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ABSTRACT

This paper describes models and algorithms for the real-
time segmentation of foreground from background layers in
stereo video sequences. Automatic separation of layers from
color/contrast or from stereo alone is known to be error-
prone. Here, color, contrast and stereo matching informa-
tion are fused to infer layers accurately and efficiently. The
first algorithm, Layered Dynamic Programming (LDP), solves
stereo in an extended 6-state space that represents both fore-
ground/background layers and occluded regions. The stereo-
match likelihood is then fused with a contrast-sensitive color
model that is learned on the fly, and stereo disparities are
obtained by dynamic programming. The second algorithm,
Layered Graph Cut (LGC), does not directly solve stereo.
Instead the stereo match likelihood is marginalized over dis-
parities to evaluate foreground and background hypotheses,
and then fused with a contrast-sensitive color model like the
one used in LDP. Segmentation is solved efficiently by ternary
graph cut.

Both algorithms are evaluated with respect to ground truth
data and found to have similar performance, substantially
better than either stereo or color/contrast alone. However,
their characteristics with respect to computational efficiency
are rather different. The algorithms are demonstrated in the
application of background substitution and shown to give good
quality composite video output.

I. INTRODUCTION

This paper addresses the problem of separating a foreground
layer, from stereo video, as in figure 1, in real time. The
assumption is that the visible scene can be expressed as two,
spatially coherent layers, one a “foreground” layer masking
the other “background” layer. A prime application is for
teleconferencing in which the use of a stereo webcam already
makes possible various transformations of the video stream, in-
cluding digital pan/zoom/tilt and object insertion [1]. Here we
concentrate on providing the infrastructure for live background
substitution. This demands foreground layer separation to near
Computer Graphics quality, including α-channel determination
as in video-matting [2], but with computational efficiency
sufficient to attain live streaming speed.

Layer extraction from images has long been an active area
of research [3], [4], [5], [6], [7]. The challenge addressed
here is to segment the foreground layer both accurately and
efficiently. Conventional stereo algorithms e.g. [8], [9] have
proven competent at computing depth. Stereo occlusion is a
further cue that needs to be accurately computed [10], [11],
[12], [13], [14] to achieve good layer extraction. However,

the strength of stereo cues degrades over low-texture regions
such as blank walls, sky or saturated image areas. Recently
interactive color/contrast-based segmentation techniques have
been demonstrated to be very effective [15], [16], even in
the absence of texture. Segmentation based on color/contrast
alone is nonetheless beyond the capability of fully automatic
methods. This suggests a robust approach that exploits fusion
of a variety of cues. Here we propose a model and algorithms
for fusion of stereo with color and contrast, and a prior for
intra-layer spatial coherence.

The efficiency requirements of live background substitution
have restricted us to algorithms that are known to be capable
of near frame-rate operation, specifically dynamic program-
ming and graph cut [15], [17]. Therefore two approaches to
segmentation are proposed here: Layered Dynamic Program-
ming (LDP) and Layered Graph Cut (LGC). Each works by
fusing likelihoods for stereo-matching, color and contrast to
achieve segmentation quality unattainable from either stereo or
color/contrast on their own (see figure 2). This claim is verified
by evaluation on stereo videos with respect to ground truth
(section VI). Finally, efficient post-processing for matting [18]
is applied to obtain good video quality as illustrated in stills
in this paper, and companion videos [1].

The paper is organized as follows. In sections II and III we
describe the common components of the probabilistic models
for LDP and LGC. In sections IV and V we describe LDP
and LGC algorithms, respectively. Experimental results and
conclusions are presented in sections VI and VII.

II. PROBABILISTIC MODELS FOR BI-LAYER
SEGMENTATION OF STEREO IMAGES

First we outline the probabilistic structure of the stereo and
color/contrast models.

A. Notation
Pixels in the rectified left and right images are indexed by

m and n respectively, so the images are denoted

L = {Lm, m = 1, . . . , N}, R = {Rn, n = 1, . . . , N}.

