.7 as an approximation for projective cameras.

The original task was to determine a unique function dis(�X) which represents the
distance between a point �X and the reference plane. Eqn. 6.7 supplies a distance function
disj1j2(�) between each pair of views j1; j2, which is unique up to scale. A unique function
dis(�) can be obtained by recursively merging the set of functions disj1j2(�). Finally, dis(�)
is scaled so that the maximal distance of a point to the reference plane is equal to one, i.e.
dis(�) 2 [0; 1].

Weighting the projection equations

Let us consider a point �X1 which is closer to a finite reference plane than another point
�X2. Since the reference plane is the plane at infinity in the chosen projective space, the
coordinates of the reconstructed point �X1 are larger than the ones of �X2. This means that
in the presence of noise, the point with larger coordinates is reconstructed more accurately.
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In order to eliminate this favoring of certain points, an image point xij may be weighted
with a factor sij , i.e. xij = sijxij . Consequently, the projection equations involving xij
are also weighted. As weighting factors we suggest to choose1

sij = dis(�Xi) ; (6.8)

where dis(�) 2 [0; 1]. This means that image coordinates of scene points which are closer
to the reference plane are inhibited. The same applies to the projection equations of such a
point, which form the linear system.

Outline of the algorithm

On the basis of the previous considerations, the practical algorithms for finite and infinite
reference planes can be formulated. In case of a finite reference plane, the DRP algorithm
is composed of the following steps.

1. Determine Hj of a finite reference plane.
2. Compute the distance dis(�Xi) between points �Xi and the reference plane.
3. Exclude iteratively points from the S-matrix (or choose a fix threshold).

4. Determine scales sij = dis(�Xi) and image points sij


x0ij




2

(eqns. 6.1, 6.4).
5. Obtain �Xi; �Qj(tj) (and �ij ) by SVD using projection relations 6.1, 6.4, 6.5 or 6.6.
6. Compute points �Xi on (or close to) the reference plane with eqn. 3.14.

7. Take the best result (RMS-error between image points and reprojected scene points).

The Euclidean norm is denoted


 � 



2
. The quality of the reconstruction is evaluated in

terms of the Root-Means-Square (RMS) error between image points and reprojected scene
points. However, other criteria could be used. Note that it is sufficient to compute the
matrix V , i.e. its last four singular vectors, from the singular value decomposition UDV T

of the system matrix S. This is more efficient since, according to Golub and Van Loan
(1996), a full SVD of a matrix of size m�n requires 4m2n+8mn2+9n3 flops. However,
to compute solely V and D needs only 4mn2 + 8n3 flops.

In sec. 5.2.2, a further extension of this algorithm was suggested. The infinite ho-
mographies Hj may be computed from 3 reference points and the assumption of affine
cameras. Perspective effects may be compensated iteratively. This means that the steps
1� 7 are executed for each iteration of a new Hj (see eqn. 5.8).

To summarize, the different versions of our DRP algorithm depend on (a) 4 different
projection equations, (b) weighting the projection equations and (c) separating points on
and off the reference plane either by iteration or a fixed threshold. The versions which
compute additionally the unknown projective depths, i.e. use the extended eqns. 6.5 or 6.6,
are obviously more time consuming than the other versions, since the number of unknowns
and consequently the linear system is larger. Based on the results of the experimental
section, we suggest to choose for general scenes with a known finite reference plane the

1This particular choice of the weighting factors sij is motivated by the mapping (0; 1)T ! (1; 0)T and
(1; 1)T ! (1; 1)T in the projective space P 1.
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iterative algorithm which uses the weighted projection eqn. 6.1. The drawback of this
version is that the iteration is time consuming and depends on the number of scenes points.
For scenes where 3D points are not close to the reference plane the simple, non-iterative
DRP algorithm is recommended.

In case of an infinite reference plane our DRP algorithm is significantly more simple,
since finite scene points cannot lie on the reference plane. The outline of the algorithm is
as follows.

1. Determine Hj of an infinite reference plane.
2. Compute the image points



x0ij



2

(eqns. 6.1, 6.4).
3. Obtain �Xi; �Qj(tj) (and �ij ) by SVD using projection relations 6.1, 6.4, 6.5 or 6.6.

As in the finite reference plane case, we suggest to choose the projection eqn. 6.1.

6.1.2 Experiments: Synthetic Data
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Figure 6.2. Two synthetic configurations with circular motion of the camera (a) and translational
movement of the camera towards the scene (b).

The goal of this section is to analyze in detail our DRP method under various conditions
and compare it, if appropriate, with the camera constraint method of Hartley et al. (2001)
and the factorization method of Triggs (2000). The three main aspects are the position and
quality of the reference plane and the case of missing data. The main result will be that for
scenes where 3D points are not close to the reference plane, our simple, non-iterative DRP
version performs very stably. The performance is virtually optimal when the reference
plane is the correct plane at infinity. Furthermore, our algorithm performs very good even
for a substantial amount of missing data, i.e. up to 63%. For “flat scenes” with many
3D points on or close to the reference plane, our iterative DRP method performed stably.



126 Chapter 6. Structure and Camera Recovery using a Reference Plane

However, for such scenes the factorization method and the camera constraint method are
more efficient since non-iterative. For flat scenes, the factorization method performed best.
This method has, however, the drawback that it does not handle the case of missing data
naturally. Moreover, the factorization method is not applicable for infinite reference plane.
The camera constraint method performs for flat scenes not as stably as our or Triggs’s
(2000) method. The investigation about the quality of the reference plane will give the
expected conclusion that noise on the reference points affect considerably the performance
of our DRP algorithm.

In the previous chapter 5, many different techniques of deriving a real or virtual refer-
ence plane, i.e. the infinite homographies, were discussed, like assuming cameras with par-
allel projection. For 3D reconstruction using a reference plane it is not important whether
the plane is real or virtual. The only important aspect is the position of the reference plane.
A real reference plane is always a finite plane. A virtual reference plane can be either a fi-
nite plane (e.g. affine cameras) or the plane at infinite (e.g. 3 orthogonal scene directions).
For practical applications both cases of a finite and infinite reference plane are important.
This experimental study is mainly focused on finite reference planes. The reason is that in
this case our DRP algorithm is more complex since points on and off the reference plane
must be reconstructed separately (sec. 6.1.1). However, most of the conclusions drawn
from the experiments apply also to infinite reference planes.

To investigate the performance of our DRP algorithm, it was applied to two different
synthetic configurations (see fig. 6.2). The synthetic scene consists of a cube with 26
points floating above a real reference plane. The reference plane is a square where the four
corners depict the reference points. In some synthetic experiments, the cube is replaced by
50 points distributed randomly in a sphere of radius 2. In the first configuration (fig. 6.2
(a)) a camera circled around the cube, with a radius of 10 units, and shot 8 images (Cir-
configuration). In the second configuration (fig. 6.2 (b)) a camera moved translationally
towards the scene (Tra-configuration). The dimensions of the configurations are as in fig.
6.2. The internal calibration matrix of the camera was set to diag(1000,1000,1). Affine
cameras were derived from the projective cameras by moving the centre of projection to
infinity, where the image size remained fixed (Hartley and Zisserman, 2000).

Most of the synthetic experiments were carried out with respect to different levels of
Gaussian noise: � = 0; 0:2; : : : ; 3:0 (standard deviation). In order to obtain average perfor-
mance, the following two steps were conducted 10 times for each noise level: (a) determine
the scene points (randomly for the point cloud) and the cameras, (b) add Gaussian noise
on the reprojected 3D points. The computed reconstruction was evaluated in terms of the
Root-Mean-Square (RMS) error between reprojected 3D points and 2D image data (poten-
tially corrupted by noise). If not mentioned differently, no missing data is assumed. This
has the advantage that factorization algorithms can be applied and compared more easily.
Furthermore, in all experiments the theoretical minimum, i.e. Cramer-Rao lower bound, is
shown, which depends solely on the noise level, the number of unknown parameters and
the number of measurements.
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In the following our DRP method is compared with 9 other reconstruction methods:

Fmat The Fmat algorithm merges subsets of views in an optimal hierarchical fashion as
suggested by Fitzgibbon and Zisserman (1998). Since the real and synthetic dataset
consists of images with a considerable wide baseline, the algorithm is initialized
with all possible subsets of 2 views (F-matrices) (sec. 4.2.1).

FmatBa A variation of the Fmat method. After each merging process of the Fmat method
an additional bundle adjustment step is applied.

ResInt The ResInt method of Beardsley et al. (1996) is based on the “intersection-resec-
tion” scheme. We choose to optimize neither the structure nor the cameras by a
non-linear optimization process (sec. 4.2.1).

ResIntBa A variation of the ResInt method with an additional bundle adjustment process
after each resection-step.

ProjFac The projective factorization method (ProjFac) of Sturm and Triggs (1996) is ap-
plied in the case of no missing data (sec. 3.2.4). The projective depths are deter-
mined sequentially from the F-matrices. For missing data, the extended version of
projective factorization by Martinec and Pajdla (2002) is used.

AffFac The affine factorization method (AffFac) of Tomasi and Kanade (1992) is extended
for the case of missing data by the “fitting” algorithm of Jacobs (1997) (sec. 3.2.4).

AffClos For affine views, the AffClos method uses the image closure constraints, based on
multi-view affine tensors, to determine all cameras simultaneously (sec. 3.2.3). As
suggested in (Kahl and Heyden, 1999) only the centered trifocal tensors are applied.

RefCam The RefCam method represents Hartley et al.’s (2001) reference plane method
which reconstructs all cameras simultaneously based on camera constraints (sec.
3.2.3). In order not to “miss” corresponding image points, the camera constraints
derived from the 2, 3 and 4 views are used simultaneously. Furthermore, the run-time
improvement, discussed in sec. 3.2.3, was applied. The 3D points were computed
linearly from all available views.

RefFac In the reference plane case, Triggs (2000) suggested a factorization method (Ref-
Fac) (sec. 3.2.4). As in the general case, the projective depths are determined se-
quentially from the F-matrices. We did not extend this method for the case of missing
data, since the choice of projective depths is in this case a non-trivial issue.

A further interesting method, which we did not implement, is the joint image closure
constraints method of Triggs (1997b). The problem of this method is that in case of an
unorganized set of images with only a few correspondences, it is a non-trivial task to scale
all multi-view tensors correctly.
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Figure 6.3. Graphs in respect to 4 different types of projection equations, eqn. 6.1 (not norm.),
eqn. 6.4 (norm.), eqn. 6.5 (not norm.; ext.) and eqn. 6.6 (norm.; ext.).

Normalization & Extended linear system

In a first experiment, different versions of the DRP algorithm were analyzed, depending on
the 4 different types of projection equations introduced in sec. 6.1.1. In this case no points
on the reference plane were excluded, apart from the reference points, and no weighting
was applied. Fig. 6.3 shows the performance for the Cir-configuration (a) and the Tra-
configuration (b). As in all other experiments, the straight line indicates the Cramer-Rao
lower bound. A first observation is that the performance of the DRP algorithm (all ver-
sions) is better for the Cir-configuration than for the Tra-configuration. This result can be
expected since the Tra-configuration has a shorter baseline relative to the scene.

The performance of the 4 different types of projection equations is fairly similar for
both configurations. This conclusion has been supported by further experiments, not re-
ported here, for different scenarios and both finite and infinite reference planes. It is worth
mentioning that the normalization of the image coordinates did not improve considerably
the results. Note that it is, however, important that all homogeneous image points are
normalized to 1. In general, all 4 projection equations minimize a geometrically not mean-
ingful algebraic error. Consequently, the simplest version using the projection equations
in 6.1, which stabilizes the images, are used for the rest of the experiments, if not stated
differently.

Thresholding & Weighting

In this experiment, the practical important scenario is investigated of many 3D points on
or close to a finite reference plane. Fig. 6.4 shows an experiment were the distance be-
tween the cube and the reference plane varied between 0 and 2 units. In this case the
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Figure 6.4. The performance of two versions of the DRP algorithm: without separating points
on and off the reference plane and separating points by iteration. The performance is analyzed in
terms of the RMS-error (a) and the ratio between the fifth and fourth last singular value (b).
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Figure 6.5. Performance of the DRP algorithm (a) and RefCam and RefFac algorithm (b) in
respect to the flatness of the scene.

Cir-configuration 6.2(a) was used and the noise level was set to 1. If the distance is 0, 9
of the 26 points of the cube lie on the reference plane. Two different versions of the DRP
algorithm were investigated: always all points are used for the S-matrix (without separa-
tion) and points are iteratively excluded form the S-matrix (with separation). Fig. 6.4 (a)
shows that the performance of both versions is very similar above a certain distance, i.e.
about 0:5 units. However, if the cube is closer to the reference plane, the performance of
the version “without separation” is worse and eventually fails. The version “with separa-
tion” has a constant performance for all distances. The ratio between the fifth and fourth
last singular value is depicted in fig. 6.4 (b). The curves are as to expected. The solution
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is less stable if the cube moves closer to the reference plane. If the cube is closer than 0:5
units to the reference plane, the version “with separation” was considerable more stable
than the one “without separation”. This is due to the fact that in this case 9 of the 26 points
of the cube were reconstructed separately. We may draw the conclusion that the problem
of separating points on (or close to) and off the reference plane can be handled by the it-
erative version of the DRP algorithm. However, a version which does not take care of this
problem eventually fails if points are on or close to the reference plane.

The next experiment analyses the performance of the 3 different reference plane algo-
rithm, DRP, RefCam and RefFac, for “flat scenes”. The cube was replaced by a sphere of
radius 2 with 50 randomly distributed points. The centre of the sphere is on the reference
plane. As above, the Cir-configuration with a noise level of 1 was chosen. The height of
each point is multiplied with a “flatness-factor” between 0 and 1. For a factor of 0, all
points are on the reference plane. Such a scenario cannot be reconstructed (see chapter
7). Fig. 6.5(a) shows the performance of the different versions of the DRP algorithm.
The versions with a fixed threshold of 0:1 performed good for not flat scenes (above 0:7).
However, these algorithms fail for very flat scenes. A possible explanation is that in this
case a “rough” classification of scene points by a fixed threshold is not suitable. However,
the iterative versions performed constantly good for all flatness parameters. This shows,
that a carefully chosen threshold gives good results. Furthermore, weighting the projection
equations improved the performance slightly. In contrast to the DRP algorithm, the Ref-
Cam and RefFac algorithm, displayed in fig. 6.5(b), do not reconstruct separately points
on and off the plane. The performance of the RefFac algorithm is constantly good. This
can be expected, since in contrast to the DRP and RefCam algorithm the heights of the
points from the finite plane are computed. The performance of the RefCam algorithm is
good for “non-flat scenes”. However, the performance is unexpectedly unstable for very
“flat scenes” (less than 0:4).

We may conclude that the RefFac and DRP method performed stably, independently
of the scene’s structure. However, the RefFac method has the drawback of not handling
missing data naturally. The main drawback of the DRP method is that the iteration process
is complex and time consuming, since it depends linearly on the number of 3D points.
Note, for scenes where 3D points are not close to the reference plane the more efficient
non-iterative DRP version performed good and is strongly recommended. The RefCam
algorithm is simpler than the DRP method, since points on and off the reference plane
are not separated. However, this method was unexpectedly unstable for very “flat” scenes.
Therefore, in our opinion the best reference plane method for “flat scenes” has not yet been
found.

Position of the reference plane

The previous experiment discussed the case of a finite reference plane, where points are
on or close to the reference plane. As was seen in chapter 5, the reference plane might
as well represent the correct plane at infinity. These two cases of a finite and infinite
reference plane are analyzed in following for the 3 different algorithms DRP, RefCam
and RefFac (fig. 6.6). To compare both cases, we assume that the infinite homographies
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Figure 6.6. Performance of various algorithms for a finite (a) and infinite (b) reference plane.

are not corrupted by noise. For the experiments, the Cir-Configuration (fig 6.2(a)) was
chosen, where no 3D point lies close to the finite reference plane. The main observation is
that the RefFac method is not applicable for infinite reference planes (fig. 6.6 (b)), RMS
error of 107 for no noise. This can be expected since it reconstructs the height of the 3D
points from the reference plane. As seen in the previous experiment, the DRP method
without weighting performs slightly worse than the version with weighting. For an infinite
reference plane, the simple DRP version (without weighting) performs equally good as the
weighted DRP version and a finite reference plane. Consequently, weighting eliminates
the effect of choosing a finite reference plane. More important, this shows that for an
infinite reference plane, the DRP method is most simple (non-iterative, non-weighting) and
performs virtually optimal. This is due to the fact that all reconstructed 3D points have
the same order of magnitude. The RefCam method performs for both finite and infinite
reference planes constantly good.

3-Point algorithms

We saw in sec. 5.2.2 and 5.2.3 that general scenes without a reference plane can be recon-
structed using the “reference plane approach”. The infinite homographies may be derived
from 3 arbitrary points (visible in all views), which define the reference plane, and the as-
sumption of parallel projection or known epipolar geometry. This section illustrates only
a few of the experiments presented in (Rother and Carlsson, 2002b). The synthetic scene
(cube and reference points) in fig. 6.2 (a, b) is replaced by a sphere of radius 2 with 50
randomly distributed points.

Fig. 6.7 shows the performance for affine cameras (a) and projective cameras (b). The
performance of the DRP algorithm is compared with the AffFac and ProjFac algorithm.
In the affine case, the DRP algorithm performed reasonable good. However, the result of
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Figure 6.7. Performance of various algorithms for a general scene (without a reference plane)
using parallel projection (a) and perspective projection (b).
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Figure 6.8. Performance of the iterative DRP algorithm, introduced in sec. 5.2.2, for a perspective
projection of a general scene (without a reference plane). It is initialized by the DRP algorithm
assuming parallel projection (affine).

the AffFac algorithm is significantly better. The main difference between these algorithms
is that the DRP algorithm depends heavily on the quality of the 3 reference points. This
conjecture is confirmed in the next section. In the projective case, the different performance
of the DRP and ProjFac algorithm is even more obvious. Furthermore, the DRP algorithm
was less stable for projective cameras (b) than for affine cameras (a). The only difference
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between these two cases is that the epipoles are used for the homography computation of
the projective cameras. A more detailed analyses confirmed that this computation is fairly
sensitive to noise in the epipoles.

