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Abstract

We introduce the term cosegmentation which denotes the task of segmenting simultaneously the common parts of an image
pair. A generative model for cosegmentation is presented. Inference in the model leads to minimizing an energy with an
MRF term encoding spatial coherency and a global constraint which attempts to match the appearance histograms of the
common parts. This energy has not been proposed previously and its optimization is challenging and NP-hard. For this
problem a novel optimization scheme which we call trust region graph cutsis presented. We demonstrate that this framework
has the potential to improve a wide range of research: Object driven image retrieval, video tracking and segmentation, and
interactive image editing. The power of the framework lies in its generality, the common part can be a rigid/non-rigid object
(or scene), observed from different viewpoints or even similar objects of the same class.

1. Introduction

This paper looks at segmentation, which is a fundamental problem in computer vision, and particularly at the simulta-
neous segmentation of a pair of images, an operation that we term “cosegmentation”. Powerful procedures for low-level
segmentation can be produced by incorporating difference measures at the level of pixels, into a global objective function
[19, 3, 17]. The objective function can also incorporate a tendency to coherence of regions. Completely automatic segmenta-
tion is possible [19] but prone to error, and interactive input [3, 17] or fusion with other modalities [13], is normally needed
to correct those errors. Another source of information for correcting segmentation is to supply a database of related images
and segment them simultaneously [20]. Here we demonstrate that supplying justone additional image can be sufficient to
segment both together, to higher accuracy than is achieved with either one alone. Furthermore, in contrast to [20] we do not
exploit a shared shape model which has the advantage of beingcompletely viewpoint independent.

Apart from clear applications in interactive graphics, forsegmentation of images and videos, cosegmentation has implica-
tions in another important area: image similarity measures. Commonly the degree of similarity of a pair of images has been
computed by comparing the global statistics of the two images. Typically the comparison is applied to the histograms of
each image, constructed from features such as colour and texture [11, 7]. However, such a global, undifferentiated approach
to comparison is liable to result in crude comparisons, as figures 5, 6 show. Apparently, it is essential to incorporate some
form of differentiation of parts of images, so that comparison can be based on those parts of an image pair which are shared
in common. In that way, a similarity between subjects can be scored highly, without unreasonable dilution by differences in
backgrounds. (Conversely, similarities in the backgroundscenes of a pair of images could be captured despite the subjects
being unrelated.) One approach to such differentiation, is“integrated region matching” [11], in which images are subjected
to mean-shift segmentation [5], and then a simple similarity measure records the similarity of paired regions, in a search over
both segmented images. However, the choice of paired regions takes no account of object coherence, and so cannot properly
take account of the distinction between subject and background. Here we address that shortcoming byjointly cosegmenta-
tion the image pair using a proper MRF coherence prior and a histogram matching cost, and then compare either subject or
background.

A sub-problem which arises in cosegmentation is the problemof finding a coherent image region with given target his-
togram. This problem has been approached previously using ellipses or active contours to define coherence [6, 12, 9]. Inspired
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Figure 1.Introducing cosegmentation.Given a pair of images (a) the objective is to segment the common part in both images. (b) Shows
the result of applying GrabCut [17] on the images separately, with a preference of foreground being more likely in the image center. The
result is as expected since the joint foreground is not modeled. (c) Shows the result of performing cosegmentation, however, without any
spatial constraints. (d) Result of our complete cosegmentation framework.

by [17], we instead define coherence via MRF priors and solve the problem with iterated graph cuts.
In order to arrive at an objective function for cosegmentation, we begin, in sec. 2, by setting out a generative model for

an image pair, and then evaluating the hypothesis that the images share common material. The recovered cosegmentation
will then be that pair of regions, one from each image, under which that hypothesis is most probable. One approach to the
generative model considers pixels in the backgrounds and foregrounds of each image to have been generated independently
from a certain probability distribution for colour (or texture). Then, under the hypothesis, the foreground distributions are
constrained to be identical. This can be shown to yield, as a likelihood for the images, a function of the well-known Jensen-
Shannon divergence between foreground histograms (see below). However, the independence assumption is something of a
drawback, as it is known that nearby pixels in an image are notgenerally independent [8]. If instead we choose a generative
model for the foreground histograms as a whole, rather than individual pixels, we can obtain other standard divergencessuch
as variational distance. A further Ising prior on segmentations, gated by image contrast [3], encourages smooth boundaries.