We refer jointly to the data as z = (L,R). In addition an array
x of state variables is defined, either in left-image coordinates
x = {xm}, or, in cyclopean coordinates, as x = {xk}, and
takes values xk ∈ {F, B, O} according to whether the pixel is
a foreground match, a background match or occluded. Stereo
disparity is defined to be d = m − n and the disparity values
along one epipolar line are expressed as d = {dk, k =
1, . . . , 2N − 1}. Note this means that

m =
(k + dk)

2
and n =

(k − dk)

2
, (1)
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input left view input right view automatic layer separation and background substitution

Fig. 1. An example of automatic foreground/background separation in binocular stereo sequences. The extracted foreground
sequence can be composited free of aliasing with different static or moving backgrounds; a useful tool in video-conferencing
applications. Stereo sequence AC used here. Note: the input synchronized stereo sequences used throughout this paper can be
downloaded from [1], together with hand-labeled segmentations.

a) b) c) d)

Fig. 2. Segmentation by fusing color, contrast and stereo. Results of three different segmentation algorithms run on two
different stereo-pairs (see [1] for more examples). a) data (left image); b) Segmentation based on stereo [13]; c) Segmentation
based on color/contrast [16]; d) The LGC algorithm proposed here fuses color, contrast and stereo to achieve a more accurate
segmentation. The foreground artefacts visible in b) and c) are corrected in d).

so that k, d forms an alternative cyclopean coordinate system
for the space of epipolar matches, which is well known to be
helpful for probabilistic modeling of stereo matching [11]. For
good reasons (see later) the two algorithms presented in this
paper are each based on different image coordinate systems,
one on cyclopean coordinates (k, d), the other on left image-
based coordinates (m, d).

This sets up the notation for a complete match of two images
as the combined vector (d,x) of disparities and states. Now a
posterior distribution over (d,x), conditioned on image data,
can be defined.

B. Generative model

A Gibbs energy E(z,d,x; θ) is defined to specify the
posterior over the inferred sequence (d,x), given the image
data z, as:

p(x,d | z) ∝ exp−E(z,d,x; θ). (2)

Here θ is a vector of parameters for the model, which
will need to be set according to their relation to physical
quantities in the stereo problem, and by learning from labeled
data. The posterior could be globally maximised to obtain a
segmentation x and also stereo disparities d. In this paper, the

aim is simply to compute a segmentation, in which case the
posterior should, in principle, be marginalised with respect
to d, and then maximised with respect to x to estimate a
segmentation

x̂ = arg max
x

∑

d

p(x,d | z). (3)

The model (2) can be regarded simply as a Conditional
Random Field (CRF) [19], without any generative explana-
tion/decomposition in terms of priors over (x,d) and data
likelihoods. However, simpler forms of the model do admit
a generative decomposition, and this is very helpful also in
motivating the structure of a fuller CRF model that is not so
naturally decomposed. One reasonable generative model has
a Gibbs energy with the following decomposition:

E(z,x,d; θ) = V (x,d; θ) + UM(z,x,d; θ) + UC(z | x; θ),
(4)

in which the role of each of the three terms is as follows.
Prior:: an MRF prior for (x,d) has an energy specified

as a sum of unary and pairwise potentials:

V (x,d; θ) =
∑

(k,k′)∈N

[F (xk, xk′ , ∆dk, ∆dk′ )]+
∑

k

Gk(xk , dk),

(5)
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where ∆d is the disparity gradient along epipolar lines, that
is

∆dk = dk − dk−1. (6)

Typically, F (. . .) discourages excessive disparity gradient
within matched regions. Pixel pairs (k, k′) ∈ N are the ones
that are deemed to be neighbouring in the pixel grid. The first
component F (. . .) of the prior Gibbs energy V in (5) should
incorporate an Ising component that favours coherence in the
segmentation variables xk , xk′ . It should also favour continuity
of disparity over matched regions, and do so anisotropically
— more strongly along epipolar lines than across them. The
Gk(. . .) term implements “disparity-pull”, the tendency of
foreground elements to have higher disparity than background
ones. The specific form of Gk(. . .) can be set by taking

Gk(xk, dk) = − log p(dk | xk), (7)

and determining the conditional density p(dk | xk) from the
observed statistics of some labelled data. Various models could
be used here, but in our experiments a simple, constant dis-
parity, separating surface is used, so that d > d0 characterises
foreground, with uniform distributions for p(dk | xk) over each
of the possible states x ∈ {F, B, O}.

Stereo likelihood: , represented by the UM term, evalu-
ates the stereo-match evidence in the data z, both to distinguish
occlusion (xk = O) from full visibility (xk ∈ {F, B}) and,
given visibility, to determine disparity dk.