In sec. 5.2.2 an iterative DRP algorithm was introduced which assumes parallel projec-
tion and compensates iteratively for the perspective effects. Fig. 6.8 shows the performance
of this algorithm for projective cameras. It stands out that for both configurations the initial
reconstruction (affine) is significantly improved by iteration (affine to projective). In the
case of no noise it converged to the theoretical minimum.

The conclusion of these experiments is that the factorization algorithms, which assume
no missing data, are superior. This can be expected since they do not distinguish certain
points. However, the DRP algorithm might be useful for specific scenarios with a high
percentage of missing data and only a few (at least 3) points visible in all views. Further
experiments about “hallucinating” a reference plane are in our publication (Rother and
Carlsson, 2002b).
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Figure 6.9. Results of the DRP algorithm where the 4 reference points are either perfect or
corrupted by noise.

In the following, we will repeat some of the experiments of the previous sections. How-
ever, Gaussian noise will be added to all image points except for the reference points. Fig.
6.9 shows the performance of the DRP algorithm for the Cir- (a) and Tra-configuration
(b). In this case the iterative, weighted version of the DRP algorithm is applied. Obvi-
ously, if the reference points are not corrupted by noise (perfect reference), i.e. the infinite
homographies are correct, the performance of the DRP algorithm improves. For the Cir-
configuration the performance is very close to the theoretical minimum. Fig. 6.10 shows
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Figure 6.10. Replication of the experiment for general scenes (fig. 6.7) with perfect and noisy
reference points.

the experiments for general scenes (fig. 6.7) with and without noise on the reference points.
In the affine case (a), the improvement of the performance is significant. However, for per-
spective projection (b) the improvement is not that evident. As already mentioned above,
non-optimal epipoles influence the estimation of the infinite homographies. These experi-
ments lead to the expected conclusion that the quality of the reference points is crucial for
the performance of the different DRP algorithms.

Missing data

In all previous experiments it was assumed that all points are visible in all views. In the
following we will analyze how various algorithms perform in the case of missing data.
Therefore, the Cir-configuration was used consisting of 8 cameras with parallel projection.
Apart from the 4 reference points, each scene point is only visible in a fraction of 3 �
8 views. This fraction is taken randomly. More realistic scenarios of missing data are
analyzed in sec. 6.1.3. Fig. 6.11 depicts the performance for a standard deviation of 1
(a) and 3 (b). The AffFac algorithm handles missing data by the “Rank-3 approximation”
algorithm of Jacobs (1997). Jacobs uses all visible scene points for the computation of the
centroid. However, in case of missing data this is incorrect and leads to significant errors
as fig. 6.11 indicates. We corrected this method by computing a Rank-4 approximation of
the “projective” measurement matrix (eqn. 3.47)2. This version performed stably for all
cases of missing data. The DRP version was stable as well with respect to the theoretical
minimum. Due to the distinguishing of reference points it performed slightly worse than

2The Rank-3 and Rank-4 approximation algorithms of Jacobs (1997) are available at:
http://www.neci.nj.nec.com/homepages/dwj/.
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Figure 6.11. Various algorithms for the case of missing data. The Cir-configuration and parallel
projection was used together with Gaussian noise of standard deviation 1 (a) and 3 (b).

the AffFac algorithm. In contrast to the DRP and AffFac algorithm is the performance of
the AffClos algorithm fairly unstable. A possible explanation is that the image data was
not sufficient to obtain reliable trifocal tensors.

6.1.3 Experiments: Real Data

This section represents the main and novel contribution of this chapter. It compares our di-
rect reference plane (DRP) method with several other point-based reconstruction methods
for difficult real world scenes with a high percentage of missing data (up to 90%). The im-
portant conclusion will be that for such difficult reference plane scenarios our DRP method
outperform all other methods. This is due to the fact that common scene knowledge, i.e.
the reference plane, is exploited to reconstruct the cameras and the structure simultane-
ously. In particular, we will analyze the general reconstruction methods Fmat, FmatBa
(Fitzgibbon and Zisserman, 1998), ResInt, ResIntBa (Beardsley et al., 1996) and Proj-
Fac (Sturm and Triggs, 1996; Martinec and Pajdla, 2002), the “affine” methods AffFac
(Tomasi and Kanade, 1992; Jacobs, 1997) and AffClos (Kahl and Heyden, 1999) and the
plane-based methods DRP (Rother and Carlsson, 2002b; Rother and Carlsson, 2002a) and
RefCam (Hartley et al., 2001). These methods and their abbreviation were introduced in
the previous sec. 6.1.2. Additionally, the performance of all methods is analyzed after a
final bundle adjustment process. The RefFac method (Triggs, 2000) was not analyzed for
real data, since its extension for missing data is not straightforward. Furthermore, the joint
image closure constraints method of Triggs (1997b) has not been compared.

The advantage of synthetic experiments is that the results can be compared quantita-
tively with the “ground truth”. For real image data the ground truth is most of the time not
available. In order to carry out realistic “real world” experiments, the image data was “syn-
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thesized”. This means that a qualitatively correct metric 3D reconstruction of the scene and
the cameras served as a synthetic configuration, i.e. as ground truth.

In the following, 2 experiments using a real, finite reference plane and 3 experiments
with an virtual, infinite reference plane are discussed. The virtual reference plane is de-
rived from 3 orthogonal vanishing points and the assumption of a “square pixel” camera.
In the first 4 examples, the image points and their correspondences were established manu-
ally. For the last example (house), this process was performed completely automatical (see
chapter 8).

Real, finite reference plane – Small scale environment
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Figure 6.12. Three of the eight original views of the teapot (a-c). The top (d), side (e) and front
(f) views of the reconstruction using the iterative DRP algorithm and the four marked reference
points.

32 points104 points

4 
vi

ew
s

8 
vi

ew
s

(a) (b)

Figure 6.13. The visibility matrix of the teapot (a) and the tape holder (b). If the jth point is
visible in the ith view, the corresponding element V (i; j) is set (a black square).
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Figure 6.14. Results of various algorithms on the synthetic teapot sequence (top) and the real
teapot sequence (bottom), before bundle adjustment (grey) and after bundle adjustment (black).

In a first experiment a teapot, which was placed on a box, was reconstructed from
8 views (see fig. 6.12(a-c)). The four corner points of the box, which are marked with
circles, specify the real reference plane. For a better visualization, only those model points
were reconstructed which lie on the contour in the top, side or front view of the model.
Fig. 6.13(a) shows the visibility matrix of the teapot sequence. An element V (i; j) of the
matrix is set if the jth point is visible in the ith view. In this case 67% of the elements are
set. Fig. 6.12(d-f) shows the reconstruction of 104 model points using the iterative DRP
method with additional weighting. Model points on the reference plane were detected
automatically by iteration. The ratio between the fifth last singular value (360.36) and the
fourth last singular value (4.65) is 77.5, i.e. considerably large. The Euclidean coordinates
of the cuboid and the reference points were used to rectify the projective reconstruction.

Let us consider the performance of various algorithms for the synthetic teapot sequence
(fig. 6.14(top)). In this case all points, including the reference points, were corrupted by
noise. Most of the algorithms performed very good, i.e. close to the theoretical minimum.
This shows that this scenario is, in contrast to the following scenarios, “fairly” simple to



138 Chapter 6. Structure and Camera Recovery using a Reference Plane

reconstruct. The ResInt method without bundle adjustment performed poor due to the prob-
lem of error accumulation. However, if the error is corrected after each resection step by
bundle adjustment, i.e. the ResIntBa method, the final RMS error is close to the theoretical
minimum. Both reference plane algorithms, i.e. DRP and RefCam, performed similarly
good. As already mentioned, the RefFac method is not shown here, since it’s extension for
missing data, i.e. real image data, is not straightforward. The AffFac+Ba method computes
a reconstruction with the assumption of parallel projection and corrects for perspective ef-
fects by bundle adjustment. The ProjFac method does perform unexpectedly poor. The
experiment with real image data (fig. 6.14(bottom)) confirms the conclusion drawn from
the synthetic experiment. Even if the RMS error is fairly different before bundle adjust-
ment, it is identical good for all algorithms after bundle adjustment.

In a second experiment a tape holder was reconstructed from 4 views with considerably
wide mutual baseline (see fig. 6.15(a-c)). In contrast to the teapot scenario, the tape holder
itself contains a real, finite reference plane which is visible in all images. It is defined by the
four coplanar points which are marked by circles. Fig. 6.13(b) depicts the visibility matrix
which has 20% missing data. The 3D reconstruction of the 32 model points using the
iterative DRP algorithm with additional weighting is displayed in fig. 6.15(d-f). In order
to visualize the result we assumed knowledge of five Euclidean coordinates to rectify the
projective structure. The ratio between the fifth last singular value (0:766) and the fourth
last singular value (0:031) is substantially high, i.e. 24:7. By manually selecting points
which lie on same model planes we created a VRML model, which consists solely of
planes. Fig. 6.15(g-i) depicts 3 novel views of the VRML model.

Consider the synthetic tape holder experiment (fig. 6.16(top and middle)). It stands out
that nearly all methods performed worse compared to the teapot sequence. Only the three
methods FmatBa, ResIntBa and AffFac+Ba, which all use bundle adjustment, performed
good. As above, the ProjFac method performed unexpectedly poor. Furthermore, the
two reference plane methods, i.e. DRP and RefCam, were very unstable. The difference
between the tape holder configuration and the teapot configuration is that scene points and
camera centres lie closer to the reference plane (reference points are close to a line in an
image) and the reference points lie closer together in an image. This indicates that noisy
reference points affect the quality of the infinite homographies more than in the teapot case.
Therefore, we repeated the experiment using perfect reference points and perfect infinite
homographies (fig. 6.16(middle)). Using perfect infinite homographies means that the
correct plane at infinity is used as the reference plane. In case of perfect reference points,
the DRP method performs better then the RefCam method. This is the same observation
as with synthetic data and a “flat” scene (fig. 6.5(b)). If the correct plane at infinity is
used, both algorithms performed good. To summarize, the quality and the position of the
reference plane are important aspects for reference plane methods.

In case of real image data, the results of most algorithms correspond to the results of
the synthetic experiments. The general Fmat and ResInt method performed better than the
DRP and RefCam method. The ProjFac algorithm produced a better result than in the syn-
thetic case. In general, all methods computed a 3D reconstruction which was sufficiently
good to perform successfully a bundle adjustment process, which gives a result with a low
RMS error of 0:7.
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Figure 6.15. Three of the four original views of the tape holder (a-c). The top (d), side (e)
and front (f) view of the reconstruction using the iterative DRP algorithm and the four marked
reference points. The dashed lines display the contour and the symmetry axis of the model. Three
novel views of a VRML model of the tape holder (g-i).
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Figure 6.16. Performance of various algorithms on the synthetic tape holder sequence (top and
middle) and the real tape holder sequence (bottom), before bundle adjustment (grey) and after
bundle adjustment (black).
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Virtual, infinite reference plane – Large scale environment

We will now analyze more difficult, large-scale scenarios with a substantial amount of
missing data. Man made environments are often characterized by dominant directions.
Figure 6.17(c) shows on the right hand side three buildings with the same orientation. As
was seen in sec. 5.1.2, three mutual orthogonal directions can be used to compute the
infinite homographies of a “square pixel” camera. In this case the infinite homographies
represent a virtual reference plane, the correct plane at infinity. Exploiting dominant direc-
tions, in contrast to finite reference points, increases the flexibility and applicability of our
DRP method, like reconstructing several buildings. In the following three examples are dis-
cussed, the campus, city hall and house example. The vanishing points, which correspond
to the dominant directions, were detected manually for the first two examples (campus and
city hall) and automatically for the last example (house). Furthermore, the ambiguity in
the cameras’ rotation was resolved manually for the campus and the city hall example and
automatically for the house example. The automatic vanishing point detection and rotation
matrix computation methods are described in chapter 8.

In a first experiment, of a large scale environment, we reconstructed three buildings of
the campus of the Royal Institute of Technology in Stockholm. The reconstructed area is
approximate of size 130 � 90 meters. 27 images of size 1600 � 1200pixels were taken
with a hand-held of the shelf camera (Olympus 3030) (see fig. 6.17(a, b)). The internal
camera parameters remained fix while the pictures were taken. In order to establish a cor-
respondence between the three buildings, we used additionally a postcard of the campus
(see fig. 6.17(c)). Naturally, we had no calibration information, e.g. the focal length, of the
postcard available. The calibration K and the rotation R, of the cameras were computed
from manually selected image lines, which correspond to mutual orthogonal directions in
the scene. The camera’s calibration was improved by assuming fixed internal camera pa-
rameters (sec. 8.3). In case of the postcard, one of the vanishing points is close to infinity
(horizontal lines). However, the focal length can still be determined for this degenerate
configuration with the additional assumption that the principal point is close to the middle
of the image. Furthermore, the correspondences of 191 manually selected model points
were manually achieved. The visibility matrix in fig. 6.19 shows that only a few corre-
spondences, i.e. 10:4%, are given. On the basis of this, the campus was reconstructed with
our DRP method using the infinite reference plane and the projection equation 6.1. The
fourth and fifth last singular value of the SVD were 12:55 and 143:5 respectively, which
corresponds to a ratio of 11:44. Fig. 6.18 shows the top view of the reconstruction, where
the dots represent reconstructed points, arrows depict cameras and the grey structure repre-
sents the superimposed map of the campus. The labeled cameras correspond to images in
the respective figures. The accurate match between the top view of the reconstruction and
the true map of the campus demonstrates the high quality of the reconstruction. We stress
that no further constraints, e.g. orthogonality, were imposed which would presumably im-
prove the reconstruction. As in the previous experiment, a VRML model is determined
by manually selecting model points which lie on same model planes. By projecting image
texture onto the planes, the final VRML model of the campus is acquired. Fig. 6.20 shows
6 novel views of the VRML model.



142 Chapter 6. Structure and Camera Recovery using a Reference Plane

            

(a)

            

(b)

            

(c)

Figure 6.17. Two original views (a, b) and a postcard (c) of the campus. The corresponding
camera positions are labeled in the top view (fig. 6.18).
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Figure 6.18. Top view of the reconstruction of the campus with 191 model points (dots) and 27
cameras (arrows). A map of the campus is superimposed. The labeled cameras correspond to
images in the respective figures.

27
 v

ie
w

s

191 points

Figure 6.19. The visibility matrix of the campus.
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Figure 6.20. Six novel views of the campus. The corresponding camera positions are labeled in
the top view (fig. 6.18).

On the basis of the 3D reconstruction in 6.18, synthetic experiments were conducted
(fig. 6.21(top)). The first observation is that the image data was not sufficient to obtain a
reconstruction with the ResInt, ResIntBa, ProjFac, AffFac and AffClos method. In case
of the ResInt and ResIntBa method at least 6 reconstructed model points must be visible
in a new camera for resectioning. The ProjFac and AffFac method build on the “Rank
approximation” method of Jacobs (1997). However, this method did not converge, i.e.
could not fill in all missing elements. The AffClos method requires a minimum of 4 points
in 3 successive views to compute the affine trifocal tensor. Only the Fmat and FmatBa
method and the two plane-based methods, i.e. DRP and RefCam, were applicable in this
case. However, the Fmat and FmatBa method did only produce an acceptable result in
case of no noise. Both plane-based methods could reconstruct the scene for different noise
levels. The DRP method was, however, significantly superior. Note, since the infinite
homographies do not rely on finite scene points, they were not corrupted by noise. With
real image data (fig. 6.21(bottom)) the Fmat and FmatBa method did not converge either.
The DRP method gave a better result than the RefCam method before bundle adjustment.
Both methods converged to the same local minimum after bundle adjustment.

In a second experiment we reconstructed the outside and inside (courtyard) of the city
hall in Stockholm. The city hall has an approximated top view size of 130 � 80 meters.
Therefore, 37 images of size 1600 � 1200pixels were taken, where the internal camera
parameters remained fix (see fig. 6.22 and 1.1). As in the previous experiment, the manu-



144 Chapter 6. Structure and Camera Recovery using a Reference Plane

0 1 2 3
0

1

2

3

4

5

6

7

8

R
M

S
 e

rr
or

DRP   
RefCam
Fmat  
FmatBa

Noise in pixel (stand. dev.)

0

2

4

6

8

10

12

R
M

S
 e

rr
or

Fmat FmatBa ResInt ResIntBa DRP RefCam ProjFac AffFac AffClos

Figure 6.21. Results of various algorithms on the synthetic campus sequence (top) and the real
campus sequence (bottom), before bundle adjustment (grey) and after bundle adjustment (black).

ally selected image lines, which correspond to mutual orthogonal directions in the scene,
were used to determine the infinite homography of a “square pixel” camera. Since some
parts of the building can be seen from both the outside and inside, e.g. the tower (see fig.
6.22 (a-c)), a correspondence between the outside and inside can be established. Fig. 6.24
depicts the extremely sparse visibility matrix with 9:7% of set elements. With the knowl-
edge of the correspondences of 134 model points, the building was reconstructed with our
DRP method. The ratio between the fifth last singular value (57:24) and the fourth last
singular value (12:75) was 4:49, i.e. considerable larger than 1. The top view of the re-
construction with a superimposed map of the city hall is shown in fig. 6.23. Fig. 6.25
displays 6 novel views of the textured VRML model of the building. The roof was not
reconstructed since it cannot be seen from a ground plane position. As in the previous
example, no further constraints were imposed, in order to improve the reconstruction. Let
us consider the quality of the reconstruction (see fig. 6.23). It stands out that the building
was not designed as a perfect rectangular building. However, this fact did not considerably
affect the good reconstruction. The fact that the detected vanishing points are not perfectly
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Figure 6.22. Three original views of the city hall. The corresponding camera positions are labeled
in the top view (fig. 6.23).
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Figure 6.23. Top view of the reconstruction of the city hall with 134 model points (dots) and 37
cameras (arrows). A map of the city hall is superimposed. The labeled cameras correspond to
images in the respective figures.
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Figure 6.24. The visibility matrix of the city hall
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Figure 6.25. Six novel views of the city hall. The corresponding camera positions are labeled in
the top view (fig. 6.23).
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mutually orthogonal influences the camera calibration as well as the estimation of the ro-
tation matrix R. Since the accuracy of R directly affects the camera’s position, we would
expect a higher “positioning error” for cameras with less accurateR. This reasoning would
explain the deviation between the reconstruction and the true map at the top, left corner of
the building.
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Figure 6.26. Results of various algorithms on the synthetic city hall sequence (top) and the real
city hall sequence (bottom), before bundle adjustment (grey) and after bundle adjustment (black).