The optimisation of the objective function arising from that generative model, is something of a challenge. Graph cut
algorithms are widely used for binary optimisation in Markov models [10, 3], but have not been used before where the objec-
tive function contains a histogram difference measure. It transpires that such an objective function is not “submodular” and
therefore strictly not tractable. Therefore we develop, insec. 3, a new, approximate algorithm based on graph cuts. Finally,
in sec. 4, we show a series of results, demonstrating the effectiveness of the new model and algorithm in image segmentation,
and in the development of image similarity measures that respect the distinction between subject and background.

2. A Generative Model for Cosegmenting Image Pairs

2.1. Problem statement

Let k ∈ {1, 2} range over images andi ∈ {1, . . . , n} range over pixels.

• xki ∈ {0, 1} indicates whether pixeli in imagek is foreground.xk is shorthand for the entire labeling in imagek, and
x̄ is shorthand for both images.

• zki is an image measurement, e.g. color or texture at pixeli in imagek. We assume that this measurement falls into a
finite number of bins. Symbolz will range over these bins. Givenxk, zkf is shorthand for all foreground pixels, and
zkb for all background pixels.zk is shorthand for the entire imagek, andz̄ is shorthand for all images.

• θkf denotes foreground model parameters foryk. θkb denotes background model parameters.θk is shorthand for both
(θkf , θkb), andθ̄ is shorthand for allθk.

Given two images̄z = (z1, z2), we consider two possible generative models, illustrated in Fig. 2. In both models, the
segmentations and background models are independent across images. IfJ = 0 then the foreground models are independent;
if J = 1 then the foreground models are the same. This difference shows up only in the prior for̄θ. Therefore the image
model given the segmentations is:

p(z̄|J, x̄) =

∫
p(θ̄|J)

∏

k

p(zkf |θkf )p(zkb|θkb)dθ̄ (1)



Due to the number of pixels, the likelihood will be sharp so wecan usually approximate the integral overθ with the maximum:

p(z̄|J = 0, x̄) ≈ max
θ̄

p(θ̄)
∏

k

p(zkf |θkf )p(zkb|θkb) (2a)

p(z̄|J = 1, x̄) ≈ max
θ̄:θ1f =θ2f=θ⋆f

p(θ̄)
∏

k

p(zkf |θkf )p(zkb|θkb) (2b)

Under this approximation,p(z̄|J = 0, x̄) ≥ p(z̄|J = 1, x̄) always.
We want to choose the segmentationsxk so that the hypothesisJ = 1 has high posterior probability. In other words, we

want to find

x̄⋆ = argmax
x̄

p(J = 1|z̄, x̄)p(x̄) (3)

wherep(J = 1|z̄, x̄) =

p(z̄|J = 1, x̄)p(J = 1)

p(z̄|J = 0, x̄)p(J = 0) + p(z̄|J = 1, x̄)p(J = 1)

We will setp(J = 0) = p(J = 1), so these terms disappear. Define

D(z̄|x̄) = log
p(z̄|J = 0, x̄)

p(z̄|J = 1, x̄)
(4)

In this ratio, the background terms cancel, and we will obtain a measure of divergence between the foreground areas ofz1

andz2. Under the approximation (2),D ≥ 0.
Taking the negative logarithm of (3) gives the following energy minimization problem:

x̄⋆ = argmin
x̄

log(1 + exp(D(z̄|x̄))) − log p(x̄) (5)

≈ argmin
x̄

1

2
D(z̄|x̄) − log p(x̄) (6)

This approximation is justified whenD is small at the optimum.

2.2. Prior of the Model

We use an MRF model for each image. Furthermore, we assume that larger foreground regions are more likely a priori.
Thus, we have

− log p(x̄) = λbg

X
k,i

(1 − xki) +
X

k,(i,j)

λki,kj |xki − xkj | + const (7)

where the second sum is over pairs of neighboring pixels. We use the following expression for coefficientsλki,kj :

λki,kj = λ1 + λ2 exp(−β||Iki − Ikj ||2)

whereIki is the colour of pixeli in imagek andβ = (2
〈
||Iki − Ikj ||2

〉
)−1. This is similar to the contrast-sensitive term

in [17], with the addition of Ising priorλ1.
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Figure 2. The two hypotheses for image generation.