Color likelihood: , represented by the UC term, uses
probability densities in colour space, one density for the
background and another for the foreground, to apply evidence
from pixel colour to the segmentation xk of each pixel.

C. Contrast dependence

One further elaboration, due to Boykov and Jolly [15], in-
corporates the evidence from image contrast for segmentation
— see also “line processes” [20], “weak constraints” [21] and
“anisotropic diffusion” [22]. It proves important in refining
segmentation quality, at the cost of obscuring somewhat the
clear generative distinction between prior and likelihood [23].
The Ising component F in (5) is made contrast dependent,
disabling the penalty for breaking coherence in x wherever
image contrast is high. Segmentation boundaries tend, as a
result, to align with contours of high contrast. The MRF model
(4) is extended in this way to a CRF

E(z,x,d; θ) = V (z,x,d; θ)+UM(z,x,d; θ)+UC(z | x; θ),
(8)

in which dependence on data z is now incorporated in to the
V (. . .) term.

D. Tractability of inference and learning

The stated inference problem (3) for segmentation, is in-
tractable with the Gibbs energy model (8) above. A related
problem,

x̂ = arg max
x

(

max
d

p(x,d | z)

)

, (9)

while not formally tractable, could be regarded as tractable
in practice because it can be solved approximately by the

α-expansion form of graph-cut [17], over the variables x,d
jointly (provided the energy function E is chosen to meet
the necessary regularity conditions). The approximation (9) to
the original problem is likely to be a good one, because the
posterior density is likely to be sharply peaked with respect to
d, since stereo constraints on disparity are typically strong.
However α-expansion over (x,d) jointly would be rather
inefficient, at least an order of magnitude below real-time,
for current architectures. This paper proposes two approaches
to simplifying the Gibbs energy model, to make inference of
segmentation x practically tractable and efficient.

LDP. In Layered Dynamic Programming, all ver-
tical cliques in V (5) are removed, resulting in a
posterior density consisting simply of a set of one-
dimensional Hidden Markov Models (HMMs), one
HMM along each epipolar line. For the disparity-
gradient dependence in V , this means retaining the
strong epipolar constraints, but omitting figural con-
tinuity constraints, which are weaker. For the seg-
mentation coherence encouraged by V , constraints
can be imposed only horizontally, and the vertical
constraint is lost. Nonetheless there is some implicit
transfer of information vertically via the overlap of
the patches used in the stereo match likelihood (see
section III-A and also [14]). In exchange for the
lost vertical constraint, the max-max (9) form of
the problem becomes exactly tractable by dynamic
programming. Not only that, but because the prior
energy V has become a Markov chain, the parameter
learning problem also becomes tractable.
LGC. In Layered Graph Cut, the prior term F (. . .)
in (5) is made independent of disparity d. Now the
posterior density can be marginalised exactly over d

in the original inference problem (3). Marginalization
gives the posterior density p(x | z) for segmentation
only, which can be maximised by ternary graph-cut,
using α-expansion. Parameter learning has not been
made tractable, but some guidance comes from priors
and likelihoods estimated for LDP, transplanted (and
simplified) to the LGC model.

In summary, we have two approximate models for the original
problem. One, LDP, has the advantage of practical tractability
not only for inference but also for parameter learning. It has
the disadvantage though that vertical constraints have been
neglected. On the other hand LGC retains vertical constraints
at least for segmentation, but neglects all direct constraints
on continuity of disparity. It has the advantage of solving
the original max-sum form of the inference problem, rather
than just the max-max approximation, but the disavantage that
parameter estimation remains intractable.

III. PROBABILISTIC MODELLING OF STEREO, COLOUR
AND CONTRAST

In this section we describe the likelihood functions for each
type of image cue, which are then combined in the model,
giving the effect of cue fusion in inference.
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A. Likelihood for stereo

The stereo-matching energy UM(z,x,d; θ) from (8) is
modelled as a sum over pixels

UM(z,x,d) =
∑

k

UM
k (z, xk , dk) (10)

where each UM
k is the cost associated with the stereo match at

pixel k. Commonly [24] stereo matches are scored using SSD
(sum-squared difference), that is the L2-norm of difference
between image patches LP

m, RP
n , surrounding hypothetically

matched pixels m, n. Following [13] we model UM
k in terms

of SSD but with additive and multiplicative normalization
for robustness to non-Lambertian effects and photometric
calibration error. This is termed NSSD — normalized SSD:

UM
k (z, xk , dk) =

{

M(LP
m, RP

n) if xk ∈ {F, B}
0 if xk = O,

(11)

where M = λ(N − N0) with λ, N0 being constants, and
m, n = (k ± dk)/2 the left and right image indices, as before
(1). The NSSD N is:

N(LP, RP) =
1

2

‖(LP − LP) − (RP − RP)‖2

‖LP − LP‖2 + ‖RP − RP‖2
∈ [0, 1],

(12)
in which RP denotes the mean value over the patch RP. The
constant N0 can be thought of as a penalty for failure to match.
Further details of modelling and parameter estimation for the
stereo likelihood are given in appendix A., and this leads to
statistical estimators for the constants λ and N0.

B. Likelihood for color
Following previous approaches to two-layer segmentation

[15], [16] we model likelihoods for color in foreground and
background using Gaussian mixtures in RGB color space,
learned from image frames, labeled (automatically), from
earlier in the sequence. The foreground color model pF(z)
is simply a spatially global Gaussian mixture learned from
foreground pixels, and similarly for the background model
pB(z). The combined color model is then given by an energy
UC

k :

UC
k (zk, xk) = (13)

{

− log pF(zk) if xk = F
− log pB(zk) if xk = B or x = O

Learning of the global foreground and background color
models pF and pB proceeds as follows. Each is a mixture
of NC = 20 full covariance Gaussian components in RGB
color-space, and is learned, at each video timestep, using 10
iterations of EM [25], initialized from the mixture in the
previous frame. The data is taken from the previous timestep,
labeled as foreground/background from the output of the
segmentation process. In the case of LGC, the algorithm will
be defined with respect to one (the left) image only, so color
models are built from that one image. In the case of the LDP
algorithm, models are maintained independently for each of
the left and right images. The total energy for color is taken
as:

UC(z,x; θ) = ρ
∑

k

UC
k (zk, xk) (14)

where the color discount constant ρ (typical value ρ = 1/2)
is included to tune the balance of influence between the
stereo model and the color model. In principle, the generative
derivation of the energies should have balanced them already.
In practice, the pixelwise independence assumptions built in
to the color model render the influence of color excessively
strong, and choosing a value ρ < 1 discounts for that. Color
models are initialized at time t = 0, by setting ρ = 0,
estimating segmentation without using color, and using the
labelled segments to learn the foreground and background
color models for t = 0. Note that for working in the cyclopean
frame, separate foreground and background color models are
maintained for each of the left and right images.

C. Contrast dependence

To implement the contrast dependence described above, a
soft switch for the Ising penalty is defined, replacing F (. . .)
in (5) by

F (xk, xk′ , ∆dk, ∆dk′ , V ∗
k,k′ ), (15)

where V ∗
k,k′ is the soft contrast switch applying across sites

k, k′:

V ∗
k,k′ =

1

1 + ε

(

ε + exp−
‖gk − gk′‖2

2σ2dk,k′

2

)

. (16)

Here g is the image-data, Gaussian smoothed at a scale
of 0.7 pixels and with components gk at each pixel; dk,k′

is the Euclidean distance between pixels k, k′ and σ2 =
〈

‖gk − gk′‖2/dk,k′

2
〉

, a mean contrast over all neighboring
pairs of image pixels. The factor V ∗

k,k′ acts as a soft contrast
switch, and is typically allowed to multiply certain of the costs
in F (. . .), so that built-in tendencies to coherence are abated in
the presence of high contrast. Details are given in the next two
sections. [The constant ε is a “dilution” constant for contrast,
empirically found to be best set to ε = 1.]

To summarise, the final CRF model is as in (8), with

V (z,x,d; θ) = (17)
∑

(k,k′)∈N

F (xk, xk′ , ∆dk, ∆dk′ , V ∗
k,k′ ) +

∑

k

Gk(xk , dk),

incorporating the contrast sensitivity, via V ∗, as required.