Let us consider the synthetic city hall sequence (fig. 6.26(top)). In this case only the
plane-based methods DRP and RefCam were applicable. The image data was not sufficient
for all other general reconstruction methods. The Cramer-Rao lower bound is 0 since the
number of unknowns is larger than the number of constraints. As in the previous experi-
ment, the DRP method was significantly superior to the RefCam method. The same applies
to the experiment with real image data (fig. 6.26(bottom)). However, they converged to the
same local minimum after bundle adjustment.
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(a) (b) (c)

Figure 6.27. Three of the nine original views of the house sequence. The corresponding camera
positions are labeled in the top view (fig. 6.28).
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Figure 6.28. Top view of the reconstruction of the house sequence with 451 model points (dots)
and 9 cameras (arrows). The labeled cameras correspond to images in fig. 6.27.
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Figure 6.29. The visibility matrix of the house sequence
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In a last experiment a house, which has an approximated top view size of 10 � 10
meters, was reconstructed from 9 images (fig. 6.27). As in the previous cases, the internal
camera parameters remained fix during the capturing process, which can be exploited in
the calibration process. In contrast to the previous experiments, the complete reconstruc-
tion process was automated as far as to the 3D point reconstruction. This includes Harris
corner detection, matching, vanishing point detection, camera calibration and rotation ma-
trix estimation (see chapter 8 for details). Fig. 6.29 depicts the visibility matrix for 451
detected model points, where only 36:7% of the image data is available. Most of the scene
points are visible in 3 successive views, which gives the visibility matrix a diagonal form.
A top view of the reconstructed scene and cameras is shown in fig. 6.28. In this case, the
ratio between the fifth last (2:7 � 10�5) and fourth last (4:8 � 10�3) singular value is 175:5.

Let us consider the synthetic house sequence (fig. 6.30(top)). Since more image data
is available than in the campus or city hall experiment, all methods were applicable. The
results are analyzed in terms of the 3D error between the reconstruction and the ground
truth after aligning both in an optimal way. One unit of the 3D error is approximately one
meter. The reason for choosing a different measurement is that in this case some incorrect
3D reconstruction, i.e. a large 3D error, had a small RMS error, e.g. the ResIntBa method
in fig. 6.30 middle and bottom. The general ResInt, ResIntBa, Fmat and FmatBa method
could reconstruct the scene only up to a noise level of 0:4. A possible explanation for the
failure of the Fmat and FmatBa method is that the scene is close to a critical configuration.
Consider the view in the middle, i.e. number 5, in fig. 6.28. This view and any other
view observe only a real scene plane, which is a critical configuration (chapter 7). This
problem appears frequently in man-made environments and was addressed in (Pollefeys
et al., 2002). In contrast to the “sequential” methods, both plane-based methods, i.e. DRP
and RefCam, performed excellent for noisy input data. Due to the fact that these methods
exploit common scene knowledge, the critical configuration of one real scene plane is cir-
cumvented. Fig. 6.30 depicts the results of different algorithms for real image data in terms
of RMS error (middle) and 3D error (bottom). For the 3D error, the reconstruction of the
DRP algorithm was taken as “ground truth”. Only the ResInt, DRP and RefCam method
produced an acceptable result. The ResIntBa and ProjFac method had a “fairly” low RMS
error, however, the 3D error was high, i.e. about 20 meters. The difference between the
result of the ResInt method and the plane-based methods is approximately 1meter, i.e.
fairly large. Both plane-based methods, i.e. DRP and RefCam, give a low RMS error of
0:7. This is less than in the campus and city hall experiment, since automatically detected
image points are in general more accurate.

Let us summarize the result from the real world experiments. The main conclusion of
the real world experiments is that for difficult scenes with a high percentage of missing
data, up to 90%, our DRP methods and Hartley et al.’s (2001) RefCam method outper-
form all other general reconstruction methods. In particular, we analyzed the general
reconstruction methods Fmat, FmatBa, ResInt, ResIntBa, ProjFac, the “affine” meth-
ods AffFac, AffClos and the plane-based methods DRP, RefCam. The “failure” of the
general and “affine” methods had the following reasons: (a) too few image measurements
are available, (b) error accumulation due to noisy image measurements or (c) critical con-
figurations (one real scene plane). The plane based methods circumvent all these problems
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Figure 6.30. Performance of various algorithms on the synthetic house sequence (top). The RMS-
error (middle) and the 3D error (bottom) of the real house sequence before bundle adjustment
(grey) and after bundle adjustment (black).
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since they exploit scene knowledge which is available in all images, e.g. vanishing points,
in order to reconstruct the cameras (and the structure) simultaneously. Our DRP method
performed for some scenarios significantly better than the RefCam method. However, both
methods converged to the same local minimum after bundle adjustment in all experiments.
The “tape holder” sequence showed that reference plane methods are inferior to general
methods if the reference plane is detected very inaccurately..

6.2 Lines

We begin this section with an outline of our novel direct reference plane method for lines,
Line-DRP method. Since a 3D line can be represented in different ways, three versions of
the Line-DRP algorithm are suggested (sec. 6.2.1). The performance of the different Line-
DRP methods are then analyzed in experiments based on real and synthetic data (sections
6.2.2 and 6.2.3). Since lines features are not as frequently used as point features, for the
task of reconstruction, fewer experiments are conducted here. The goal is to show that
the two reference plane methods, Line-DRP and Line-Cam, perform successfully under
various conditions using real and synthetic data. The Line-Cam method is an extension
of (Hartley et al., 2001) for line features (sec. 3.3.3). It will turn out that the Line-DRP
method is superior to the Line-Cam method for scenes were 3D lines are not “close to”
the reference plane, e.g. an infinite reference plane. For a real world scenario, with a high
percentage of missing data, both methods are, however, significantly inferior to our DRP
method for points. A comparative study with other line-based reconstruction methods was
not carried out. The outline of our Line-DRP method and the experimental study was not
published earlier.

6.2.1 Outline of the DRP Method & Optimization

The presentation of our Line-DRP algorithm in sec. 3.3.2 omitted several practical issues,
such as normalizing the image lines and separating 3D lines on and off a finite reference
plane. These issues are discussed here.

Different types of projection equations

On the basis of two different line representations, sec. 3.3.1 introduced constraints (eqn.
3.62 and 3.66) which are linear in the unknown line and camera parameters. As in the point
case, we will formulate these linear constraints for general cameras and normalized image
lines.
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Consider the representation of a 3D line Li by two points �Xi and �X0

i. The constraints
in eqn. 3.62, for finite cameras, may be written for a general camera Pj = [H1

j j tj ],
where the camera centre may be on the reference plane, as:

�XT
i H1T

j lij + tTj lij = 0 and

�X
0T
i H1T

j lij + tTj lij = 0 : (6.9)

These two equations are still linear in the unknown parameters �Xi; �X
0

i; tj . As in the
point case, it is preferable that the image lines are normalized in each image. This can
be achieved by computing the normalization matrix Bj , in each image j, from the set of all
endpoints of the line segments (sec. 6.1.1). According to proposition 2 (sec. 2.1.1), the line
segments are normalized as l0ij = B�Tj lij . For normalized image lines l0ij the constraints
in eqn. 6.9 may be formulated as

�XT
i (Bj H

1

j )T l0ij + tTj BT
j l0ij = 0 and

�X0T
i (Bj H

1

j )T l0ij + tTj BT
j l0ij = 0 : (6.10)

Since the matrices Bj and Hj are known, these constraints are, as in eqn. 6.9, linear in the
unknown parameters �Xi; �X

0

i and t. Note that in order to specify the 2 degrees of the 3D
points �Xi and �X0

i, eqn. 6.4, for normalized image points, must be used.
Consider the case where a 3D line Li is represented by the minimum number of un-

known parameters, di and d0i. The constraints for this line representation were introduced
in eqn. 3.66. For general cameras Pj = [H1

j j tj ] and normalized image lines l0ij , the 3
constraints in eqn. 3.66 may be formulated as

������
(BjH

1

j )T1l0ij ni;x n0i;x
(BjH

1

j )T2l0ij ni;y n0i;y
(Bj tj)T l0ij di d0i

������ = 0 ;

������
(BjH

1

j )T1l0ij ni;x n0i;x
(BjH

1

j )T3l0ij ni;z n0i;z
(Bjtj)T l0ij di d0i

������ = 0 ;

������
(BjH

1

j )T2l0ij ni;y n0i;y
(BjH

1

j )T3l0ij ni;z n0i;z
(Bjtj)T l0ij di d0i

������ = 0 ; (6.11)

where Ai represents the ith row of A. Since the unknown parameters, tj ; di and d0i, do
only appear in the last row of each determinant, this gives three equations which are linear
in the unknown parameters.

To summarize, the constraints in eqns. 6.10 and 6.11 may be used instead of the con-
straints in eqns. 3.62 and 3.66 for the reconstruction of multiple lines in multiple views.

Outline of the algorithms

Using the different constrains for multiple lines, we formulate now three linear algorithms
for the reconstruction of multiple lines and cameras. The different linear systems, using
eqn. 3.62 or 3.66, were introduced in sec. 3.3.2. This section also discussed the main
advantages and drawbacks of this approach.
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We begin with the simplest algorithm Line-DRP. It is based on the 2 point representa-
tion of a 3D line and uses the linear system in eqn. 3.69. The algorithm is composed of the
following steps

1. Determine Hj of a reference plane.
2. Compute the image lines



l0ij



2

(with l0ij = BT
j l), or



l00ij



2

(with l00ij = HT
j l).

3. Obtain �Xi; �X
0

i;
�Qj(tj) by SVD using eqns. 6.10, 6.4 (for l0) or 3.62, 3.13 (for l00).

The image lines l0 are for general cameras and normalized image lines. In case of stabilized
images, the image lines l00 are applied. Note that it is, as in the point case, more efficient to
compute only the matrix V , i.e. its last four singular vectors, from the SVD of the system
matrix S = UDV T .

The Line-DRP method uses the image measurements directly. However, if any of the
3D points �Xi or �X0

i lie on the reference plane, the Line-DRP method does not return the
correct solution. In sec. 3.3.1 it was shown that the direction Vi of a 3D line Li can be
determined directly from the multiple stabilized image lines li1; : : : ; lim. This is achieved
by computing the intersection point vi of the image lines, using the linear system in eqn.
3.63. The direction of a line Li is then given as Vi = (vi; 0)T . The linear system in eqn.
3.63 may also be used to determine whether a 3D line lies on or off the reference plane.
The second last singular value of the system is 0 for a 3D line on the reference plane. Since
Vi is a point on the line Li, i.e. X0i = Vi, it is sufficient to reconstruct only one point �Xi, in
order to determine Li completely. In practice, the point �Xi may be chosen as the endpoint,
of a line segment li1, which is further away from the vanishing point vi. Since Vi is at
infinity, �Xi must be a finite point. The outline of this algorithm, based on the linear system
in 3.70, is

1. Determine Hj of a reference plane.
2. Compute the image lines



l0ij



2

(with l0ij = BT
j l), or



l00ij



2

(with l00ij = HT
j l).

3. Compute the direction Vi of each 3D line Li using l00 and eqn. 3.63.
4. Determine and reconstruct 3D lines on the reference plane by checking if the

second last singular value in eqn. 3.63 is smaller than a certain threshold.
5. Obtain �Xi; �Qj(tj) by SVD using eqns. 6.10, 6.4 (for l0) or 3.62, 3.13 (for l00).

We denote this method Line-DRP(1p). It is, in contrast to the Line-DRP method, more
efficient since the linear system comprises of fewer unknowns.

Finally, a 3D line Li may be represented by a minimum of unknown parameters di
and d0i. These two parameters represent the distance of the planes �i = (ni; di)T and
�0

i = (n0i; d
0

i)
T from the origin. The planes’ normals ni and n0i may be derived directly

from the direction Vi of the line. On the basis of this line representation, we formulate the 3
equations of the form eqn. 3.66, for stabilized images, and eqn. 6.10. These equations may
be stacked into a linear system shown in eqn. 3.71. In contrast to the previous methods, the
“artificial” extra constraints for the 3D points �Xi and �X0

i are dispensable. The algorithm,
which we called the Line-DRP(min) method, is composed of the following steps
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1. Determine Hj of a reference plane.
2. Compute the image lines



l0ij



2

(with l0ij = BT
j l), or



l00ij



2

(with l00ij = HT
j l).

3. Compute the direction Vi of each 3D line Li using l00 and eqn. 3.63.
4. Determine and reconstruct 3D lines on the reference plane by checking if the

second last singular value in eqn. 3.63 is smaller than a certain threshold.
5. Obtain di; d0i; �Qj(tj) by SVD using eqns. 6.11 (for l0) or 3.66 (for l00).

This methods has, in contrast to the Line-DRP(1p) method, even less number of unknowns.
On the other hand, it derives more information, i.e. ni; n0i, directly from the image data.

In contrast to the point based DRP method (sec. 6.1.1), the distance between the 3D
lines and the reference plane was not computed for any of the Line-DRP methods. Con-
sequently, no weighting of the linear equations was suggested and the separation of lines
on and off the plane was solved by a simple thresholding. Is it possible to compute this
distance? If the line is represented by one or two 3D points, i.e. �X and �X0, the distance of
these points to the reference plane could be established. However, their correspondence in
multiple views is unknown. Therefore, determine this distance is difficult or probably im-
possible. The effect of a non-weighted linear system on the solution will be demonstrated
in the experimental section. Note, if the reference plane represents the correct plane at
infinity this issue can be neglected. Alternatively, the equations of the linear system for 3D
lines could be weighted according to the length of a line segment. This would reflect the
fact that longer line segments are detected more accurately than shorter ones.

6.2.2 Experiments: Synthetic Data

This section investigates the performance of different versions of our Line-DRP method
under specific aspects, e.g. position of the reference plane. We will see that our novel
method performs successfully under various conditions. For comparison, we also analyze
a linear reference plane method which is based on camera constraints obtained from line
segments (sec.3.3.3). This method is an extension of (Hartley et al., 2001) for line fea-
tures. We denote it Line-Cam. The comparison between the Line-DRP and the Line-Cam
method will reveal that the Line-DRP is superior for scenes where 3D lines lie not close
to the reference plane. Otherwise, the camera constraint method was slightly better, since
our method does not weight 3D lines according to their distance to the plane. The main
advantage of our Line-DRP method is that lines and cameras are estimated simultaneously.
A comparison with other line reconstruction methods, e.g. hierarchical merging of trifocal
tensors, has not been carried out.

The synthetic experiments for line features were conducted in the same way as for
point features. However, since lines features are not as frequently used as point features,
less extensive experiments were conducted here. For the experiments the synthetic Cir-
configuration in fig. 6.2(a) was used. The synthetic scene consists of a cube, with 24 lines
segments, floating above a reference plane. As in the point case, the infinite homogra-
phies are derived from the 4 reference points, which lie on the reference plane. In order
to simulate noisy line segments, Gaussian noise was added to the endpoints of the line
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segments. In contrast to the point case, it is difficult to compare a 3D line reconstruction
with the “ground truth”. Therefore, the 3D endpoints of the line segments were determined
by intersection using the reconstructed cameras. The Root-Mean-Square (RMS) error be-
tween reprojected 3D points and 2D endpoints of the line segments (potentially corrupted
by noise) served as the quantitive measurement of the performance. As in the point case,
the Cramer-Rao lower bound, which is depicted as a straight line, indicates the theoretical
minimum.

Different Line-DRP versions

0 1 2 3
0

1

2

3

4

5

R
M

S
 e

rr
or

Line−DRP 
Line−Cam 
Point−DRP

Noise in pixel (stand. dev.)

(a)

0 1 2 3
0

1

2

3

4

5

R
M

S
 e

rr
or

Line−DRP(1p) 
Line−DRP(min)

Noise in pixel (stand. dev.)

(b)

Figure 6.31. Performance of the Line-Cam and various Line-DRP algorithms on the synthetic
Cir-Configuration (see fig. 6.2(a)).

In a first experiment, different versions of the Line-DRP algorithm were analyzed, de-
pending on the the different constraints discussed in the previous section (see fig. 6.31).
The performance of the the Line-DRP, Line-DRP(1p) and Line-Cam method is very sim-
ilar. The Line-DRP(min) algorithm performed in this case slightly worse. The difference
between this version and the other Line-DRP algorithms is that more information is used,
which is derived directly from the reference plane and the image lines. This potentially
decreases the numerical stability of the Line-DRP(min) method. The performance of the
different Line-DRP versions using the normalized image lines, i.e. eqn. 6.10 or 6.11, were
close to identical to the algorithms which apply non-normalized image lines. Therefore,
this is not discussed here. The Line-DRP algorithm is used for the following experiments,
in case no line segment lies on or close to the reference plane.

Let us investigate the difference between point and line features. The 26 endpoints of
the 24 line segments were reconstructed with the DRP method based on point features. Fig.
6.31(a) shows, that the performance is more stable in the point case. This can be expected
since 3D lines provide fewer geometric constraints than 3D points.
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Thresholding
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Figure 6.32. Performance of the Line-Cam and various Line-DRP algorithms in respect to the
distance between the cube and the reference plane.