2.3. Image generation model: Gaussian model on histograms

The remaining task is to specify the image generation model for the foreground region:p(zkf |θkf ). By choosing this
model carefully, we obtain a tractable divergence measureD. Our choice is a Gaussian model on histograms. Letĥkf be the
empirical un-normalized histogram of foreground pixels:

ĥkf (z) =
∑

i

xkiδ(zki − z) (8)

Given a histogram, the foreground is generated by laying outexactly that number of measurements, then randomly permuting
them. Therefore:

p(zkf |θkf ) =

∏
z Γ(1 + ĥkf (z))

Γ(1 +
∑

z ĥkf (z))
p(hkf = ĥkf |θkf ) (9)

The first term is the number of ways you can obtain a given imageby permuting a given histogram. It doesn’t depend onθ so
it will cancel in the likelihood ratio. Now we only need to specify the distributionp(hkf |θkf ). In the following, everything
concerns foreground so we will drop thef subscript. The target histogramhk is generated by a Gaussian distribution with
parametersθk = (mk,vk), with hyperparameterck controlling the expected size of the foreground region:

p(hk|mk,vk) =
∏

z

N (hk(z); ckmk(z), c2
kvk(z)) (10)

Note that(mk,vk) are shared underJ = 1 butck is not. Thereforeck can compensate for foreground size differences among
the images.

2.3.1 Approximate case

We will use a uniform prior onmk and Gamma prior onvk:

p(vk(z)) ∝ vk(z) exp(−vk(z)

b2
) (11)

WhenJ = 0:

m̂k = ĥk/ck, v̂k = 0, and p(z̄|J = 0, x̄) ≈ 1 . (12)

WhenJ = 1:

m̂⋆ =
1

2

∑

k

ĥk

ck
(13)

v̂⋆(z) = argmin p(v⋆(z))
∏

k

N (ĥk(z); ckm̂⋆(z), c2
kv⋆(z)) (14)

= argmin exp(−v⋆(z)

b2
) exp(−

∑
k(ĥk(z) − ckm̂⋆(z))2

2c2
kv⋆(z)

) (15)

S(z) =
∑

k

(ĥk(z)/ck − m̂⋆(z))2 =
1

2

(
ĥ1(z)

c1
− ĥ2(z)

c2

)2

(16)

v̂⋆(z) =
b√
2

√
S(z) (17)

p(z̄|J = 1, x̄) ≈
∏

z

p(v̂⋆(z))
∏

k

N (ĥk(z); m̂⋆(z), v̂⋆(z)) (18)

=
∏

z

exp(−
√

S(z)√
2b

) exp(− S(z)√
2b
√

S(z)
) (19)

=
∏

z

exp(−
√

2S(z)

b
) (20)



Dividing J = 0 andJ = 1 gives:

D(z̄|x̄) = − log p(z̄|J = 1, x̄) =

√
2

b

∑

z

√
S(z) (21)

=
1

b

∑

z

∣∣∣∣∣
ĥ1(z)

c1
− ĥ2(z)

c2

∣∣∣∣∣ (22)

2.3.2 Exact case

Details are given in Appendix 1.

2.4. Image generation model: Independent-pixel model

Now consider a model where we generate the pixels independently. The model parameters are histograms.

p(zk|θk,xk) =
∏

i

p(zki|θkf )xkip(zki|θkb)
1−xki (23)

p(zki|θkf ) = θkf (zki) (24)

With this definition, (2) becomes

p(z̄|J = 0, x̄) =
∏

ki

θ̂kf (zki)
xki θ̂kb(zki)

1−xki (25)

p(z̄|J = 1, x̄) =
∏

ki

θ̂⋆f (zki)
xki θ̂kb(zki)

1−xki (26)

nkf =
∑

i

xki (27)

θ̂kf (y) =
1

nkf

∑

i

xkiδ(zki − y) (28)

θ̂⋆f (y) =

∑
k nkf θ̂kf (y)∑

k nkf
(29)

Note that̂θb is the same forJ = 0 andJ = 1. Therefore the background cancels when computingD:

D(z̄|x̄) =
∑

ki

xki log
θ̂kf (zki)

θ̂⋆f (zki)
(30)

=
∑

ijy

xkiδ(zki − y) log
θ̂kf (y)

θ̂⋆f (y)
(31)

=
∑

iy

nkf θ̂kf (y) log
θ̂kf (y)

θ̂⋆f (y)
(32)

This is the Jensen-Shannon divergence between the histogramsθ̂k.