D. Choice of image coordinate frame

Finally, we promised at the start to comment on the choice
of coordinate frame, cyclopean for LDP and left for LGC. The
reason is that cyclopean is intrinsically preferable, not only for
reasons of symmetry and elegance, but also because occlusions
occur on both sides of a foreground object (not just one
side, as with left image coordinates), and this gives additional
constraint for segmenting the foreground. In LGC however,
the cyclopean image is not accessible because marginalisation
hides the disparities. Thus image contrast, for the contrast-
sensitivity term, has to be computed from a physical image,
eg the left.
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Fig. 3. Stereo match-space. Notation conventions for left and
right epipolar lines with pixel coordinates m, n, cyclopean
coordinates k and stereo disparity d = m − n. Hypothetical
matching path shown dashed (cf. [11], [9]).

IV. LAYERED DYNAMIC PROGRAMMING (LDP)

The model used in LDP, as mentioned earlier, is the general
stereo CRF model (8) with energy E(z,x,d; θ) from section
II, but with all vertical constraints removed. All optimiza-
tion therefore takes place independently, within individual
scanlines. In this one-dimensional situation, the Gibbs energy
specification is equivalent to specifying a Hidden Markov
Model (HMM) on (x,d) along each scanline. As usual for
an HMM, the prior energy V (here also switched softly by
contrast) is expressed as a Markov chain over xk, dk given
xk−1, dk−1. Observation likelihoods, UM for stereo and UC

for colour, are expressed as emission costs, as is standard for
an HMM. In this section we first set out the notation for the
HMM on a scanline, and then give details of how the various
energies are represented in the model, all finally summarised
in a state-transition diagram for the HMM.

A. Optimal matching path along a scanline

Left pixels Lm and right pixels Rn, on a given scanline of
length NS pixels, are ordered by any particular matching path
(figure 3), giving 2N cyclopean pixels

z = {zk, k = 1, . . . , 2NS},

where k = m + n. The k-axis is the so-called cyclopean1

coordinate axis. Conventionally in DP stereo matching the
“ordering constraint” [26], [8] is imposed, and this means that
each move in figure 3 is allowed only in the positive (North-
to-East) quadrant of the diagram. Stereo disparity along the
cyclopean epipolar line is d = {dk, k = 1, . . . , 2NS − 1}
where dk = m − n.

Stepwise restriction for LDP: Previous matching algo-
rithms, e.g. [9], [27], have allowed multiple and/or diago-
nal moves on the stereo matching paths (fig 3). Here the
problem differs significantly. In [9], [27] diagonal moves are

1cyclopean here means mid-way between left and right input cameras.

always matched, and horizontal/vertical ones are unmatched.
However the nature of the stereo matching problem demands
that horizontal/vertical moves should come both in matched
and unmatched forms. (Matched horizontal/vertical moves are
needed to represent the deviation of a visible surface from
fronto-parallel). This raises a consistency requirement between
matched move types: a path consisting of a sequence of
diagonal moves is exactly equivalent to a corresponding path
in which horizontal and vertical moves alternate strictly. The
probabilities of the two paths should therefore be identical.
This is most easily achieved simply by outlawing explicit,
diagonal matched moves, forcing them to be expressed instead
as a horizontal/vertical pair. This restriction, illustrated in
figure 3, ensures a consistent probabilistic interpretation of
the sequence matching problem. Furthermore, the stepwise
restriction has the added virtue that each element Lm and Rn

is “explained” once and only once. This is because a horizontal
step in figure 3 visits a new Lm, which is thereby “explained”
but stays with the old Rn. Conversely, a vertical step visits a
new Rn. Thus each Lm and each Rn appears once and only
once as a zk in a p(zk | . . .) term, in the joint likelihood
∏

k p(zk | xk, dk, z1, . . . , zk−1) for the scanline. This makes
for a consistent definition of the likelihood.

B. LDP: stereo with occlusion and layers

The three possible states xk ∈ {F, B, O} are doubled up,
for convenience, to reflect the existence of left and right
variants, respectively the horizontal and vertical moves in
figure 3. This gives a total of 6 possible states: xk ∈ {L-
match-F, R-match-F, L-match-B, R-match-B, L-occ, R-occ}.
The HMM for the Gibbs model is then reflected in the state-
space diagram of figure 4, which represents Markov chain
transitions k−1 → k, in terms of costs (ie energy increments)
on arcs, and these capture the contrast-modified prior energy
V . Observation likelihood energies are represented by the costs
UM

k and UC
k on nodes. [Note that left-occluding and right-

occluding states cannot directly intercommunicate, reflecting
constraints of stereo geometry.]