We saw that 3D lines which lie on or close to the reference plane have to be recon-
structed separately. Otherwise, the linear system in eqn. 3.69, 3.70 or 3.71 does not pro-
vide the correct solution. How the different algorithms handle this issue is investigated
experimentally here. Fig. 6.32 depicts an experiment were the distance between the cube
and the reference plane varied between 0 and 2 units (see fig. 6.2(a)). If the distance is 0, 6
out of 24 3D lines of the cube lie on the reference plane. The performance of the different
algorithms is as expected. The Line-DRP algorithm, which does not consider the issue of
separating lines on and off the plane, performs gradually worse corresponding to the height
of the cube. In the point case this effect was eliminated by weighting the linear system ac-
cording to the height of a 3D point (see fig. 6.4(a) ). As explained above, this weighting
is not applied for line reconstruction. Eventually, the algorithm fails if some 3D lines lie
on the plane, i.e. the height of the cube is 0. The Line-Cam algorithm which reconstructs
only the cameras and not the 3D lines performed constantly good, i.e. independent of the
height of the cube. The RMS error of the Line-DRP(1p) and Line-DRP(min) algorithm in-
creases, like the Line-DRP algorithm, corresponding to height of the cube. However, these
algorithms separate lines on and off the plane by a simple thresholding, which was set in
this case to 0:2. Therefore, the performance improves considerably for a certain height of
the cube, i.e. 0:4. However, to find this optimal threshold is difficult. Consequently, in
practice the Line-Cam algorithm is preferable for scenarios where the lines might lie on or
close to the reference plane. Otherwise, we recommend the Line-DRP, Line-DRP(1p) or
Line-DRP(min) method, since lines and cameras are reconstructed simultaneously.
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Figure 6.33. Results for the Line-DRP (a) and Line-Cam (b) algorithm with respect to different
infinite homographies

Position and quality of the reference plane

As in the point case, it can be expected that the performance improves with the quality of
the infinite homographies. Furthermore, it can be expected that the result of the Line-DRP
and Line-Cam method is better if the plane at infinity, i.e. the reference plane, is at its
correct position. The quantity of these improvements is analyzed here. Let us repeat the
first experiment (see fig. 6.31(a)) for the Line-DRP and Line-Cam algorithm (fig. 6.33).
The Line-DRP/Cam (perfect ref.) algorithm shows the case where Gaussian noise was
added to all image points except for the reference points. The improvement is obvious for
both algorithms. Additionally, fig. 6.33 depicts the case where both algorithms use the
correct plane at infinity as the reference plane (Line-DRP/Cam (correct inf. hom.)). The
performance improves slightly, compared to a perfect finite reference plane. This can be
expected since for the correct plane at infinity the endpoints of the 3D lines have the same
order of magnitude.

Missing data

In a last, synthetic experiment, the case of missing data is analyzed. Each 3D line is visible
in a fraction of 3 � 8 views. This fraction is taken randomly. A more realistic scenario
of missing data is considered in the next section. The reference plane, i.e the 4 reference
points, are visible in all views. Fig. 6.11 depicts the performance for a standard deviation
of 1 (a) and 3 (b). The theoretical minimum is in this case constant since all 3D points, i.e.
endpoints of the line segments, are visible in all views.

Fig. 6.11 shows that both methods, i.e. Line-DRP and Line-Cam, handle a substantial
amount of missing data, i.e. up to 50%. However, they decrease in performance corre-
sponding to the amount of missing data. This was not the case for our point based DRP
method (fig. 6.11). As already mentioned, 3D lines provide fewer geometric constraints
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Figure 6.34. Performance of the Line-DRP and Line-Cam method for the case of missing data.
The standard deviation of the Gaussian noise is 1 (a) and 3 (b).
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Figure 6.35. The visibility matrix of the house sequence for 70 manually selected lines.

than 3D points. For both noise levels the Line-Cam algorithm performed slightly worse
than the Line-DRP method. However, it is to expect, which was, however, not shown,
that both reference plane methods are superior to general line-based methods for difficult
scenes with a high percentage of missing data.

6.2.3 Experiments: Real Data

In contrast to point features, only one real world experiment was conducted for line fea-
tures. The goal is to demonstrate that the Line-DRP method, as well as the Line-Cam
method, can be successfully applied to real world scenes. Additionally, we will compare
their performance with the point based DRP and RefCam method using the endpoints of
the line segments. The main conclusion will be that the point based methods are signifi-
cantly superior to the line based methods. This can be expected since 3D points provide
more geometric constraints than 3D lines.
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(a) (b) (c)

Figure 6.36. The top (a), side (b) and front (c) views of the reconstruction using the DRP al-
gorithm and the endpoints of the line segments. The result is better than in fig. 6.37 using the
Line-DRP method.

(a) (b) (c)

Figure 6.37. The top (a), side (b) and front (c) views of the reconstruction using the Line-DRP
algorithm and no bundle adjustment. The result is significantly worse than in fig. 6.36, where the
DRP method is used. However, the approximate shape of the house is preserved.

We selected manually 70 line segments in the 9 images of the house sequence (see fig.
6.27). The visibility matrix of the 140 endpoints of the line segments is depicted in fig.
6.35. The amount of missing data is 54%. The endpoints were reconstructed with our DRP
algorithm (fig. 6.36). This result is qualitatively correct. Our Line-DRP method, using
the corresponding line segments, gave the result in fig. 6.37 before bundle adjustment.
Obviously, this result is significantly worse, however, the approximate shape of the house
is preserved.

The reconstruction in fig. 6.36 was used as a synthetic house sequence. The perfor-
mance of the different Line-DRP methods and the point based DRP and RefCam methods
are depicted in fig. 6.38. The performance is analyzed in terms of the mean 3D error of the
reconstructed endpoints of the 3D line segments. The point based methods are very stable.
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Figure 6.38. Results of various algorithms on the synthetic house sequence (top) and the real
house sequence (bottom), before bundle adjustment (grey) and after bundle adjustment (black).

The line based methods can only reconstruct the house for a small noise level, � < 0:5. As
in the synthetic experiments (sec. 6.2.2), the Line-DRP method performed better than the
other Line-DRP versions and, especially, the Line-Cam algorithm. The experiment on the
real house sequence confirms the conclusion drawn from the synthetic house experiment.
All line based methods were inferior to the point based methods, before and after bundle
adjustment.

To summarize, for this real world scenario, with a high percentage of missing data, the
Line-DRP and the Line-Cam methods are significantly inferior to our point based DRP
method, however, could approximately reconstruct the scene.



6.3. Planes 161

6.3 Planes

The reconstruction of multiple planes observed in multiple views was discussed in sec.
3.4. We saw that there are in general two options, either use directly the homographies or
“hallucinate” point and/or line correspondences. Any reconstruction algorithm (with and
without a reference plane) may be applied to the hallucinate image features. Section 3.4
presented three different reference plane algorithms which use directly the given homogra-
phies. Practical versions of these three methods are formulated in sec. 6.3.1. The reason
that methods based on camera constraints and factorization are also presented here is that
they were published in (Rother et al., 2002).

After this presentation, synthetic and real world experiments are discussed in sections
6.3.2 and 6.3.3. The goal of the experiments is to show that the three homography-based
methods perform successfully for one synthetic and one real world scenario. Further-
more, we will demonstrate that advanced methods which use hallucinated image points are
slightly superior to methods which use the homographies directly. Parts of these experi-
ments were published in (Rother et al., 2002). As for line features, more experiments have
to be conducted to confirm these conclusions.

6.3.1 Outline of the DRP Method & Other Linear Methods

This section will outline our three plane-based reconstruction methods (see sections 3.4.2,
3.4.3 and 3.4.4) which are based directly on the given homographies. This means that
the input data consists of a set of homographies Hk

ij , which represent a plane �k visible
in the views i and j. In the following, the reference plane is considered as an additional
plane which is visible in all views. The reference plane homographies, i.e. the infinite
homographies, are denoted as H1

i .
For points and lines, the linear constraints on features and cameras were extended to

use normalized image features and general cameras. These aspects are not discussed here,
since the projection of a plane “into” an image is not an “image feature”.

Plane-DRP algorithm

We saw in sec. 3.4.1 that the unknown scale � of a homography Hk
ij in eqn. 3.85 may

be derived directly as the double eigenvalue of Hk
ij . Furthermore, the normal nk of a

plane �k = (nk; dk)T may be computed directly from Hk
ij . This information is sufficient

to derive eqn. 3.97, which is linear in the remaining unknown parameters, �Qj and dk.
Therefore, multiple planes visible in multiple views may be reconstructed by our novel
linear method Plane-DRP introduced in sec. 3.4.2, which consist of the following steps

1. Move the reference plane to infinity, i.e. recompute all Hk
ij as Hk

ij = H1�1
j Hk

ij H
1

i .
2. Compute the normal nk of plane�k = (nk; dk)T from Hk

ij (see below).
3. Derive � as the double eigenvalue of Hk

ij and determine Ĥk
ij = ��1Hk

ij � I .
4. Obtain �Qj and dk (of plane�k = (nk; dk)T ) by SVD using eqn. 3.97 and Ĥk

ij .
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As in the point (and line) case it is more efficient to compute only the matrix V , i.e. its
last four singular vectors, from the SVD of the system matrix S = UDV T . In order to
compute reliably the normal nk of a plane �k, we suggest the following method

1. For each pair of views i and j, where Hk
ij exist, repeat N times.

2. Hallucinate 3 points x1i; x2i and x3i inside the “homography area” of image i.
3. Derive the 3 corresponding points in image j as xlj = Hk

ijxli.
4. Stabilize the image points in image i: xli = H1�1

i xli and j: xlj = H1�1
j xlj .

5. Compute a normal n using eqn. 3.94 and 3.95.
6. Take nk as the average normal from the set of all normals n.

Plane-Cam algorithm

In sec. 3.4.3, a novel linear algorithm (Rother et al., 2002) was presented, which recon-
structs all camera centres simultaneously, from camera constraints involving homographies
only. On the basis of the known cameras, the planes may be derived. The main advantage
of this method, in contrast to the Plan-DRP method, is that the normals of the planes are
not needed. This method is composed of the following steps:

1. Move the reference plane to infinity, i.e. recompute all Hk
ij as Hk

ij = H1�1
j Hk

ij H
1

i .
2. Derive � as the double eigenvalue of Hk

ij and determine Ĥk
ij = ��1Hk

ij � I .
3. Obtain camera centres �Qj by SVD using eqn. 3.102 and Ĥk

ij .
4. Compute�k = (nk; dk)T from eqn. 3.101 and �kij (eqn. 3.100).
5. Optionally, iterate steps 1 – 4 (using �kij ) until cameras and/or planes are unchanged.

In the following, this method without iteration, i.e. without step 5, is denoted the Plane-
Cam method. The iterative version is called the Plane-CamIt method.

Plane-Fac algorithm

Finally, a simple factorization method for multiple planes and cameras, denoted the Plane-
Fac method, was introduced in sec. 3.4.4. This method was presented in (Triggs, 2000;
Rother et al., 2002). The main difference of this method, in contrast to the Plane-DRP and
Plane-Cam method, is that one view is considered as the reference view. Consequently,
only those homographies which include the reference view are used. This is a drawback
since not all given information is exploited. It was shown, that with this assumption a plane
may be expressed as �k = (nk; 1)T . This leads to the following factorization method:

1. Move the reference plane to infinity, i.e. recompute all Hk
ij as Hk

ij = H1�1
j Hk

ij H
1

i .
2. Derive � as the double eigenvalue of Hk

ij and determine Ĥk
ij = ��1Hk

ij � I .
3. Obtain �Qj and nk (�k = (nk; 1)T ) by SVD of the measurement matrix in eqn. 3.108.

In contrast to the Plane-DRP and Plane-Cam method, a full SVD of the measurement
matrix has to be carried out since both U and V of the SVD of W = UDV T are needed.
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8 views

Reference Plane

Figure 6.39. The synthetic configuration comprises of 8 images of a house which consists of 9
planes. The ground plane, which is visible in all views, served as the reference plane.

6.3.2 Experiments: Synthetic Data

This experimental section comprises not of extensive experiments as in the point case. We
will compare the performance of homography-based methods, introduced in sec. 6.3.1,
with methods using hallucinated image points for one synthetic scenario. The synthetic
experiments for planes were conducted in the same fashion as for point and line features.
A 8 frame synthetic sequence was generated based on the scene depicted in fig. 6.39,
which consists of 9 planes forming a house. The homographies between the views were
computed from point matches, where each plane has on average 20 points. The size of the
ground plane (reference plane) is 12�12 units and the height of the house is 6 units. As in
the line case, it is difficult to compare a 3D plane reconstruction with the “ground truth”.
Therefore, the 3D points which lie on the planes were determined by intersection using the
reconstructed cameras. Afterwards, the reconstruction and the ground truth were aligned
in an optimal way. The mean 3D error between the point reconstruction and the ground
truth served as the quantitive measurement of the performance.

In the following, three reconstruction methods which use directly the homographies are
compared: Plane-DRP, Plane-Cam(Plane-CamIt) and Plane-Fac. As mentioned above,
a planar scene may as well be reconstructed by any point-based reconstruction algorithm
using hallucinated point features. Therefore, 20 points per plane were hallucinated in all
views using the estimated homographies. This set of hallucinated points is then recon-
structed with the general methods Fmat, FmatBa and the reference plane methods DRP,
RefCam.

In a first experiment, the assumption was made that all planes are visible in all views,
i.e. all planes are transparent. Fig. 6.40 shows the performance of various algorithms based
on the homographies directly (a) or hallucinated image points (b). The performance of the
Plane-DRP, Plane-Cam and Plane-CamIt method are virtually identical. This shows that
iterating the solution with the Plane-CamIt method did not improve the result considerably.
The Plane-Fac algorithm performed slightly worse for smaller noise levels, i.e. � < 2, and
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Figure 6.40. Results for the case of no missing data. The algorithms in (a) are based on homo-
graphies directly and in (b) on hallucinated image points.

1 2 3
0

0.1

0.2

0.3

3D
 e

rr
or

Plane−DRP  
Plane−Cam  
Plane−CamIt

Noise in pixel (stand. dev.)

(a)

1 2 3
0

0.1

0.2

0.3

3D
 e

rr
or

Fmat  
FmatBa
DRP   
RefCam

Noise in pixel (stand. dev.)

(b)

Figure 6.41. Results for the case of missing data. The algorithms in (a) are based on homogra-
phies directly and in (b) on hallucinated image points.

significantly worse otherwise. A plausible explanation is that this method uses only a part
of the available information, i.e. only the reference view homographies. The methods
based on hallucinated point features, e.g. DRP, RefCam, performed, in contrast to the
direct homography methods, slightly worse (for � = 3 is the 3D error 1 with the DRP
method and 0:6 with the Plane-DRP method).

Let us repeat the first experiment with the more realistic assumption of non-transparent
planes of the synthetic house (fig. 6.39). This means that each plane, except of the ground
plane (reference plane), is visible in only 3 successive views. Fig. 6.41 depicts the perfor-
mance of the different algorithms based on the homographies directly (a) or hallucinated
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image points (b). In this case, the Plane-Cam (and Plane-CamIt) method performed slightly
better than the Plane-DRP methods. The difference between these two methods is that the
Plane-DRP method derives and uses the normals of the planes. This is a potential source
of error. The Plane-Cam method does not rely on the planes’ normal. If we compare the
“homographies methods”, i.e. Plane-DRP and Plane-Cam, with the “hallucinating point
methods”, i.e. FmatBa, DRP and RefCam, it turns out that the “hallucinating point meth-
ods” performed more stably. The bundle adjustment process of the FmatBa method was
necessary to improve the performance of the Fmat method.

6.3.3 Experiments: Real Data

            

(a)

            

(b)

            

(c)

(d)

            

(e) (f)

Figure 6.42. Three of the eight original views of the toyhouse sequence. The corresponding
camera positions are labeled in fig. 6.43. Three novel views of a VRML model of the toyhouse
(d-f).

As in the line case, only one real world experiments using planes was conducted. The
goal is to demonstrate that both approaches, i.e. “direct homography methods” and “hallu-
cinating points methods”, perform successfully under real world conditions. As real image
data, a toyhouse sequence3 shown in fig. 6.42(a-c) was used. The frontal part of the toy-
house consists of 6 planes. The ground plane, which served as the reference plane, the roof
and the front side of the house are visible in all views. The other 3 planes are only visible in
the first four views. The homographies were determined on the basis of manually selected
point matches. Fig. 6.43 shows the top view of the reconstruction of 39 model points and

3The toyhouse sequence is available at http://www.robots.ox.ac.uk/vgg/data/
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6.42(b)

6.42(a)

6.42(c)

Figure 6.43. Top view of the reconstruction of the toyhouse sequence with 39 model points (dots)
and 8 cameras (arrows). The dashed lines indicate the model planes. The reconstructed model
points were not constrained to lie on the planes. The labeled cameras correspond to images in fig.
6.42.

8 cameras using the Plane-DRP method. The planes of the model are indicated by dashed
lines. In this case the reconstructed model points were not constrained to lie on the planes.
Fig. 6.43 shows that the baseline of the cameras is fairly small for this scenario, in con-
trast to all previous real world experiments, e.g. fig. 6.23. This potentially decreases the
accuracy in the reconstruction for noisy image measurements. As in previous real world
experiments, the toyhouse sequence was synthesized. In order to meet the requirement of a
planar scene, all reconstructed model points were projected onto the corresponding model
planes. Furthermore, the ground truth reconstruction was scaled so that the front side of
the toyhouse had the same size as the synthetic house in fig. 6.39

Fig. 6.44(top) shows the performance of various algorithms for the synthetic toyhouse
sequence. A first observation is that all algorithms performed worse (in terms of mean 3D
error) compared to the synthetic house sequence in fig. 6.41. This is most likely due to the
small baseline of the cameras for the toyhouse sequence. In this experiment the “halluci-
nating point methods”, i.e. FmatBa, DRP and RefCam, performed considerably better than
the “homography methods”, i.e. Plane-DRP, Plane-Cam and Plane-CamIt. Especially for
small noise levels, i.e. � < 1. As in the previous experiment, the bundle adjustment pro-
cess of the FmatBa method was necessary to improve considerably the performance of the
Fmat method. Fig. 6.44(bottom) depicts the results of the different algorithms for the real
toyhouse sequence in terms of the RMS error. The results confirm most of the conclusions
drawn from the synthetic toyhouse experiment. The “hallucinating point methods” are su-
perior to the “homographies methods”. The performance before bundle adjustment was
13:1 for the Plane-DRP method and 20:8 for the Plane-Cam (and Plane-CamIt) method.
However, all methods computed a 3D reconstruction which was sufficiently good in or-
der to perform successfully a bundle adjustment process, which gave a result with a low
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Figure 6.44. Results of various algorithms on the synthetic toyhouse sequence (top) and the real
teapot sequence (bottom), before bundle adjustment (grey) and after bundle adjustment (black).

RMS error of 0:8. In this case, the Fmat method without bundle adjustment performed
unexpectedly good.