3. Optimization

In the previous section we described a generative model thatyields the following energy function:

E(x̄; c1, c2) = − log p(x̄) + Eglobal(ĥ1, ĥ2; c1, c2) (33)



The first term is given by (7); it encodes the usual MRF prior onlabelingx. The second term is quite different from the first
one: it depends onglobal properties of segmentationx, namely histograms of foreground regionsĥ1, ĥ2:

Eglobal(ĥ1, ĥ2; c1, c2) =
1

2b

∑

z

∣∣∣∣∣
ĥ1(z)

c1
− ĥ2(z)

c2

∣∣∣∣∣ . (34)

The presence of this global term makes the minimization problem quite challenging. One could think of using some gen-
eral inference algorithm, such as Swendsen-Wang Cuts for sampling arbitrary posterior probabilities [1]. Another possibility
is to use active contours [12, 9]. We argue, however, that since MRF term is an essential part of the energy, it is desirable
to use the well-established technique for binary MRFs - min cut/max flow algorithm [4]. Fortunately, the form of our global
term will allow to use max flow algorithm inside the method called submodular-supermodular procedure [15].

For simplicity, in this paper we setc1 = c2 = 1, which means that we prefer foreground regions of the same size. It is
easy, however, to extend the model to account for different sizes: we can put some prior onc1, c2 and minimize energy (33)
iteratively, i.e. fixc1, c2 and optimize over̄x and then the other way around.

We now describe how we minimize energy (33). We iterate between the following two steps: (1) Fixx2, optimize over
x1, and (2) Fixx1, optimize overx2. Each subproblem requires minimizing the following function:

− log p(xk) +
1

2b

∑

z

|ĥk(z) − htarget(z)| (35)

where the target histogramhtarget is the empirical histogram of the foreground in other image.For the remainder of this
section we focus on how to solve this subproblem for given imagek. Sincek is fixed, we will omit it for brevity.

The energy function can be written as
E(x) = E1(x) + E2(x) (36)

where the first term corresponds to the prior onx and the second to the global histogram term. An important observation is
thatE1 is submodular andE2 is supermodular, i.e. they satisfy

E1(x ∧ x′) + E1(x ∨ x′) ≤ E1(x) + E1(x
′)

E2(x ∧ x′) + E2(x ∨ x′) ≥ E2(x) + E2(x
′)

for all configurationsx,x′. (A proof that our histogram termE2 is supermodular is given in the Appendix 2. In fact, we
prove a slightly more general statement.)

It is well-known that any submodular function can be minimized in polynomial time [18]. In our caseE1(x) is a sum of
unary and pairwise terms, so a global minimum ofE1 can be computed very efficiently via min cut/max flow algorithm. The
presence of supermodular part, however, makes the problem NP-hard.

The submodular-supermodular procedure [15] is a promisingapproximate minimization technique for functions of the
form (36). Sec. 3.1 gives an overview of this approach. Sec. 3.2 discusses its potential difficulties and proposes an alternative
method -trust region graph cuts.

3.1. Submodular-supermodular procedure (SSP)

This method was inspired by concave-convex procedure for minimizing functions of continuous variables [21]. SSP is
an iterative technique which produces a sequence of configurationsx0,x1, . . . ,xt, . . .. The main property of SSP is that the
energy never goes up, i.e.E(x0) ≥ E(x1) ≥ . . .. Let xt be the current configuration. The method performs the following
steps:

(a) Replace supermodular partE2(x) with a linear approximation̂E2(x) = C + 〈x,y〉 = C +
∑

i xiyi whereC is a
constant andy is a real-valued vector. (Such a function is also calledmodular).

(b) Compute a global minimum of functionE1(x) + Ê2(x) to get new configurationxt+1.

Note that minimization in the second step can be performed inpolynomial time since the function is submodular. (Linear
function〈y,x〉 simply adds unary terms toE1(x)).

Linear approximation chosen in step (a) must satisfy two properties: (i) It must be an upper bound on the supermodular
part, i.e.Ê2(x) ≥ E2(x) for all configurationsx. (ii) The functions should touch atxt: Ê2(x

t) = E2(x
t). These properties

ensure that the original energy does not go up sinceE(xt+1) ≤ E1(x
t+1) + Ê2(x

t+1) ≤ E1(x
t) + Ê2(x

t) = E(xt).