Prior and contrast: Transition energies between occluding
and foreground states represent the component F (. . .) of the
prior energy V (17), and incorporate the soft contrast switch
V ∗ defined earlier (16). (In this cyclopean setting, V ∗ must
be computed from contrast in the left or the right image,
according to whether the state is left-foreground or right-
foreground.)

The model has a number of parameters
{aF , aB , aO , bF , bB , bO, cF , cB}. It might seem problematic
that so many parameters need to be set, but in fact they can
be learned from labeled training frames as follows:

bO = log(2WO) bF = log(WF) bB = log(WB) (18)

where WO, WF and WB are the mean widths of occluded,
foreground and background regions respectively. This follows
simply from the fact that 2 exp−b0 is the probability of escape
from an occluded state, and so on. Then consideration of
viewing geometry together with an assumption about typical
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Fig. 4. State space for foreground/background segmentation. The segmentation state space xk ∈ {F, B, O} is doubled to
take account of left and right variants; hence matched and occluded states together form a 6-state system. Note that from the
foreground states (yellow circles), only the right occluding state is accessible, and from background (blue circles) only the
left occluding state; this reflects a simplification of the model to exclude the possibility of foreground/foreground occlusion.
Match costs incorporate disparity-pull and contrast effects — see text for details.

slopes of visible surfaces (see appendix B. for details) indicates
that:

aF = log(1 + D/B) − log(1 − 1/WF), (19)

where D is a nominal distance to objects in the scene and B
is the interocular distance (camera baseline), and similarly for
aB. Lastly, probabilistic normalization demands that

aO = − log(1 − 2e−bO), (20)

and that
cF = − log(1 − e−bF − e−aF) (21)

and similarly for cB, and so all the parameters are fixed.
Disparity-pull: The disparity-pull term Gk(. . .) in the

prior (17) is implemented in the transition-diagram as a cost
applied at each node, as shown.

Stereo and color fusion: Likelihood costs for stereo and
for color are UM

k and UC
k , as described earlier in section III.

They appear as nodal costs on the state transition diagram.
The 6-state HMM can be optimized straightforwardly by

dynamic programming and this gives a solution to the alterna-
tive “max-max” estimation problem (9) described at the end
of section II. Results are given later in section VI.

V. LAYERED GRAPH CUT (LGC)

Layered Graph Cut (LGC) determines segmentation x as
the minimum of an energy function E(z,x; θ), in which
stereo disparity d does not appear explicitly. The energy
function is defined from the CRF (8) for the full stereo
problem in section II, by marginalizing over disparity, to give a
posterior distribution p(x | z). Segmentation becomes a ternary
optimization problem, over the three labels O, F, B on the x-
values at each pixel, which can be solved (approximately) by
iterative application of a binary graph-cut algorithm — so-
called α-expansion [17].

As explained earlier, LGC is expressed in the coordinate
frame of one (e.g. left) image, rather than in the cyclopean
frame as in LDP. Hence image related variables such as xm

carry the left image index m, rather than the cyclopean k used
earlier.

A. Marginalized energy

In order for the marginalization to be tractable, the energy V
(17) is simplified by neglecting explicit disparity dependence
in F (. . .), that is, assuming that:

F (xm, xm′ , ∆dm, ∆dm′ , V ∗
m,m′) = F (xm, xm′ , V ∗

m,m′).
(22)

Now the marginalized posterior is defined by its energy

E(z,x; θ) = V (z,x; θ) + H(z,x, θ) + UC(z,x; θ), (23)

where

V (z,x; θ) =
∑

(m,m′)∈N

F (xm, xm′ , V ∗
m,m′) (24)

is derived from a simplified prior, with added soft contrast
switching as earlier (15). The color likelihood UC is un-
changed from the earlier discussion, except now referred
entirely to the left image. Finally, the new term H in (23)
is a sum over pixels:

H(z,x) =
∑

m

Hm(xm) (25)

where Hm is defined by marginalization over disparity to be:

Hm(xm) = (26)

− log

[

∑

dm

exp−
{

Gm(xm, dm) + UM
m (z, xm, dm)

}

]

.