Let us summarize the experiments using real (and synthetic) data. What is the best
reconstruction method for planar scenes? To answer this question profoundly, more ex-
periments must be conducted. On the basis of the conducted experiments it seems that
methods which use hallucinated points, e.g. DRP, RefCam or FmatBa, are slightly supe-
rior to methods which use the homographies directly, i.e. Plane-DRP or Plane-Cam. The
results of the “homographies methods” were only very stable for the “simple” scenario
of wide baseline images and no missing data. However, two aspects about “hallucinating
point methods” have to be kept in mind. First, as pointed out in (Szeliski and Torr, 1998),
it is important that points are hallucinated inside the image area from which the respective
homography was derived. Secondly, only the advanced hallucinating point methods, i.e.
not Fmat, performed good in all experiments. The Plane-Fac method is less recommend-
able for practical usage since it specializes one reference view and the problem of missing
data must be solved.
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6.4 Conclusions and Future Work

This chapter presented practical algorithms for our direct reference plane (DRP) methods
for points, lines and planes based on chapter 3. The main contribution is the experimental
comparison of these methods with other approaches under various conditions using real
and synthetic data. Note that reference plane methods may apply any real or virtual refer-
ence plane (chapter 5). A virtual reference plane may represent a finite plane or the correct
plane at infinity.

For point features, our DRP method was formulated as in (Rother and Carlsson, 2002b;
Rother and Carlsson, 2002a). Furthermore, it has been extended to use normalized image
data and general cameras. The most important part of this chapter is the extensive com-
parative study on real image data. Therefore, real image data was “synthesized”, i.e. a
quantitatively correct reconstruction was taken as “ground truth”. The main conclusion
is that for difficult, reference plane scenarios with a high percentage of missing data, up
to 90%, our DRP method and Hartley et al.’s (2001) reference plane method performed
successfully, where general reconstruction methods fail. In particular, we analyzed the
general reconstruction methods suggested by Fitzgibbon and Zisserman (1998), Beardsley
et al. (1996), Sturm and Triggs (1996), and Martinec and Pajdla (2002) and the “affine” re-
construction methods of Tomasi and Kanade (1992), Jacobs (1997) and Kahl and Heyden
(1999). The “failure” of these methods had the following reasons: (a) too few image mea-
surements are available, (b) error accumulation due to noisy image measurements or (c)
critical configurations (dominant scene plane). The reference plane methods circumvent
all these problems since they exploit a real or virtual reference plane visible in all views,
in order to reconstruct the cameras (and the structure) simultaneously. Our DRP method
was considerably superior to Hartley et al.’s (2001) method for three out of five real world
experiments. However, both methods converged to the same local minimum after bundle
adjustment. The “tape holder” sequence demonstrated that reference plane methods are
inferior to general methods if the reference plane is detected very inaccurately.

The synthetic experiments compared various versions of our method with two other
reference plane methods, the camera constraint method of Hartley et al. (2001) and the
factorization method of Triggs (2000). We may conclude that for scenes where 3D points
are not close to the reference plane, our simple, non-iterative DRP method and the camera
constraint method were very stable. The results are virtually optimal when the reference
plane is the correct plane at infinity. For “flat scenes” with many 3D points on or close
to the reference plane, our and the factorization method performed best. However, in this
case our method is complex and iterative, depending on the number of 3D points. The fac-
torization method has the drawback of “hallucinating” missing data and is not applicable
for infinite reference planes. The camera constraint method performed unexpectedly un-
stably for “flat scenes”. Consequently, in our opinion there is still no satisfactory method
for “flat scenes”. Additionally, we applied our DRP method to general scenes by assuming
affine cameras (sec. 5.2.2) or known epipolar geometry (sec. 5.2.3). It turned out that our
method is very sensitive to the estimated epipoles and noise in the reference points. Con-
sequently, this approach is potentially inferior to general reconstruction methods which do
not distinguish reference points.
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The second part of this chapter outlined three versions of our DRP method for line
features. These algorithms are novel and were not presented in our previous publications.
The main goal of the experimental study was to demonstrate that these methods perform
“successfully” under various conditions using real and synthetic data. In contrast to point
features, a smaller number of experiments were conducted. For comparison, an extension
of Hartley et al.’s (2001) point based method for line features was analyzed, which is
based on camera constraints (sec. 3.3.3). It turned out that our method is slightly superior
to the camera constraint method for scenes were 3D lines are not close to the reference
plane. Otherwise, the camera constraint method was slightly better, since our method does
not weight 3D lines according to their distance to the plane. Both methods can handle a
substantial amount of missing data, i.e. up to 50%. However, for a real world scenario, with
a high percentage of missing data, both methods are significantly inferior to our point based
DRP method. This can be expected since 3D lines provide fewer geometric constraints than
3D points.

Finally, for scene planes we outlined our novel DRP algorithm, our linear, camera-
constraint method (Rother et al., 2002), and a factorization method (Triggs, 2000; Rother
et al., 2002). These three methods directly apply the homographies induced by scene
planes. As discussed in sec. 3.4, image points (or lines) may be hallucinated using the ho-
mographies. Consequently, any point-based reconstruction method can reconstruct scene
planes based on hallucinated image points. The primary goal of the experimental study was
to demonstrate that the three “direct homographies methods” perform successfully under
various conditions using real and synthetic data. Apart from the factorization method, the
performance was very stable for simple scenarios of wide baseline images and no miss-
ing data. The factorization method distinguishes one reference view which affected the
results negatively. A comparative study with “hallucinating point methods” showed that
they were slightly superior for difficult scenes with missing data. However, this was only
true for more advanced point-based methods like our DRP method. As for line features,
more experiments have to be conducted to confirm these conclusions.

In future work we plan to study experimentally our DRP method for combinations of
points, lines and planes (sec. 3.5.1). Additionally, those scene constraints which provide
linear equations can be included in our DRP method (sec. 3.5.2).
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Chapter 7

Critical Reference Plane
Configurations

The previous chapter presented many examples where our direct reference plane approach
was applied to reconstruct reference plane scenarios. In the absence of noise, our method
returned for all examples the correct solution. This chapter investigates configurations
of multiple cameras, multiple 3D points and a known reference plane which do not have
a unique projective reconstruction. This set of configurations is called critical reference
plane configurations. A necessary condition is that enough 3D points are visible in multiple
views. This leads to the questions of sufficient visibility which is also addressed here. We
restrict this investigation to point features. All results are novel, based on our publication
(Rother and Carlsson, 2002a), since to our knowledge critical configurations have only
been studied for the general, non-reference plane, case (e.g. Kahl et al., 2001). Since for
reference plane configurations the relationship between 3D points and cameras is linear,
this analysis is simpler compared to the general case.

We begin the discussion with the case of no missing data, i.e. all 3D points are visible
in all views (sec. 7.2). The main observation is that for multiple views all non-trivial con-
figurations where points and camera centres are non-coplanar are non-critical. Therefore,
the typical scenario of one dominant scene plane visible in multiple views is not critical
if the reference plane is different to the scene plane. This is an important practical result
since this scenario is critical in the absence of a known reference plane.

For the case of missing data (sec. 7.3) we will introduced a method to construct non-
critical configurations.

7.1 Introduction

In the following we investigate the constraints that 3D points and cameras have to satisfy in
order to obtain a unique projective reconstruction for the case of having a known reference
plane visible in all views. Note that this is equivalent to the assumption of having 4 points
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in the scene which are known to be coplanar. Throughout this chapter we assume that no
camera centre lies on the reference plane, i.e. all cameras are finite. This means that all
infinite homographies are non-singular.

We saw in the previous chapter that in all real world examples many 3D points were
only visible in a limited number of views. In order to specify a certain overlap between
points and views we introduced the visibility matrix V . An element V (i; j) of the visibil-
ity matrix is set if the jth point is visible in the ith view. The following example shows a
specific visibility matrix of n = 5 points partly visible in m = 3 views

points
1 2 3 4 5

1 � �
V = views 2 � � � � � .

3 � � �
(7.1)

Note that the visibility matrix does only specify which point is visible in which view.
However, it does not specify the actual placement of points and camera centres in the
scene. Therefore, we denote a specific placement of points and cameras in the scene as a
configuration. We saw in sec. 3.1 that a configuration is only unique up to a projective
transformation (see eqn. 3.2). The configurations (Xi; Pj) and (HXi; PjH

�1) which are
related by a projective transformation H are denoted as equal. Let us define the notion of
sufficient visibility given a certain visibility matrix.

Definition 5 (Sufficient Visibility) A visibility matrix is called sufficient if there is at least
one configuration which has a unique reconstruction.

Sufficient visibility does not necessarily imply a unique reconstruction. Therefore, a
configuration is called a critical configuration if the visibility matrix is sufficient but the
projected image points are insufficient to determine a unique reconstruction (see definition
4 in sec. 3.1).

Let us consider the questions of sufficient visibility and critical configurations for the
case of n 3D points and m views with the additional assumption of having a known refer-
ence plane visible in all views. Consider the case that non of the points lie on the reference
plane. We saw in sec. 3.2.2 that the total number of degrees of freedom (#dofs) of the the
linear system in eqn. 3.17 is: #dofs = 3(m+ n)� 4. Consider the rank of the S-matrix
(eqn. 3.17). This is at the most #dofs. If the rank of the S-matrix is smaller than #dofs,
the dimensionality of the nullspace is larger than four which means that the reconstruction
is not unique. We can state: A given visibility matrix is sufficient if the rank of the S-matrix
is equal to the number of dofs, for a generic set of points and camera centres, i.e. points
and camera centres in “general pose”. Furthermore, we can state: A given configuration is
critical if the rank of the S-matrix is smaller than the number of dofs for this configuration.
The question of critical configurations is not only of theoretical interest, however, from a
numerical point of view we should expect instabilities whenever the S-matrix comes close
to rank deficiency, i.e. whenever a configuration is close to a critical one.
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In the past the two questions of sufficient visibility and critical configurations were
investigated for two different cases: no missing data and missing data. This corresponds
to two different types of visibility matrices: full and not full visibility matrix. We will
discuss these two types of visibility matrices separately as well.

Before addressing these questions, let us recapitulate the constraints on points and
cameras discussed in sec. 3.2. We saw that 3D points on the reference plane can be recon-
structed directly and independently of the position of all cameras with eqn. 3.14. However,
in order to reconstruct all cameras outside the reference plane, a minimum number of points
outside the reference plane are necessary.

Proposition 4 A configuration with n points and m views is critical if n � 1 or n points
lie on the reference plane.

Proof W.l.o.g. we choose the reference plane as the plane at infinity. This means that
the projection relations of any point on reference plane do not constrain the position of the
respective camera centre. However, one point is not sufficient to reconstruct all cameras
and this point, since #equations = 2m < 3m� 1 = #dofs for m > 1.

2

7.2 No Missing Data – Full Visibility Matrix

The problem of critical configurations for general, non-reference plane, configurations
has received considerable interest in computer vision and photogrammetry in the past
(Maybank, 1992; Hartley and Debunne, 1998; Hartley, 2000; Kahl et al., 2001; Kahl and
Hartley, 2002). The classical case of 2-view critical configurations implies that the two
camera centres and all 3D points are located on a ruled quadric (Krames, 1942). From
the duality of camera centres and space points (Carlsson, 1995) follows that this applies
also for 6 points and any number of cameras (Hartley and Debunne, 1998). The case of
three cameras and an arbitrary number of points was investigated in (Hartley, 2000). It
was shown that the intersection of two distinct quadrics, which is a fourth-degree curve,
is critical. Recently, Kahl et al. (2001) investigated the multi-view case. It turned out that
a curve which is critical for three views remains critical for any number of views. These
investigations were carried out for the general projective case, i.e. uncalibrated cameras.
Critical configurations for calibrated cameras were investigated in (Maybank, 1992; Kahl
and Hartley, 2002).

The non-linearity of the general projective case means that critical configurations gen-
erally imply a finite number of multiple solutions given projected image data. Having a
known reference plane on the other hand, gives us a linear reconstruction problem and
therefore either a unique solution or an infinite number of solutions. The case of an infinite
number of solutions will occur when the S-matrix (eqn. 3.17) becomes rank deficient so
that the dimensionality of the nullspace increases.

We will prove that the only critical configurations for 2 points not on the reference
plane visible in 2 views are if the camera centres and the points are coplanar. This is not a
contradiction to the general case, without a known reference plane, since less information
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is given in this case. Note that two planes (the reference plane and the plane containing all
the camera centres and points) describe a ruled quadric and is also critical in the general
case. For the multi-view case we will prove that a configuration is non-critical if (a) the
points and the camera centres are non-coplanar and (b) all camera centres and one of the
points are non-collinear and (c) all points and one of the camera centres are non-collinear
and (d) at least 2 points do not lie on the reference plane. We saw already in sec. 3.2.2
that for the case of no missing data a minimum requirement is to have 2 points outside the
reference plane. Furthermore, we will prove formally that a full visibility matrix with 2 or
more points and 2 or more views is sufficient.

7.2.1 Two-View Configurations

Let us consider the case of 2 points not on the reference plane visible in 2 views. From
the projection relations in eqn. 3.13, which are valid for cameras outside the reference
plane, we obtain at the most 8 linearly independent constraints for the S-matrix. Note that
only 2 of the 3 projection relations are linear independent. If all 8 equations are linearly
independent we would get a unique reconstruction, since the number of dofs is 8. We will
now prove that only a limited set of configurations is critical.

Theorem 8 A configuration of 2 points not on the reference plane visible in 2 views is
critical if and only if the points and the camera centres are coplanar.

Proof First, all points on the reference plane are detected and reconstructed indepen-
dently of the cameras’ position. Since the S-matrix has a four dimensional nullspace, we
are free to choose either a space point or a camera centre as the origin, i.e. (0; 0; 0; 1), of
the projective space. The S-matrix (eqn. 3.17) then takes on either of the forms:

0
BB@
S21 �S21 0
S22 0 �S22
0 S11 0
0 0 S12

1
CCA

0
BBBBBBBBBBBBBBBB@

�X2
�Y2
�Z2

�A1
�B1
�C1

�A2
�B2
�C2

1
CCCCCCCCCCCCCCCCA

= 0 ;

0
BB@
S12 0 �S12
0 S22 �S22
S11 0 0
0 S21 0

1
CCA

0
BBBBBBBBBBBBBBBB@

�X1
�Y1
�Z1

�X2
�Y2
�Z2

�A2
�B2
�C2

1
CCCCCCCCCCCCCCCCA

= 0 (7.2)

where

Sij =

0
@ 0 wij �yij

�wij 0 xij
yij �xij 0

1
A (7.3)

are 3� 3 matrices built up from image coordinates of point i visible in view j.
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In case of a non-critical configuration these matrices are of rank 8 which means that
the null vector is unique up to scale. If the matrices were of rank 7 or less, the dimension
of the nullspaces would be larger than one and the null vector no longer unique up to scale.
Rank deficiency of a matrix is generally checked by computing the singular values. In our
case, however, we are interested in the algebraic conditions on the elements of the matrix
for it to be rank deficient. Rank deficiency, i.e. a rank less than 7, of the S-matrix implies
that the determinants of all 8� 8 sub-matrices of the S-matrix are zero.

These subdeterminants were computed using MAPLE and it was found that all subde-
terminants, which are not generically zero, have a simple common structure. By reordering
rows and columns it can be shown that the two cases in eqn. 7.2 are completely equivalent
by the choice of the origin. Therefore, all computations were made for the case of choosing
the first camera as the origin, i.e. �A1 = �B1 = �C1 = 0. The elements in the Sij matrix can
be expressed in terms of coordinates of space points �X1; �X2 and coordinates of the second
camera centre �Q2. Explicitly, it is xij = �Xi � �Aj , yij = �Yi � �Bj and zij = �Zi � �Cj . It
was found that all 8� 8 subdeterminants could be factored into:
A) The determinant:

det(�X1
�X2

�Q2) (7.4)

B) A factor computed by selecting one coordinate element from five vectors in three dif-
ferent ways:

1: (�X2 � �Q2) (�X1 � �Q2) �X1
�X2

�Q2

2: (�X2 � �Q2) (�X1 � �Q2) �X1
�X2

�X1

3: (�X2 � �Q2) (�X1 � �Q2) �X1
�X2

�X2 :

(7.5)

This factor is then computed by multiplying these five elements together, e.g.

( �X2 � �A2) ( �Y1 � �B2) �X1
�Z2

�A1 : (7.6)

Rank deficiency of the S-matrix, implying that all subdeterminants are zero, will occur if
either the A factor or the B factor is zero for all combinatorial choices. Obviously rank
deficiency will occur if:

det(�X1
�X2

�Q2) = 0 (7.7)

which means that points P1; P2 and Q2 are coplanar with the origin, i.e. point Q1.
We will now show that all rank deficient configurations are described by this copla-

narity condition. Suppose this condition is not fulfilled, i.e.

det(�X1
�X2

�Q2) 6= 0 : (7.8)

This means that the B factor has to be zero for every determinant. This in turn implies that
at least one of the conditions:

�X2 � �Q2 = 0; �X1 � �Q2 = 0; �X1 = 0 or �X2 = 0 (7.9)

has to be fulfilled. Let us assume that this is not the case. Consider the determinants
which were constructed as in the second and third way (eqn. 7.5). For such a determinant
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there is at least one element of each vector which is non-zero. If we select these very
elements for the computation of the B factor we obtain a non-zero B factor after multiplying
all those elements. Since the A factor was assumed to be non-zero we would obtain a
subdeterminant which is non-zero and therefore an S-matrix which is not rank deficient.
Therefore, at least one of the four conditions in eqn. 7.9 has to be fulfilled. Since these
conditions imply coincidence of points and cameras they all imply coplanarity of the four
points �X1; �X2; �Q2; �Q1 = 0, i.e. det(�X1

�X2
�Q2) = 0. This concludes the proof that

all rank deficient configurations are given by the coplanarity of the two points �X1; �X2 and
camera centres �Q1; �Q2.

2

We are now able to answer the question of sufficient visibility.

Corollary 2 A visibility matrix containing 2 points not on the reference plane visible in 2
views is sufficient and minimal.

Proof 2 points visible in 2 views is obviously sufficient. All configurations where
�X1; �X2; �Q1 and �Q2 are not coplanar give a unique reconstruction.

Furthermore, we have to prove that this visibility matrix is minimal. Let us assume
that not all points are visible in all views. This means that we obtain: #equations <
8 = #dofs. If we assume that only one view is available, we obtain #equations =
2n < 3n � 1 = #dofs for n > 1. However, one point visible in one camera cannot be
reconstructed. The case of one point is dual to the case of one view. This concludes the
proof.