It remains to specify how to choose an upper boundÊ2(x) (i.e. corresponding vectory) with the properties above.
(Existance of such a bound follows from supermodularity ofE2). [15] uses the following procedure. First, an ordering of
nodesπ(·) is selected which “respects” current labelingxt, i.e. all ones precede all zeros:xt

π(1) ≥ xt
π(2) ≥ . . . ≥ xt

π(n).
This ordering defines the followingn + 1 configurations:

x(0) = (0, 0, . . . , 0)

x(1) = (1, 0, . . . , 0)

. . .

x(n) = (1, 1, . . . , 1)

where we assumed that the nodes are ordered according toπ. (Formally,x(j)
i is zero if π(i) ≤ j, and one otherwise).

The fact that orderingπ “respects” current labelingxt simply means thatxt is one of thesen + 1 configurations. Finally,
approximationÊ2(x) is chosen so that it is exact for thesen + 1 configurations:Ê2(x

(j)) = E2(x
(j)), j = 0, 1, . . . , n.

Solvingn + 1 equations withn + 1 unknowns yields

C = E2(x
(0)) , yπ(i) = E2(x

(i)) − E2(x
(i−1))

3.2. Trust region graph cuts (TRGC)

For SSP it is important to choose “good” representative configurationsx(0), . . . ,x(n). If, for example, a global minimum
of E(·) happens to be among these configurations, then the procedurewill find this minimum. Choosing good configurations,
however, is a difficult problem. First, there is a restriction on representative configurations1: there must hold eitherx(j) ≤ xt

or x(j) ≥ xt. Second, even if there is an ordering that would decrease theenergy, computing such an ordering is a difficult
problem2; in fact, it is NP-complete3.

It could be desirable to choose linear approximationÊ2(x) = C+〈x, ỹ〉 which is not based on any ordering. For example,
we could set̃yi = E2(x

i;1) − E2(x
i;0) wherexi;s is the labeling obtained fromxt by settingxi to s. This approximation

is exact for all configurations that differ fromxt by at most one pixel. It can also be obtained by keeping linearterms in the
Taylor expansion of energyE2 expressed as a function of the global histogram ofx (assuming thatE2 is differentiable).

Unfortunately, this approximation is not an upper bound onE2(x). This means that minimizingE1(x) + Ê2(x) is not
guaranteed to decrease the original energy. To remedy this problem, we propose an alternative method which we calltrust
region graph cuts (TRGC). It allows arbitrary linear approximationŝE2(x) which are not upper bounds. Furthermore, in this
method functionE2(x) can also be arbitrary - it is no longer required to be supermodular.

Trust region methods are well-known in continuous optimization [2]; TRGC can be viewed as their discrete analogue. A
related continuous optimization method is the linearization method of Pschenichnyj [16].

Description of TRGC Instead of selecting unary potentialsy based on some ordering, we willoptimize over y. Our
technique produces a sequence of vectors(x0,y0), . . . , (xt,yt), . . . with the following properties: (i)xt = argminx E1(x)+
〈x,yt〉, and (ii) the energy does not go up:E(x0) ≥ E(x1) ≥ . . ..

The method works as follows. Let(xt,yt) be the current state, and̂E2(x) = C + 〈x, ỹ〉 be a desired approximation of
E2(x). Let us definey(α) = (1−α)yt + αỹ, and letx(α) be a global minimum of functionE1(x) + 〈x,y(α)〉4. Note that
α = 0 corresponds to the current solutionxt, andα = 1 corresponds to taking approximation̂E2(x). We now search for
α ∈ [0, 1] that minimizesE(x(α)). This defines new vectorsxt+1 andyt+1. If α = 0 is within the range of values that we
test, the energy is guaranteed not to go up.

1Note that this restriction on representative configurations does not necessarily mean that that SSP cannot “exchange” pixels. If some configuration is
not amongx(0), . . . ,x(n), it may still happen that approximationbE2(x) is tight for this configuration. Furthermore, even if the approximation is not very
tight, theoretically it is still possible that SSP will go there.

2To illustrate the difficulty, suppose that the target histogram has 100 pixels of a certain class (e.g. red pixels), whilethe current segmentation has 110
red pixels, 10 of which are labeled incorrectly. Orderingπ defines unary potentials as follows: the first 100 pixels willhave a preference towards foreground
and the last 10 pixels - towards background. In order to remove the incorrect region, most of its pixels should be ordered in the very end. This is very
unlikely for a random ordering.

3To see this, consider a class of energy functions with integer polynomially bounded values such that minimizing functions in this class is NP-hard. Now
apply an iterative minimization algorithm where we first “flip” nodes in the current configuration to make it(0, 0, . . . , 0). After this flipping any labeling
can be obtained with a certain ordering.