2

7.2.2 Multi-View Configurations

For the case of n points visible in all m views the S-matrix has (at the most) 2mn linear
independent equations and 3(n+m)� 4 dofs. This means that S is over-constrained, if it
is not rank deficient. Let us investigate the critical configurations for such a case.

Theorem 9 A configuration of n points visible in m views is non-critical if (a) the points
and the camera centres are non-coplanar and (b) all camera centres and an arbitrary point
are non-collinear and (c) all points and an arbitrary camera centre are non-collinear and
(d) at least 2 points do not lie on the reference plane.

Proof We will show that a configuration which does fulfill the conditions (a), (b), (c) and
(d) is a non-critical configuration. This will be done by actually constructing such a unique
reconstruction.

As in the previous proof all points on the reference plane are detected and reconstructed
separately. Furthermore, we state, that a point and a camera centre can never coincide,
since such a point would not have a unique projection in such a camera. With the assump-
tion that the conditions (a) and (d) are fulfilled we have at least two camera centres and
two points which are not coplanar and not on the reference plane. W.l.o.g we denote the
views as �Q1 and �Q2 and the points as �X1 and �X2. In the previous section we proved
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Figure 7.1. Geometric interpretations for the proof of theorem 9.

that we obtain a unique reconstruction for such a configuration. We will now show that
we can add an arbitrary view �Qi to the 2-view system and obtain a 3-view system with
a unique reconstruction. Let us assume that the points �X1; �X2 and the camera centre �Qi

are not collinear. Fig. 7.1 (a) shows the geometric interpretation of such a configuration.
Obviously the lines L1 = �X1 � �Qi and L2 = �X2 � �Qi uniquely define the camera centre
�Qi.

In the other case, if �X1; �X2 and �Qi are collinear, the lines L1 and L2 coincide (see
fig. 7.1 (b)). This means that the camera centre �Qi has one degree of freedom, i.e. has
to lie on the line L1. Since we assume that the condition (c) is fulfilled there is a point
�Xj which does not lie on the line L1. Let us consider the epipolar plane �j1, which
is defined by �Xj ; �Qi and �Q1, and the epipolar plane �j2, which is defined by �Xj ; �Qi

and �Q2. The intersection of the epipolar plane �j1 and the line L1 defines the camera
centre �Qi uniquely if L1 and �j1 do not coincide. The same applies to the epipolar plane
�j2. We will now show that either of these two cases is true. Let us assume that the
two planes �j1 and �j2 are different. This implies that the two planes intersect uniquely
in the line L3 = �Xj � �Qi. Since �Xj does not lie on L1, the two lines L1 and L3 are
different. Therefore, either the plane �j1 or the plane �j2 does specify the camera centre
�Qi uniquely. We are left with the case that �j1 and �j2 are identical. This implies that
the plane �j1 contains the camera centres �Q1 and �Q2. However, if L1 coincided with the
plane�j1, the condition (a) would be violated, i.e. �X1; �X2; �Q1 and �Q2 would be coplanar.
Therefore, L1 cannot coincide with �j1 and the camera centre �Qi is uniquely defined by
L1 and �j1.

Furthermore, if �Xj lies on the baseline between �Q1 and �Qi or on the baseline between
�Q2 and �Qi, the point �Xj would specify this very baseline which means that the camera
centre �Qi is uniquely defined as well.
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In this way all views can be added to the 2-view system. Therefore, we obtain a unique
reconstruction with m views and the two points �X1 and �X2.

With the assumption that the condition (b) is fulfilled we can finally reconstruct all
points. This means that for every configuration which does satisfy the conditions (a), (b),
(c) and (d) we obtain a unique reconstruction. This concludes the proof.

2

Let us consider, which of the configurations that do not fulfill the requirements (a-d)
are actually critical. Configurations that do not fulfill assumption (d) are critical as shown
in proposition 4. A configuration that does not fulfill requirement (b), where all camera
centres and one of the points are collinear, is obviously critical. Such a point lies on the
baselines of all pairs of cameras and cannot be reconstructed. Therefore, configurations
that do not fulfill assumption (c) are critical as well, since they are dual to configurations
that do not fulfill assumption (b). However, a configuration that does not fulfill requirement
(a), where all camera centres and points are coplanar, is not necessarily critical. Note that
the fact that all possible pairs of 2 views are critical (as proved in theorem 1) does not imply
that the complete configuration is critical. However, the investigation of configurations that
do not fulfill assumption (a) for n points andm views would only be of theoretical interest.

Let us consider the question of sufficient visibility for n points and m views.

Corollary 3 Every visibility matrix which contains 2 or more points (with at least 2 points
outside the reference plane) and 2 or more views is sufficient if all points are visible in all
views.

Proof We choose a configuration which does fulfill the conditions (a), (b), (c) and (d).
Obviously, this can be done for an arbitrary (more than 2) number of views and points.
Such a configuration has a unique reconstruction as proved in theorem 9.

2

With the corollaries 2 and 3 we can conclude that the basic condition that
#equations � #dofs is a sufficient check for sufficient visibility in the case of no miss-
ing data. With a full visibility matrix we obtain: #equations = 2mn and #dofs =
3(m+ n)� 4.

7.3 Missing Data – Not Full Visibility Matrix

Compared to the case of no missing data, critical configurations for multiple projective
views with missing data have received less attention in the past. In (Quan et al., 1999), all
reconstructions with a sufficient visibility matrices of 3 and 4 images were cataloged. This
work was extended in (Oskarsson et al., 2001) for one-dimensional cameras.

We will now address the questions of sufficient visibility and critical configurations for
the case of missing data and with the assumption of having a known reference plane visible
in all views. We will introduce a constructive method of choosing points and cameras
which provide sufficient visibility and non-critical configurations.
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7.3.1 Critical Configurations and Sufficient Visibility

Consider first the question of sufficient visibility for missing data. The basic condition
that #equations � #dofs is insufficient to answer the question of sufficient visibility.
For a non-full visibility matrix, the maximum number of linearly independent equations is
#equations = 2#(V (i; j) = set) and the number of degrees of freedom is #dofs =
3(m+n)�4 (points on the reference points excluded). However, if these equations include
linear dependences, the number of linearly independent equations reduces. In order to give
a complete answer for a given visibility matrix, the rank (or the subdeterminants) of the
correspondingS-matrix has to be investigated for a generic set of points and cameras. Such
an investigation can be carried out with MAPLE.

Let us consider the specific visibility matrix in eqn. 7.1. Although the number of
equations is equal the number of degrees of freedom, i.e. #equations = 20 = #dofs,
the corresponding S-matrix has rank 19, i.e. is rank deficient, for a generic set of points.
In this case the linear dependence of equations can be seen if we consider the views 1 and
2 and the views 2 and 3 as separated 2-view systems. The second 2-view system includes
a linear dependence since #equations = 12 > 11 = #dofs. Excluding e.g. point 5
results in linear independent equations for the second 2-view system, since #equations =
8 = #dofs. However, in this case the resulting S-matrix for the 3-view system is under-
constrained since #equations = 16 < 17 = #dofs.

The general problem of critical configurations in the case of missing data is very com-
plex. Basically ever specific visibility matrix might give a different set of critical con-
figurations. Therefore, the rank (or the subdeterminants) of the S-matrix for a specific
configuration has to be investigated in the same manner as we did in the 2-view case with
no missing data.

7.3.2 A Constructive Method

So far we considered the questions of sufficient visibility and critical configurations for a
given visibility matrix. However, in practice the placement of cameras and the number of
visible points can be chosen freely to a certain extent. Therefore, it is of particular interest
of having a method of choosing points and cameras which provide sufficient visibility and
non-critical configurations.

We will now introduce and prove such a method for the multi-view case. This will be
done in an iterative way in terms of the number of cameras. Assume the task of adding a
new view �Qm+1 to a m-view system, where the reconstruction of n points and m views
is unique. In order to obtain a unique reconstruction with the additional view, we have to
specify the 3 dofs of the new camera centre �Qm+1. There are various ways. Assume that a
point �Xi, which is already reconstructed and does not lie on the reference plane, is visible
in the view �Qm+1. Furthermore, a new point �Xn+1, which does not lie on the reference
plane, is visible in �Qm+1 and �Qj , which belongs to them-view system. Fig. 7.2 shows the
geometric interpretation. The point �Xi gives at least 2 more constraints. The point �Xn+1

adds 3 dofs to the new (m + 1)-view system, however, it supplies 4 more constraints on
the system as well. This is sufficient for specifying the 3 dofs of the new camera centre
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Figure 7.2. Adding a new view �Qm+1 to a system with n points and m views which has a
unique reconstruction.

�Qm+1. Therefore, such a visibility is sufficient for obtaining a unique reconstruction for
m+ 1 views.

The remaining question is: which are the critical configurations of such a multi-view
system? Fig. 7.2 shows the geometric relationship between points and cameras. The
point �Xi introduces a line Li = �Xi � �Qm+1, where the camera centre �Qm+1 has to lie
on. Furthermore, the point �Xn+1 introduces the epipolar plane �n+1, which contains the
camera centres �Qj and �Qm+1. Let us assume that the point �Xn+1 does not lie on the
baseline between �Qj and �Qm+1. In this case, the camera centre is uniquely defined if
Li does not coincide with the plane �n+1. This is true if �Xi; �Xn+1; �Qj and �Qm+1 are
not coplanar. We are left with the case that �Xn+1; �Qj and �Qm+1 are collinear. The point
�Xn+1, which is assumed to be visible only in �Qj and �Qm+1, cannot be reconstructed,
since it lies on the baseline between �Qj and �Qm+1. Let us summarize: a configuration
of such a multi-view system is critical if and only if (a) �Xi; �Xn+1; �Qj and �Qm+1 are
coplanar or (b) �Qj ; �Xn+1 and �Qm+1 are collinear.

Obviously, adding more points to this system does not affect a non-critical configura-
tion as long as the following condition is satisfied, such a point is not collinear with those
camera centres from which the point is visible.

A possible visibility matrix for such a multi-view system is:

points
1 2 3 4 5 � � �

1 � �
2 � � �
3 � � �

V = views 4 � � �
5 � � �
� � � �
� � � �
� � �
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Such a band-structured matrix typically appears for reconstructing large scale scenes, e.g.
architectural environments, as we saw in the previous chapter. It reflects the fact that model
points appear and disappear in the sight of view while the camera moves around an object,
e.g. a building.

7.4 Conclusions

We investigated configurations of multiple cameras, multiple 3D points and a known ref-
erence plane which do not have a unique projective reconstruction, so-called critical refer-
ence plane configurations. Furthermore, we addressed the question of sufficient visibility,
the number of features necessary for a unique projective reconstruction. The assumption
of having a known reference plane is equivalent to having 4 points in the scene which are
visible in all views and known to be coplanar. All presented results are novel (Rother and
Carlsson, 2002a) since to our knowledge critical configurations have only been studied for
the general case (e.g. Kahl et al., 2001). We proved that a configuration of 2 views and 2
points (outside the reference plane) is critical if and only if the points and the camera cen-
tres are coplanar. For multiple views, we showed that if all points are visible in all views,
i.e. no missing data, all configuration (apart from trivial ones) where points and camera
centres are non-coplanar are non-critical. This is an important result since the scenario
of one scene plane visible in multiple views appears frequently in practice (e.g. Pollefeys
et al., 2002) and is critical in the general case. In the reference plane case this scenario is
not critical if the reference plane is different to the scene plane, e.g. the reference plane is
the correct plane at infinity. Furthermore, we introduced a method to construct non-critical
configurations for the case of missing data.

Since lines, planes and cameras have also a linear relationship, the investigation of
those features might be carried out in a similar way as for point features. This is an inter-
esting topic for future research.
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Chapter 8

An Automatic Multi-View
Reconstruction System

The previous chapters presented and analyzed the reference plane approach to reconstruc-
tion. Chapter 6 demonstrated that it can be used to reconstruct difficult scenarios where
general reconstruction methods fail. This chapter briefly outlines a complete automatic
multi-view reconstruction system using the reference plane approach. The system recon-
structs only 3D points, though it can be extend to use line and plane features. As the
reference plane, the correct plane at infinity is used, derived from the vanishing points of
mutually orthogonal directions (sec. 5.1.2). The input data to the system is a set of images.
The output is a reconstruction of the 3D points and the corresponding cameras. The only
user interaction is to specify which pair of images observe the same part of the scene.

The main and novel contributions of the system are a vanishing point detection method
and a robust multi-view point matching algorithm. The key idea of the vanishing point
detection method is to reject falsely detected vanishing points which do not give a reason-
able calibration or rotation of the camera. It is based on our publications (Rother, 2000;
Rother, 2002), but in the following presentation, certain aspects have been improved, like
the use of RANSAC (Fischler and Bolles, 1981). The multi-view matching method uses
the 2-view matching algorithm of (Tell and Carlsson, 2002) and the m � 3-view algorithm
in Hartley and Zisserman (2000) (sec. 15:7:1 in their book). The novel idea is here to
exploit a known reference plane. Consequently, our direct reference plane (DRP) method
can be integrated in the robust matching process. An important advantage of our match-
ing method is that it is not critical for the typical scenario of one dominant scene plane.
In absence of a reference plane, this scenario leads to a difficult model selection problem
(Pollefeys et al., 2002).

We will first give an overview of the complete system (sec. 8.1). Then each step is
discussed in more detail. The result of each stage is documented for the house sequence.
This sequence consists of 9 images. Fig. 8.6 shows the first 3 and fig. 6.27 the last 3
images of the sequence. A final 3D point reconstruction, using the system, is depicted in
figures 8.10 and 8.11.

183
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8.1 System Overview

The complete system consists of the following 6 steps:

1. For each view determine vanishing points of 2 or 3 orthogonal scene directions.

2. Calibrate each camera and determine its rotation (up to a 24-fold ambiguity).

3. Perform point matching between each pair of views.

4. Resolve the 24-fold ambiguity in the rotation matrices.

5. Perform multi-view point matching.

6. Reconstruct 3D points and cameras using our DRP method.

In the first step, 2 or 3 vanishing points of dominant, mutually orthogonal scene di-
rections are detected in each image. This algorithm is described in sec. 8.2. Using the
vanishing points, a “square pixel” camera with zero skew and aspect ratio one may be cal-
ibrated (sec. 5.1.2). Furthermore, the rotation matrix may be determined up to a 24-fold
ambiguity. Consequently, the infinite homography H = KR of each camera is known
(up to a 24-fold ambiguity). This procedure is described in sec. 8.3. Section 8.4 presents
first a point matching method for pairs of views (Tell and Carlsson, 2002). We extend this
algorithm by incorporating the known infinite homographies (up to the 24-fold ambigu-
ity). Using the 2-view point matches, the 24-fold ambiguity in the rotation matrix may
be resolved (sec. 8.3). Furthermore, sec. 8.4 describes a robust, m-view (m � 3) point
matching algorithm based on the known homographies and our DRP method. From the set
of matched points, the scene and the cameras are reconstructed simultaneously (sec. 8.5).

8.2 Orthogonal Vanishing Point Detection

Man-made environments are often characterized by many parallel lines and orthogonal
edges. Examples are depicted in fig. 8.1 and 5.2. Section 5.1.2 explained the importance
of vanishing points of mutually orthogonal scene directions. They can be used to derive
the camera’s calibration and rotation matrix. This gives the correct plane at infinity which
can be used as a reference plane for reconstruction. This section addresses the task of
determining vanishing points of mutually orthogonal directions. Consider two images of
the house sequence in fig. 8.1. About 1000 line segments were detected automatically in
each image using a standard image processing method (Rosin and West, 1989). In fig. 8.1
(a), many line segments belong to one (or two)1 of the three dominant scene directions of
the house. In contrast to this, most of the line segments in fig. 8.1 (b) only belong to two
dominant directions (horizontal and vertical). The third direction is parallel to the optical
axis of the camera and only about 5 short line segments on the roof lie in this direction.

1Line segments which lie on or close to the vanishing line of two vanishing points belong to both vanishing
points. The vanishing line in fig. 8.1 (a) is the horizon.
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Figure 8.1. Two images of the house sequence. In (a) 846 and in (b) 1174 line segments were
detected automatically.

These are typical scenarios for man-made environments. We may specify the vanishing
point detection task as follow. The input data is a set of line segments. The output is 0, 2
or 3 vanishing points of mutually orthogonal scene directions. With no vanishing points,
the scene did not contain any dominant orthogonal directions.

The vanishing point detection task has raised considerable interest in the past (Barnard,
1983; Quan and Mohr, 1989; Brillault-O’Mahony, 1991; van den Heuvel, 1998; Tuytelaars
et al., 1998; Coughlan and Yuille, 1999; Rother, 2000; Deutscher et al., 2002; Koseká
and Zhang, 2002; Rother, 2002). Since in the 1980’s computational power was very lim-
ited, most of the early works concentrated on efficiency. The problem may be simplified
by mapping the line segments from the image onto a Gaussian sphere (Barnard, 1983).
However, as we pointed out in (Rother, 2000), this may introduce a substantial error.
Mapping the image onto another surface might change considerably the distances be-
tween line segments and vanishing points. We will see later that any vanishing point
detection process has to formulate this distance function in some way. Most of the re-
cent works use the line segments directly, i.e. do not perform a mapping. (Coughlan and
Yuille, 1999; Deutscher et al., 2002; Koseká and Zhang, 2002) formulated the problem in
a probabilistic framework. More references and a detailed discussion can be found in our
journal paper (Rother, 2002). The main and novel contribution of our work is the identifi-
cation of all conditions given by 2 or 3 vanishing points of mutually orthogonal directions.
The conditions are that vanishing points have to define a “reasonably” square pixel camera
with a correct rotation matrix. This gives a robust vanishing point detection algorithm as
will be explained now. In the thesis we improved the efficiency of our previous method
by using RANSAC. Before we can formulate our vanishing point detection approach, two
issues have to be addressed. First, what are the criteria for orthogonal vanishing points?
Secondly, what is the distance between a line segment and a vanishing point?
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Camera and orthogonality criterion

Consider the criteria which 2 or 3 vanishing points of mutually orthogonal directions have
to satisfy. The vanishing points can be used to calibrate the principal point and the focal
length of a square pixel camera (sec. 5.1.2). The first criterion, the camera criterion, is
fulfilled if the principal point and the focal length are inside a certain range, in case they are
calculable. Using the calibrated camera, the second criterion, the orthogonality criterion,
is fulfilled if the 2 or 3 directions, given by the vanishing points, are orthogonal.

In the following we will describe how to calibrate a square pixel camera from a single
view. The multi-view case is considered in sec. 8.3. Assume that the 2 or 3 vanishing points
were identified in an image as v1; v2 and v3. To calibrate a square pixel camera, Caprile
and Torre (1990) assumed that the 3 vanishing points are finite. However, this is not always
the case as shown in fig. 8.1(a), where two of the vanishing points are close to infinity in
the image. Liebowitz and Zisserman (1999) investigated the different cases where some
of the vanishing points are infinite. This discussion is summarized here, together with the
case of 2 vanishing points.

1. Three finite vanishing points v1; v2 and v3:
The focal length and principal point are uniquely defined (sec. 5.1.2). The orthog-
onality criterion is given as the condition that each angle of the triangle formed by
v1; v2 and v3 is smaller than 90o.

2. Two finite vanishing points v1; v2 and one infinite vanishing point v3:
The principal point lies on the line segment which is defined by the two endpoints
v1 and v2. For real world cameras the principal point is more likely to be positioned
in the centre of the CCD array. Therefore, we choose the principal point as the point
which lies on the line segment and is closest to the image centre. By determining the
principal point, the focal length is uniquely defined. In this case the orthogonality
criterion is defined by the condition that the direction of the infinite vanishing point
v3 is orthogonal to the line defined by v1 and v2.

3. One finite vanishing point v1 and two infinite vanishing points v2; v3:
In this case the principal point is identical to the vanishing point v1. The focal length
cannot be determined. The orthogonality criterion is defined by the condition that
the directions of v2 and v3 are orthogonal.

4. Two finite vanishing points v1; v2:
The principal point is chosen as the image centre. The focal length is then uniquely
defined. The orthogonality criterion is, as above, the condition that each angle of the
triangle formed by v1; v2 and v3 is smaller than 90o.

5. One finite vanishing point v1 and one infinite vanishing point v2:
The principal point lies on the line which passes through v1 and is perpendicular to
v2. As the principal point we choose the point on the line which is closest to the
image centre. The focal length is then uniquely defined. There is no orthogonality
criterion in this case.
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6. Two infinite vanishing points v1; v2:
Neither the principal point nor the focal length can be determined. The orthogonality
criterion is defined by the condition that the directions of v1 and v2 are orthogonal.

In practice, a detected vanishing point might be close to infinity in the image, but sel-
domly exactly at infinity. The simplest way to deal with this issue is to introduce a threshold
for points being infinite or finite. In a probabilistic framework, this binary decision could
be formulated with the likelihood of a point being at infinity. In our current implementation
we use a threshold.

The distance measurement between a vanishing point and a line segment

perfect line segment

detected line segment

d1 d2vanishing
point

Figure 8.2. The perfect line segment, which supports a vanishing point, is not identical to the
detected line segment due to noise.

Consider a perfect line segment which supports a vanishing point, i.e. its extension
passes through the vanishing point (fig. 8.2). Due to various reasons, e.g. noise and
lens imperfections, the perspective projection of a line segment from the 3D scene onto
the 2D image is not congruent with the line segment detected in the image. All vanishing
point detection methods have to formulate either implicitly or explicitly a distance function
between the detected and the perfect line segment. However, in practice the perfect line
segment is unknown and therefore all line segments in the image could be the perfect
one. Which is the “closest” perfect line segment? To simplify the problem, we consider
only the endpoints of a line segment. The distance between the detected and perfect line
segment may be approximated by

p
d21 + d22 (see fig. 8.2). Given a detected line segment

l and vanishing point v, Liebowitz (2001) presented a closed-form solution for the closest
perfect line segment based on this distance function. If the perfect line segment is known,
we may define the distance between l and v as dis(l; v) = (d1+d2)=2. Alternatively, a line
segment could be represented by a collection of points. This would lead towards a more
“correct” distance function. However, it might be very difficult or impossible to formulate
a closed-form solution for this problem. Since this distance function has to be computed
many times in any vanishing point detection method, a closed-form solution is preferable.
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Vanishing point detection

Our vanishing point detection method is based on RANSAC (Fischler and Bolles, 1981).
The basic idea of RANSAC is to estimate a model by randomly selecting the minimal
number of data needed to predict the model (see sec. 4.1). In our case, the minimum
number of 3 pairs of line segments is chosen, to compute all the 3 potential vanishing
points simultaneously. The outline of our method is as follows.

1. Repeat N times: take randomly 6 line segments and compute v1; v2; v3.
2. Compute the total length of all inliers for the 4 combinations: (v1; v2; v3),

(v1; v2), (v1; v3) and (v2; v3). Each line segment with dis(l; v) < T is an inlier.
3. Check if one of the combinations is better than the best solution so far.

4. Store this combination as the best solution if the camera criterion and the
orthogonality criterion is fulfilled.

5. Take the best solution if the ratio (length of all inliers) / (length of all line segments)
is larger than a threshold. Otherwise, no orthogonal directions could be detected.

The reason why we explicitly consider the length of a line segment is that longer line
segments are detected more reliably than shorter ones. The number of iterations N can be
adapted during the search (Hartley and Zisserman, 2000).

Fig. 8.3 shows the result of our method for the image in fig. 8.1 (a). The threshold T
was chosen as 5pixels. All three vanishing points were determined successfully. The result
of the image in fig. 8.1 (b) is depicted in fig. 8.4. In this case only 2 dominant vanishing
points were detected. In 4 out of 9 images of the house sequence 3 vanishing points were
detected. In the remaining 5 images, 2 vanishing points were found.

We would like to mention that the algorithm presented above is fairly simple. Fur-
ther practical issues are discussed in (Rother, 2002). In this publication we also docu-
mented that the method has been successfully applied to different man-made scenes. To
improve the simple method a probabilistic framework, like in (Coughlan and Yuille, 1999;
Deutscher et al., 2002; Koseká and Zhang, 2002), could to be introduced.

            

(a)

            

(b)

            

(c)

Figure 8.3. The 846 line segments in fig. 8.1(a) were classified into three dominant directions.
The first direction (a) is supported by 237 line segments, direction (b) by 355 line segments and
direction (c) by 301 line segments. In this case 155 line segments were assigned to both the
direction in (b) and (c). The remaining 148 line segments were classified as outliers.
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Figure 8.4. The 1174 line segments in fig. 8.1(b) were classified into two dominant directions.
The first direction (a) is supported by 308 line segments. The second direction (b) by 643 line
segments. The remaining 223 line segments were classified as outliers.

8.3 Multi-View Camera Calibration and Rotation

For each image the previous step gives 2 or 3 vanishing points. Section 8.2 described how
to use them for the estimation of the principal point and the focal length of a single square
pixel camera. This section considers multiple cameras. The idea is to improve the camera’s
calibration by assuming constant internal parameters of all multiple cameras. Furthermore,
sec. 5.1.2 showed that the 2 or 3 vanishing points determine the camera’s rotation up to a
24-fold ambiguity. For multiple cameras this ambiguity can be resolved, as shown here.

Camera calibration

Fig. 8.5 shows the estimated focal lengths (a) and principal points (b) of 7 cameras of the
house sequence. For 2 cameras (5 and 9), 2 infinite vanishing points were detected, which
means that no camera parameters can be estimated.

All of the focal lengths are between 600 and 800pixels, apart from one exception. In
this case we chose the focal length as the average of all estimated focal lengths, f =
734pixels.

The principal point lies for most real world cameras close to the centre of the CCD
array, shown as a dashed cross in fig. 8.5(b). The estimated, average principal point is
close to the image centre. However, the variation in the estimated principal points is fairly
large. Therefore, on the basis of this data it is doubtful that the average principal point is a
better estimation of the real principal point than the image centre. In this experiment, we
chose the image centre as the principal point.

We also implemented a MAP estimator including an uncertainty model for the line
segments, principal points and focal lengths. The probability functions of the principal
point and focal length were approximated by a Monte-Carlo simulation. However, this
non-linear optimization did not have a large effect on the final 3D reconstruction and is
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Figure 8.5. Estimation of the focal lengths (a) and the principal points (b) of the 9 images of the
house sequence. The image in (b) is of size 640 � 480pixels.

therefore not documented here. For such an approach more images are probably necessary,
like a continuous image sequence.

Determining the camera’s rotation

Assume that 2 or 3 vanishing points are given as v1; v2; v3. If the camera calibration K is
known, the vector di = K�1vi represents a direction in the scene. For 2 vanishing points,
the third direction d3 can be obtained by d3 = d1 � d2. The three orthogonal directions
define the rotation matrix of a camera as

R = (�d1;2;3j � d1;2;3j � d1;2;3) ; (8.1)

where di are normalized to unit length. With the condition that the determinant of R is
one, R has 24 possible solutions (see sec. 5.1.2). In the following we will discuss how
to resolve this ambiguity for multiple cameras. We assume that each pair of views, which
observes the same part of the scene, has been matched successfully. This gives a number
of matched image points and the fundamental matrix between each pair.

Assume 2 views each with 24 different rotation matrices, R1�24
1 and R1�24

2 . For the
first view we may choose one of the 24 rotation matrices as R1. This fixes the general
rotation of the metric space. What are the conditions for the correct rotation matrix R2?
Assume that image points in these two views have been matched correctly, and that the
fundamental matrix is known (see system overview in sec. 8.1). The fundamental matrix
between two views may be written as (eqn. 3.26)

F � (K2R
1�24
2 )�T [e]�(K1R1)

�1 ; (8.2)

where e contains the two camera centres, i.e. e = �Q2 � �Q1, and [�]� denotes a skew-
symmetric matrix (eqn. 3.27). Eqn. 8.2 can be transformed into

(K2R
1�24
2 )T F (K1R1) � [e]� : (8.3)
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If F , K1, K2, R1 and R1�24
1 are known we may compute the skew-symmetric matrix in

eqn. 8.3. Therefore, the condition for the correct rotation matrix R2 is, that the matrix in
eqn. 8.3 is skew-symmetric. An algebraic “skew-symmetric check” is to compute the per-
fect skew-symmetric matrix from the given matrix and then determine the Frobenius norm
between the two matrices. Unfortunately, this is a necessary but not sufficient condition.
It can be shown that for certain camera motions, like e � (1; 0; 0)T , two or more of the
rotation matrices satisfy this condition. A second, sufficient condition is that the 3D recon-
struction of all matched points must lie in front of both cameras. For each rotation matrix,
this can be evaluated using our DRP method. However, computing a 3D reconstruction
is time consuming. Therefore, we suggest the following 2-step method. First, sort all 24
rotation matrices according to the first “skew-matrix condition”. Secondly, evaluate the
second, “reconstruction condition” using successive candidate rotation matrices. The first
rotation matrix which satisfies the second condition is taken as the correct rotation.

For multiple views we may perform the described 2-view method for each possible
pair of views. The correct orientation is then achieved by chaining the 2-view solutions
together. For the house sequence this method gave the correct set of rotation matrices.

8.4 Multi-View Matching

            

(a)

            

(b)

            

(c)

Figure 8.6. The first three image of the house sequence with superimposed Harris corners. Image
(a) has 941 corners, (b) 902 corners and (c) 871 corners.

Consider the first 3 images of the house sequence (fig 8.6). In each image approxi-
mately 900 Harris corners were detected automatically (Harris and Stephens, 1988). In
this case the part of the image, containing the house, was manually segmented. This was
done to simplify the matching task2. For a 3D point reconstruction, the image points have
to be matched. This section explains how to detect those image points (in 2 or more views)
which represent the same 3D point in space. Such image points have to satisfy two con-
ditions. First, the intensity neighborhood of the image points have to be similar, so-called
photometric constraints. Secondly, the image points have to satisfy geometric constraints.
The geometric constraints were discussed in detail in chapter 3, for general and reference

2We did not apply our matching algorithm to all Harris corners of the complete image, including the back-
ground.
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plane configurations. Intuitively, the corresponding image points have to define a unique
set of cameras and 3D points. The geometric constraints for point features in multiple
views are now well understood, due to a considerable research effort in the last decade
(Hartley and Zisserman, 2000).

In the following we will present a sequential method which first matches all pairs of
views, then triplets of views and so on3. The 2-view problem is the most difficult. Many
point matching methods have been suggested (see Tell (2002) for an overview). Most
methods solve the problem in 2 steps. First, find a set of candidate matches using the
photometric constraints. Then, the unique set of point matches is determined robustly
using the geometric constraints. For wide baseline images, like the house sequence, the
first step is the bottleneck. The 3-view matching problem is considerably simpler, since
the check of the photometric constraints may be omitted. The set of 2-view matches can be
used to create candidate 3-view matches. For more than 3 views, neither the photometric
nor the geometric constraints have to be evaluated, since there are no geometric constraints
which involve more than 3 views (sec. 3.2.3). For a small baseline image sequence, it
might be advantageous to evaluate the geometric constraints for more than 3 views as well.
We introduce now a robust point matching method which uses a known reference plane
and can handle any number of views.

2-view matching

            

(a)

            

(b)

Figure 8.7. Between the images in fig. 8.6 (a) and (b), 198 image points where matched correctly.
Two image points match correctly if they lie on the corresponding epipolar lines.

Our 2-view point matching approach is based on Tell and Carlsson’s (2002) algorithm.
The key idea of Tell and Carlsson’s (2002) matching method is to consider the intensity
profile of pairs of image points. This gives a set of candidate matches. The geometric
constraints, in terms of the fundamental matrix, are evaluated using the robust RANSAC

3In practice, we investigate only those sets of images which observe the same part of the scene.
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(a)

            

(b)

Figure 8.8. Between the images in fig. 8.6 (b) and (c), 406 image points where matched correctly.
Two image points match correctly if they lie on the corresponding epipolar lines.

1 2 3 4 5 6 7 8 9
1 198 65
2 198 406 42
3 65 406 379 53 21
4 42 379 255 37 24
5 53 255 328 28
6 21 37 328 309 56
7 24 28 309 367 94
8 56 367 323
9 94 323

Table 8.1. The table lists the number of matches between each pair of views.

method. This means that one or three F matrices are computed from 7 randomly selected
point matches. In this work a general scene without a known reference plane is assumed.

In our system, the infinite homography (up to a 24-fold ambiguity) of each camera
is derived before the matching, H1�24 = KR1�24 (see system overview in sec. 8.1).
This information may be included in the geometric check. As discussed in sec. 3.2.3, for
reference plane configurations, 2 point matches are sufficient to determine the cameras and
also the fundamental matrix. In this case, 2 points matches give 24 possible fundamental
matrices. They are used instead of the 3 matrices in the general case.

This reference plane matching approach has two main advantages. First, choosing 2
instead of 7 points improves the computation time. Eventually, more trials might also
improve the quality of the result. Secondly, it performs well for the difficult scenarios
containing one dominant scene plane. Scenes with one dominant plane are typical in man-
made environments. Fig. 8.7 shows an example. Without a known reference plane, this
scenario is critical (chapter 7). The matching task can, however, still be performed using
a homography instead of the fundamental matrix. Since in general, information about
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the scene is not available, this leads to the difficult model selection problem discussed in
(Pollefeys et al., 2002).

The performance of our 2-view matching method is depicted in table 8.1. It lists the
number of matches between each pair of views. We matched only those views which
observe the same part of the scene. Furthermore, only those image pairs with more than
15 matches were accepted. Since the images are ordered, the matrix has a diagonal form.
Furthermore, adjacent images, i.e. close to the diagonal, have a higher number of matches.
Fig. 8.7 shows the matched points of the first two images of the house sequence (fig. 8.6(a)
and (b)). All 3D points lie approximately on a plane. A general, non reference plane,
matching method would have to use a homography instead of the fundamental matrix for
this matching task. Fig. 8.8 shows the correctly matched image points for the images in
fig. 8.6(b) and (c). In this case the 3D points do not lie on a dominant plane.

M -view matching

We will now introduce anm-view (m � 3) reference plane matching algorithm which uses
the (m � 1)-view matches. The algorithm inspects the geometric constraints in a robust
manner using RANSAC. It is very similar to the approach in (Hartley and Zisserman, 2000)
(sec. 15:7:1). In contrast to their method, we apply our DRP method.

The previous steps of the system computed uniquely the infinite homography for each
camera and all 2-view matches (see system overview in sec. 8.1). The following m-view
algorithm is first applied to all triplets of views, m = 3. After that 4 and more views are
considered. As already mentioned, the candidate matches for m � 4 may be accepted
without an additional geometric check.

The outline of the m-view matching algorithm is as follows. The reprojection error of
a 3D point Xi in a camera Pj is denoted dij = jj �xij � PjXi jj2.

1. Create m-view candidate matches from a set of (m� 1)-view matches.
2. Repeat N times: take randomly 2 m-view matches.

3. Reconstruct the cameras Pj and 2 points with our DRP method
using the infinite homographiesHj .

4. Reconstruct linearly all points Xi by intersection.
5. Perform a non-linear optimization of

P
j dij for each point Xi.

6. Count the number of inliers Xi, which have maxi dij < T .
7. Take the solution with the largest number of inliers.

The main difference to Hartley and Zisserman’s (2000) approach is the use of our DRP
method to reconstruct 2 3D points visible in multiple views (step 3.). This simplifies their
approach. Note that it is also feasible to use our DRP method for finite reference planes.
The scenario of one (or two) 3D points on a finite reference plane cannot be reconstructed
by any method, since it is critical (chapter 7). As mentioned above, this m-view reference
plane matching approach is not critical for the typical scenario of one dominant scene
plane.

Fig. 8.9 shows the result of the 3-view matching algorithm, using the two 2-view
matches in fig. 8.7 and 8.8. From the 198 matches in fig. 8.7 and the 406 matches in fig.
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8.8, 125 3-view matches were found. In this case the threshold on the reprojection error
was set to T = 4pixels. Table 8.2 lists the number of m-view matches for the complete
house sequence with 9 images. All candidate matches for more than 3 views were accepted
directly. The total number of matches is 451 for T = 4pixels and 631 for T = 7pixels. In
both cases no match which is in more than 7 views was found. All 2-view matches were
deleted, since they might not represent a correct 3D point due to the weaker geometric
constraints of 2 views. The visibility matrix for these two cases is shown in fig. 8.12
(T = 4pixels) and 8.15 (T = 7pixels).