4If there are multiple global minima, thenx(α) will denote one of the them. There is one exception, however:if x
t is also a global minimum, then we

setx(α) = x
t.



Figure 3.Comparison of TRGC and SSP.The goal is to segment the object (penguin) in the input image(a) given the target histogram of
the ground truth segmentation (b). The result of TRGC (c) clearly outperforms SSP (d).

We implemented the following one-dimensional search routine: we start withα = 1 and we keep halving it until one of
the following happens: (a)x(α) = xt; (b) α < 10−3; or (c) energyE(x(α)) is larger compared to the previousα, and the
energy for the previousα was smaller thanE(xt).

It is important to note that TRGC is a trust region method working in thedual space: we optimize over dual variablesy

rather than primal variablesx.

3.3. Implementation details

The general structure of the algorithm for cosegmenting an image pair is described in the beginning of sec. 3. The
remaining question is the initialization of the target distributions and the segmentation for the first iteration. For this we
employ a procedure which finds the largest regions in two images of the same size whose histograms match perfectly. This
is done via a greedy algorithm that adds one pixel at a time to the first and second foreground regions. Note, this gives the
minimum energy if the spatial prior is ignored.

SSP.The most important question for SSP is how to choose an ordering of nodesπ. We tested two schemes. In the first
one we selected a random permutation of elements that respects current configurationx. This is similar to the technique
used in [15], with one modification: we take random permutation of 10 × 10 blocks rather than individual pixels. Inside
each block pixels with the same segmentation are ordered sequentially. Thus, we try to take into account the fact that due
to spatial coherence all pixels inside a block are likely to have the same segmentation. Our second scheme is deterministic:
given initial configuration, we compute a signed distance map from segmentation boundary and order pixels according to this
distance. In this scheme representative configurationsx(0), . . . ,x(n) correspond to diluting or eroding the current foreground
region. For a fixed target histogram we ran a maximum of50 iterations of SSP procedure. We observed, however, that in the
majority of cases only the first few iterations decrease the energy, and then the energy stays constant.

TRGC. We used the SSP procedure for initialization (i.e. for computing (x0,y0)). We ran the algorithm until conver-
gence, i.e. until searching overα did not yield any improvement in the energy.

For both approaches we used maxflow algorithm in [4]. Furthermore for all experiments we setλbg = 0.3, λ1 = 1, λ2 =
50 andb = 0.5. Finally let us introduce our appearance model. We have experimented with a simple 2D intensity normalized
RGB colour space and a richer texture (texton) based model [14], which has been proven to be very powerful for image
retrieval [7]. Apart from scenarios of retrieving images ofthe same class we have used the simple model since the emphases
on colour improved the performance, if the common part is theidentical object. A thorough testing of different appearance
models is a part of future work.

4. Experiments

Comparison of SSP and TRGC.We built a data set of50 images which depict a foreground object in front of a back-
ground. The ground truth segmentation of the foreground object has been achieved manually5. In some images the object
is ”camouflaged” (e.g. fig. 3(left)), where fore- and background have similar appearance, in other images (e.g. 4(left))they
have different appearances. Given the target histogram of the ground truth segmentation we compare the performance of the
submodular-supermoduler procedure (SSP) with our version(TRGC). We also compare the performance of ordering of the
nodes (see sec. 3.3): Random ordering (rand.), as suggestedin [15], versus distance map ordering (dist.). As performance
measure we utilize the average energy (av. Energy) and the percentage of misclassified pixels (av. Error) with respect to
ground truth. The results are summarized in table 4. It is clear that TRGC outperforms SSP considerably both in terms of

5The data set is publicly available at http://research.microsoft.com/vision/cambridge/i3l/segmentation/GrabCut.htm



Method av. Energy av. Error (%) av. # Iter.
TRGC(dist.) 408 2.33 7.8

TRGC (rand.) 417 2.33 7.8
SSP (dist.) 426 2.77 4.6
SSP (rand.) 461 2.81 4.6

Ground Truth 429 0.0 -
Table 1.Comparison of SSP and TRGCwith random ordering (rand.) and distance map ordering (dist.) of the nodes. Note that the
energies are scaled by10−2.

Figure 4.Dependency on background penalty.The background penalty determines the amount of shared foreground. With our standard
setting ofλ = 0.3 only part of the object was detected. By increasingλbg = 0.8 we force more foreground material to appear. Given our
generative model we plan to learnλbg from a larger training/validation data set.