                                    

Figure 8.9. Between the first three images of the house sequence (fig. 8.6), 125 image points
where matched correctly.

number of views number of matches (T = 4pixels) number of matches (T = 7pixels)
2 — —
3 354 420

4 61 159

5 33 45

6 3 6

7 0 1

total 451 631

Table 8.2. Number of m-view matches for the house sequence with 9 images.

8.5 3D Reconstruction and Camera Recovery

All m-view matches together with the infinite homographies of all cameras may now be
used to reconstruct all 3D points and cameras simultaneously with our DRP method. For
the case of 451 point matches, a top and side view of the reconstruction is depicted in
figures 8.10 and fig. 8.11. Nearly all reconstructed 3D points belong to one of the 3
dominant planes of the house. Figures 8.13 and 8.14 show the reconstruction of 631 point
matches. In this case, some 3D points of the roof and the balcony were also detected.
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8.6(a)

8.6(b)

8.6(c)

Figure 8.10. Top view of the reconstruction of 451 3D points (T = 4pixels). The cameras are
depicted as arrows. The labeled cameras correspond to images in fig. 8.6.

8.6(a) 8.6(c)

8.6(b)

Figure 8.11. Side view of the reconstruction of 451 3D points (T = 4pixels). The cameras are
depicted as crosses. The labeled cameras correspond to images in fig. 8.6.
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Figure 8.12. The visibility matrix of the house sequence and T = 4pixels.
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8.6(a)

8.6(b)

8.6(c)

Figure 8.13. Top view of the reconstruction of 631 3D points (T = 7pixels). The cameras are
depicted as arrows. The labeled cameras correspond to images in fig. 8.6.

8.6(b)

8.6(c)8.6(a)

Figure 8.14. Side view of the reconstruction of 631 3D points (T = 7pixels). The cameras are
depicted as crosses. The labeled cameras correspond to images in fig. 8.6.
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Figure 8.15. The visibility matrix of the house sequence and T = 7pixels.
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8.6 Summary

This chapter introduced an automatic multi-view reconstruction system for point features.
The main contribution is to demonstrate that the reference plane approach has the capa-
bility of performing automatically the complete reconstruction task. Two novel methods
were part of this system, a vanishing point detection method and a robust multi-view point
matching algorithm. The detection of vanishing points of 2 or 3 mutually orthogonal scene
directions is based on our publications (Rother, 2000; Rother, 2002). As discussed in sec.
5.1.2, the vanishing points of mutually orthogonal directions can be used to determine
the camera’s calibration and rotation. The novel idea of this method is to reject falsely de-
tected vanishing points which do not give a reasonable calibration or rotation of the camera.
We improved the computation time of the method considerably by using RANSAC. The
multi-view point matching algorithm is based on the 2-view matching technique of Tell
and Carlsson (2002) and the m-view (m � 3) matching algorithm described in Hartley
and Zisserman (2000) (sec. 15:7:1 in their book). The novel idea is to exploit a known
reference plane. In this case 2 point matches are sufficient to determine the camera matri-
ces of multiple views. In contrast to (Hartley and Zisserman, 2000), our direct reference
plane method is used for this minimal reconstruction task. It is important to note that
our approach is also feasible for finite reference planes. The scenario of one (or two) 3D
points on a finite reference plane cannot be reconstructed by any method, since it is critical
(chapter 7). A further, important advantage of this reference plane matching approach is
that it is not critical for the typical scenario of one dominant scene plane. In the general
case, without a reference plane, this scenario leads to the difficult model selection problem
(Pollefeys et al., 2002).

A main limitation of this system is that it is only applicable for man-made environments
which contain at least two dominant orthogonal directions. The house example fulfilled this
condition. In our publications (Rother, 2000; Rother, 2002) more examples are depicted,
where our method detected successfully mutually orthogonal directions. However, more
experiments using the complete system are necessary. Furthermore, line and plane features,
as well as scene constraints, can be integrated into the system. Furthermore, it would
be interesting to extract completely automatically a textured, virtual model from the 3D
point reconstruction. Finally, an automatic reconstruction system for other reference plane
approaches, such as a real scene plane, could be developed. The finite reference plane can
then be used for self-calibration.
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Conclusions

The task of 3D reconstruction from a set of 2D images is a complex and difficult problem
as can be seen from decades of research devoted to this topic. One immediate conclusion
is that there does not exist a single technique which can be applied in any situation. This
thesis presents a feature based reconstruction approach which is applicable to a wide range
of situations. These situations are characterized as “reference plane configurations”. The
main contribution of the thesis is a novel reconstruction approach for reference plane con-
figurations and a demonstration that it can be used to reconstruct difficult scenes where
general (non reference plane) reconstruction methods fail. For reference plane configura-
tions the reconstruction task may be divided into two steps:

1. Determine a real or virtual reference plane

2. Use the reference plane for 3D reconstruction

This rather vague formulation poses two questions:

� What are real or virtual reference plane configurations?

� How can the reference plane be used for 3D reconstruction?

These are the two fundamental questions addressed in the thesis. A simple answer to both
questions can be given on the basis of a single formula.1 The projection of a Cartesian 3D
point �X to the image point x using a camera with Cartesian centre �Q and matrix H may
be formulated algebraically as2

x = H ( �X � �Q ) :

The camera matrix H is called the infinite homography and can be derived from a real
scene plane visible in the image. However, this is not the only approach for identifying the

1This shows as well that great ideas can sometimes be very simple. On the other hand, it is amazing that one
formula can keep one busy for 3 1=2 years.

2For simplicity, the unknown scale factor (depth) of a homogeneous image point is omitted. However, this
simplification does not affect the following conclusions.
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infinite homography. We presented various approaches, such as using orthogonal scene di-
rections or cameras with parallel projection. The reference plane is denoted as virtual if the
infinite homography does not represent a real reference plane in the scene. In summary,
the answer to the first question is, all possible configurations where the infinite homog-
raphy can be derived by some means are (real or virtual) reference plane configurations.
However, what is the advantage of knowing the infinite homography for 3D reconstruc-
tion? For general (non reference plane) configurations, the task of 3D reconstruction is to
compute the unknown points �X, the unknown cameras centres �Q and the unknown infinite
homographies H . The only given information is the image points x. This is a “difficult”
problem since the three unknown parameters have a non-linear relationship. For reference
plane configurations, the reference plane supplies the infinite homography H . This trans-
forms the difficult, non-linear problem into a simple, linear problem with �X and �Q as the
only unknowns. Therefore, the answer to the second question is, 3D points and camera
centres can be reconstructed simultaneously from a single, linear system which consists of
image measurements only. This “surprisingly” simple result was first published in (Rother
and Carlsson, 2001) and is the most important contribution of the thesis.

9.1 Summary and Future Work

The thesis introduced novel reconstruction algorithms for points, lines and planes using a
real or virtual reference plane. We call them the Direct Reference Plane (DRP) methods.
They were presented theoretically in chapter 3 and are outlined in chapter 6. The main
characteristic of the novel algorithms is that they are linear and reconstruct all cameras
and all 3D features (off the reference plane) simultaneously from a single linear system
of image measurements. This makes them potentially superior to all previously presented
reference plane reconstruction methods as discussed in chapter 4. Chapter 5 investigated
alternative techniques to determine a real or virtual reference plane (see table 5.1). There-
fore, the reference plane approach is applicable to scenarios where no real reference plane
is visible. We demonstrated experimentally in chapter 6 that our novel algorithms can be
used to reconstruct difficult reference plane configurations where general (non reference
plane) reconstruction methods fail. The question of critical reference plane configurations
was addressed in chapter 7. It turned out that there are fewer critical configurations than
in the general case, which has an important practical impact for scenes with one dominant
plane. Finally, chapter 8 introduced a completely automatic multi-view reconstruction sys-
tem using the reference plane approach. A summary of each individual chapter, including
the main contributions and possible extensions, is given below.

In chapter 3, general configurations were compared with reference plane configurations
of multiple views and features like points, lines and planes. The relationship between
cameras and 3D features is bi-linear in the general case. If a reference plane is known,
this relationship becomes linear in an affine space where the reference plane represents
the plane at infinity. This makes it possible to reconstruct all cameras and all features
(points, lines, and planes) in a single linear system simultaneously. This novel approach
represents the main contribution of the thesis. The discussion for points and planes is based
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on (Rother and Carlsson, 2001; Rother and Carlsson, 2002b; Rother et al., 2002; Rother
and Carlsson, 2002a). Additionally, the linear system permits the simple incorporation of
incidence relationships, such as a point lies on a plane, and constraints concerning known
3D features, for instance the coordinates of a 3D line being known. Furthermore, we
have seen that with a known reference plane, i.e. the plane at infinity, the orientation
of 3D features may be determined directly. Consequently, a 3D line is represented by 2
parameters (4 in general) and a 3D plane by one parameter (3 in general). Moreover, this
chapter reviewed 4 categories of solving the reconstruction problem (a) our direct reference
plane approach, (b) camera constraints, (c) structure constraints and (d) factorization.

Chapter 4 reviewed and compared multi-view reconstruction methods for general and
reference plane configurations. The discussion was based on several criteria which “real
world” multi-view reconstruction systems have to fulfill. The methods were compared
in terms of categories introduced in the previous chapter. The main conclusion of the
comparative study is that each category has its advantages and drawbacks. Therefore, the
decision of the best method is application dependent. For reference plane configurations,
three point based methods were compared in detail (a) our direct reference plane method,
(b) a camera constraint method by Hartley et al. (2001) and (c) a factorization method
by Triggs (2000). All three methods reconstruct the scene in closed-form from a singular
value decomposition of a measurement matrix. Our method and the factorization method
reconstruct both 3D features and cameras simultaneously. In contrast to this, the camera
constraint method determines only the cameras simultaneously. The main drawback of our
method is that features on the reference plane have to be reconstructed separately. Note
that this is not a problem if the reference plane is the actual plane at infinity. The main
disadvantage of the factorization method is that it is not applicable for infinite reference
planes, and missing data is not treated naturally.

Chapter 5 investigated alternative techniques for determining the infinite homogra-
phies, induced by a real or virtual reference plane. These making use of a real scene
plane, orthogonal scene directions, cameras with parallel projection or cameras with known
epipolar geometry (see table 5.1). The main contribution (Rother and Carlsson, 2002b) of
this chapter is twofold. First, we unify these different approaches of determining the in-
finite homography with the term reference plane. Secondly, we point out that both real
and virtual reference plane configurations can be reconstructed with our direct reference
plane approach. Consequently, the reference plane approach is applicable in many scenar-
ios where no real reference plane is visible. A further contribution is a method to compute
simultaneously the infinite homographies from known epipolar geometry. We do not claim
that the list of alternative techniques in table 5.1 is complete. Probably, there are further
alternatives which might have an important practical impact. For instance, is it possible
to exploit symmetry properties or the contours of an objects? More generally, might it be
enough to know that an object belongs to a certain class with some “geometric” properties?
These are interesting open questions for future research.

Chapter 6 outlined practical algorithms of our novel direct reference plane approach
for points, lines and planes. The methods for points and lines were extended to use nor-
malized image points and general cameras, which did not appear in any of our previous
publications. The main contribution of this chapter is the experimental comparison of
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these methods with other approaches under various conditions using real and synthetic
data. The experimental study focused on point features. The main observation is that for
difficult, reference plane scenarios with a high percentage of missing data, up to 90%,
our direct reference plane method performed successfully, where general reconstruction
methods fail. The “failure” of these methods had the following reasons (a) too few image
measurements are available, (b) error accumulation due to noisy image measurements or
(c) critical configurations (dominant scene plane). Reference plane methods circumvent
all these problems since they exploit a real or virtual reference plane visible in all views.
Our method was significantly superior to Hartley et al.’s (2001) reference plane approach
for some difficult scenarios. A further important though unsurprisingly result is that refer-
ence plane methods are inferior to general methods if the reference plane is detected very
inaccurately. Synthetic experiments showed that our method and Hartley et al.’s (2001)
method were very stable if the 3D scene points are not close to the reference plane, such
as an infinite reference plane. For “flat scenes” where many 3D points are on or close to
the reference plane, our method and the factorization approach of Triggs (2000) performed
best. However, in this case our method is complex and iterative, depending on the number
of 3D points. The factorization method has the drawback of “hallucinating” missing data.
Consequently, in our opinion the best reference plane method for “flat scenes” has not yet
been found. The main goal of the experiments for lines and planes was to demonstrate that
they perform successfully under real world conditions. For planes, it turned out that our di-
rect reference plane method is slightly inferior to methods which hallucinate image points
given the planar homographies. In future work we plan to study experimentally our method
for combinations of points, lines and planes, including additional scene constraints.

In chapter 7 we investigated critical reference plane configurations which do not have
a unique projective reconstruction. All presented results are novel (Rother and Carls-
son, 2002a) since to our knowledge critical configurations have only been studied for the
general case (e.g. Kahl et al., 2001). The main contribution is that for multiple views
and no missing data, i.e. all points are visible in all views, all non-trivial configurations
where points and camera centres are non-coplanar are non-critical. This is an important
result since the scenario of one dominant scene plane visible in multiple views appears
frequently in practice and is critical in the general case. In the reference plane case this
scenario is not critical if the scene plane and the reference plane are different, for instance
the reference plane is the actual plane at infinity. Furthermore, we introduced a novel
method to construct non-critical configurations for the case of missing data.

Finally, chapter 8 introduced an automatic multi-view reconstruction system for point
features. The main contribution is to demonstrate that the reference plane approach has the
capability of performing automatically the complete reconstruction task. This includes two
novel methods, vanishing point detection (Rother, 2000; Rother, 2002) and robust multi-
view point matching using a reference plane, which is based on (Tell and Carlsson, 2002).
Possible future work will include further experiments, the extension to lines and planes
and the automatic extraction of textured, virtual models from the 3D point reconstruction.
Furthermore, an automatic reconstruction system using a real scene plane could exploit
this finite reference plane for self-calibration.



9.2. Discussion 203

9.2 Discussion

Probably the previous section gave the impression that 3D reconstruction is the “most
important” task in computer vision and that this task is basically solved. Well, let us clarify
this aspect by moving to a more “neutral” perspective.

The thesis discussed the specific task of feature based 3D reconstruction using a refer-
ence plane. The input data is a set of 2D images and the output a (metric) reconstruction
of features and cameras in the 3D space. This process may be performed automatically for
certain scenarios as demonstrated in chapter 8. Certainly, this is an important result and
probably sufficient for applications like visualizing of man-made environments, robotics
and augmented and virtual reality. However, from a broader perspective, how does our
reconstruction system compares to a complete system that “sees”. For comparison we
choose the human visual system3.

The input data, a sequence/set of 2D images, is similar in both systems. This may
be assumed if only one eye is considered (monocular vision) and effects like the spatial
arrangements of rods and cones are neglected. Chapter 1 reviewed many different cues
to derive 3D information from the images, like motion, shading, parallel lines or famil-
iar objects (see table 1.1). Our system exploits two sources of information to solve the
reconstruction task: the camera’s motion and a reference plane. As discussed in chap-
ter 1, humans are not that limited. Psychophysicists analyze human behavior in simu-
lated naturalistic virtual environments which include a combination of information sources
(Gibson, 1950; Palmer, 1999). We may conjecture that humans use different combinations
of information sources depending on the observed environment. In the field of computer
vision the wide range of information sources is well known. This is due to the pioneer
work of Marr (1982) and his colleagues, e.g. Ullman (1979), who were inspired by Gibson
(1950). The 3D reconstruction task is also called structure-from-X, where X is a variable
which represents any source of information like motion or shading. However, in our opin-
ion the combination of information cues, i.e. structure-from-X and Y, is less frequently
studied. The thesis demonstrated that a reference plane reconstruction system, which com-
bines two sources (motion and reference planes), is significantly superior to general re-
construction systems, which exploits motion as the only source. Naturally the question
arises if other information sources might be combined to give an improved reconstruction
system.

Consider the output of both reconstruction systems? Our method returns the exact 3D
position of the features and the observer in some (metric) space. What is the output data
of the human system? Consider the experiment in chapter 1 of drawing a map of the city
hall in Stockholm from a set of views (fig. 1.1). The result would quite certainly be less
accurate compared to our method (fig. 1.2). However, is this task really relevant for us?
How often do we have to answer the question: What is the height of the tower of the city
hall? Humans have to solve a wide variety of high level tasks which involve 3D reconstruc-
tion (depth estimation), like picking up an object or walking through a corridor. In order to
complete a high level task, some low level tasks have to be solved. The low level task of 3D

3A comparison with other biological “seeing systems” would be interesting as well.
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reconstruction is one of many, like segmentation of an object in the image, object recog-
nition and categorization. If we consider 3D reconstruction in more detail, two different
tasks may be identified: qualitative and quantitative reconstruction. A quantitative recon-
struction comprises of metric measurements, like the height of the tower of the city hall.
A qualitative reconstruction only reflects the depth ordering of objects, for instance the top
of the tower is farther away than the bottom for an observer on the ground. Some of the
information sources in table 1.1 provide quantitative information, like motion, and others
more qualitative information, like shading. In our opinion, most of the research in com-
puter vision is focused on the quantitative reconstruction task, like the system presented
in this thesis. Obviously, a qualitative reconstruction may be derived from a quantitative
reconstruction. However, is a quantitative reconstruction always needed and useful? Con-
sider the human system. What high level tasks must a human solve, and which low levels
tasks are necessary to complete a certain high level task? Moreover, how do the low level
tasks interact to complete a high level task? For example, in a scene with two objects, the
observer has to pick the closer of the two. This high level task involves two low levels
tasks, object segmentation (recognition) and qualitative reconstruction (depth ordering). If
the objects are already segmented in the image, the qualitative reconstruction task is sig-
nificantly simpler. On the other hand, additional knowledge about the depth ordering of
image parts (pixels) is very useful information for the segmentation task. To summarize,
the understanding and imitation of low level tasks is undoubted an important problem in
computer vision. However, the key for imitating the human visual system is not merely the
tasks themselves but just as importantly their interaction and correct combination.
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