Figure 5.Robust Image distance - same scene.Consider the triplet of images in the top row. The left and middle image depict part of
the same scene, where the right image shows an unrelated forest scene. The distance (SAD) of the global colour histogramsof the whole
images says that the middle image is more similar to the right(48%) than to the left image (52%). Running cosegmentation gives the
expected answer (bottom row). The cosegmentation of the left and middle image nicely moves the regions which do not appear in both
images (telephone box, sky and road) to the background (label light blue). Note that the depicted cosegmentation of the middle image is
with respect to the left image. When using the energy of the cosegmentation as distance measure, the middle image is now more similar
(42%) to the left than the right image (58%). Note that the percentages are derived by comparing the absolute energies. Also, note that the
cosegmentation measure without the spatial coherence term(MRF) gives, as the global histogram of whole images, the incorrect answer.

lower energy and quality of result. Note that the energy of TRGC wasalways lower than SSP. With respect to the pixel
ordering: random versus distance transform, the later performs slightly better, and is also deterministic. Consequently we
used the TRGC method with distance transform ordering for initialization as our method for the remaining experiments. Fig.
3 shows an example where TRGC outperforms SSP. Note, the factthat the ground truth has a relatively low energy shows
that our problem setting is reasonable.

Examples of cosegmentation using TRGC are shown in fig. 1,4-7. Fig. 4 demonstrates that the segmentation quality
depends on the background penaltyλbg. Our generative framework gives us the option of learning this parameter given a
training and validation data set. To obtain such a database is part of future work.



Figure 6.Robust Image distance - similar objects.Same explanation as in fig. 5, apart from the fact that the appearance model is based
on texture (textons [14]). Note that the trees in the background where assigned a different texton label.

Robust Image distance for Image retrieval.In the following we consider two examples where we demonstrate that coseg-
mentation improves an image retrieval system based on global histogram comparison. The key idea is to use the energy as
a distance measure between an image pair. This is a valid measurement since identical images have energy (distance)0.
Another nice feature of our energy is that by adjustingλbg = ∞ it gives the standard global histogram difference of the
whole image, as used in e.g. [7]. As in all previous examples we setλbg = 0.3.

In fig. 5 we compare the distance between three images where two of them depict the same scene and the third an unrelated
scene. We demonstrate that using cosegmentation two imagesof the same scene have a smaller distance than two unrelated
images. This is in contrast to using an appearance statistics of the whole image where two unrelated images have a smaller
distance (details in figure caption).

In the second example, fig. 6, we compare the distance of a triplet of images where two images depict an object of the
same class (bus) and a third unrelated image. The findings areas in the previous case, cosegmentation gives the correct
relationship for the triplet (see figure caption for details). Given the middle image in fig. 6 as query, the right image is in
fact the most similar image from the Corel database of 1000 images used in [11] and based on global texture (texton [14])
statistics. The fact that our cosegmentation system returns an image containing an object of the same class ( fig. 6 left) is
a proof of concept that the retrieval performance for this particular query image improves. Further quantitative testson the
whole database have to be carried out. In particular, it has to be tested that ignoring the similarity of the background does not
decrease performance for a query image which does not contain a well defined object.
Further Applications. Let us demonstrate other applications where our generativeframework can be applied successfully.
Fig. 7 shows an example for video summarization and interactive cosegmentation (see figure caption for details). Fig.
8 depicts an application where our generative framework is used for automatically tracking and segmenting a foreground
object in a video sequence given a target distribution in thefirst key frame (details in figure caption).

5. Conclusion and Future Work

We have presented a novel generative model for cosegmentingthe common parts of an image pair. The strength of the
model is its generality: The common part can be a rigid/non-rigid object (or scene), observed from different viewpointsor
even similar objects of the same class. Inference in the model leads to minimization an energy with an MRF term encoding
spatial coherency and a global constraint which tries to match the appearance histograms of the common parts. This exact
energy has not been proposed earlier and its optimization ischallenging and NP-hard. We have presented a novel optimization
scheme which we call trust region graph cuts, and have demonstrated its superiority to a competitive method on a large data



Figure 7.Video Summarization and Interactive cosegmentation.Given two key frames from a video, our method can extract automat-
ically the common part. This can be used to summarize the video. In this case the segmentation is not perfect, due to colourvariations
on the book cover. In an interactive cosegmentation system the foreground object can be extracted fromboth images, by editing onlyone
image. We utilize the interactive brushing style of [3]. In the image (second from right) a red brush stroke indicates an explicit marking of
the foreground. Obviously, the updated histogram of the left image forced a better solution for the right image.

Figure 8.Video Tracking and Segmentation.Given a perfect segmentation in a key frame (a) we would like to segment the the foreground
object in all subsequent frames, e.g. fame 10 (b). An obvioussolution is to apply standard image segmentation [3] using atrimap, which is
derived by dilating the segmentation of the previous frame by a fixed number of pixels. The result (c) is good, however the segmentation
of the book is sub-optimal. Our result (d) is better, by forcing the foreground object to have the same target histogram asin the previous
frame.

set. Our new framework has clear applications for interactive graphics, video tracking and segmentation. Probably themost
important application is object-driven image retrieval, for which we propose a new and robust similarity measurement for
image pairs. In the future we hope to quantify our initial findings in this area. A further future direction is the incorporation of
feature matches (optical flow) which is an essential component of any standard wide-baseline matching, or tracking system.
Also a comparison with an alternative generative model, as introduced here is important.

Appendix 1: Gaussian model on histograms - Exact case

Here we will do the full integrals required by (1), with proper priors. The priors are:
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HereK1 is the modified Bessel function of the second kind. It has the property that
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Putting all of this together gives:
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k(ĥk(z)/ck − m⋆(z))2

2v⋆(z)
)dm⋆(z) (48)

=
1

2π
∏

k ck
v⋆(z)−1

∫

m⋆(z)

p(m⋆(z)|v⋆(z)) exp(−2(m̂⋆(z) − m⋆(z))2 + S(z)

2v⋆(z)
)dm⋆(z) (49)

=
(1/2 + α)−1/2

2π
∏

k ck
v⋆(z)−1 exp(− S′(z)

2v⋆(z)
) (50)

whereS(z) is defined by (16) and

S′(z) = S(z) + (m̂⋆(z) − m0(z))2/(1/2 + α) (51)

∫
∞

0

p(v⋆(z))v⋆(z)−1 exp(− S′(z)

2v⋆(z)
)dv⋆(z) =

1

Γ(3/2)b3

∫
∞

0

v⋆(z)−1/2 exp(−v⋆(z)

b2
− S′(z)

2v⋆(z)
)dv⋆(z) (52)

=
2

b2
exp(−

√
2S′(z)

b
) (53)

p(z̄|J = 1,x) =

[
∏

k

p(zkb)

∏
z Γ(1 + ĥkf (z))
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Dividing J = 0 andJ = 1 gives:

D(z̄|x̄) =
∑

z

log
(1/2 + α)1/2

2Γ(3/2)2(1 + α)

[
∏

k

βk(z)

]
exp(

√
2S′(z)

b
) (55)

lim
α→∞

D(z̄|x̄) = const.+

√
2

b

∑

z

√
S(z) (56)

which is the same as (21) plus a constant that has no effect on the optimization over̄x.

Appendix 2: Supermodularity of the histogram term

We will prove a slightly more general fact than stated in section 3: we will show that the global term is supermodular as
a function of segmentations inboth images. However, this only holds if we use a particular representation. Let us introduce
binary vector̃x2 which is related tox2 as follows:x̃2 = 1 − x2. We can express the global histogram term as a function of
x1, x̃2:
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whereak = 1/(2bck) is a positive constant and
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Let us prove thatf is supermodular. DefineSk(z) = {i|zki = z}, then
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It is easy to see that for eachz the corresponding term in the sum is supermodular. Indeed, let s1, . . . , sm be all variables
involved in the sum. The term can be written asg(

∑
j αjsj) wherej ranges from1 to m, αj ’s are positive constants andg is

a convex function. It is well-known that such weighted cardinality function is supermodular. Indeed, consider labelingss, s′,
and define

N1 =
∑

j αjsj Nmin =
∑

j αj(s ∧ s′)j

N2 =
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j αjs
′

j Nmax =
∑
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There holdsN1 + N2 = Nmin + Nmax andNmin ≤ N1, N2 ≤ Nmax. Therefore, from convexity ofg we get

g(N1) + g(N2) ≤ g(Nmin) + g(Nmax)

as desired.
It can be seen that the MRF termE1(x2) in section 3 expressed as a function ofx̃2 remains submodular. Thus, it is

possible to apply the submodular-supermodular procedure to the entire segmentation, rather than iterating between the first
and second images. We intend to test this in a future work.
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