Note that, from (7) and (11), this definition has the property
that Hm is normalised such that Hm(O) = 0.
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B. Coherence and contrast

The coherence/contrast costs (24) for the LGC model are
defined to be

F (xm, xm′ , V ∗
m,m′) = Fm,m′V ∗

m,m′ (27)

where again V ∗
m,m′ is the soft contrast switch. Anisotropic

coherence costs Fm,m′ are defined as follows. Cliques consist
of horizontal, vertical and diagonal neighbors on the square
grid of pixels. For vertical and diagonal cliques Fm,m′ acts as a
switch triggered by transitions in or out of the foreground state:
Fm,m′ [x, x′] = γ if exactly one variable x, x′ equals F, and
Fm,m′ [x, x′] = 0 otherwise. Horizontal cliques, along epipolar
lines, inherit the same cost structure, except that certain
transitions are disallowed on geometric (epipolar) grounds.
These constraints are imposed via infinite cost penalties:

Fm,m′ [x = F, x′ = O] = ∞; Fm,m′ [x = O, x′ = B] = ∞.

The constant γ is broadly related to bF and bO in the LDP
model, so a reasonable working value for γ is

γ =
1

2
(bF + bO) = log(2

√

WFWO), (28)

where width parameters WF and WO were defined earlier (18).

C. Expansion move algorithm

Currently, graph cut based stereo algorithms techniques
such as [15], [12] are not suited for real-time implementation.
The main reason is that they perform O(dmax) α-expansion
operations (binary graph cuts), where dmax is the number of
possible disparities. Having marginalized over disparities, we
are left with just three labels which is a substantial saving. In
addition, the ternary expansion move algorithm can be imple-
mented practically at a cost of a single graph computation by
taking advantage of the structure of our problem.

First, we have observed that results after one iteration of
the expansion move algorithm are very close to the results
achieved at convergence. This is not surprising considering that
the number of labels is small. Therefore, only one iteration,
involving two graph cut computations, is needed. We initialize
the segmentation with xm = B for all pixels and then run F-
expansion and O-expansion (see figure 5). Second, in the O-
expansion operation it suffices to add nodes only for a small
fraction of all pixels. Indeed, due to the geometric constraints
O-expansion cannot change pixels in scanlines that do not
contain B-F type transitions. Furthermore, it happens that the
segmentation boundary found after F-expansion normally lies
in the real occluded region located to the left of foreground
object. Therefore, it is reasonable to perform O-expansion
operation only for pixels within distance dmax from B-F
transitions (figure 5b).

Results of segmentation using LGC and LDP are given in
the next section.

VI. RESULTS

Performance of the LGC and LDP algorithms was evaluated
with respect to ground-truth segmentations on every fifth or

tenth frame (left view), in each of six test stereo sequences2.
The data was labeled manually, labelling each pixel as back-
ground, foreground or unknown. The unknown label was
used to mark mixed pixels occurring along layer boundaries.
Error is then measured as percentage of misclassified pixels,
ignoring “unknown” pixels.

Prior parameters for LDP: Prior parameters for LDP
are set as in section IV, equations (18) and (19), with the same
values for foreground and background parameters, i.e. aF and
aB etc. Region widths in equations (19) and (18) are set to
WO = 10 pixels and WF = WB = 100 pixels, and typical
values for object distance and baseline are D = 1000 mm and
B = 50 mm.

A. Determination of LGC parameters and their sensitivity

Experiments are shown here on The first set of experiments,
with the LGC algorithm, are shown in figure 6. Parameters N0,
γ, ρ and ε are varied, one at a time, around their default values
N0 = 0.35, γ = 2, ρ = 0.5 and ε = 1. Results are summarized
for each parameter in turn.

Likelihood offset parameter N0, introduced in
section III-A, gives low error rates over a range
0.25 ≤ N0 ≤ 0.35. Note that N0 = 0.25 is the value
obtained generatively, i.e. from likelihood fitting in
section III-A. The value N0 = 0.35 is very slightly
superior discriminatively — i.e. it gives lower error
rate in figure 6.
Coherence constant γ for LGC, defined in section
V, gives low error rates for 2 ≤ γ ≤ 4. Notably
this is far smaller than the optimal value γ ≈ 25 for
segmentation using color/contrast only [16]. Presum-
ably the presence of the additional cue from stereo
to some extent takes over the role of coherence.
The default value, from equation (28) in section V,
and taking WO = 10 pixels and WM = 100 pixels
as before, gives γ = 3.8 which is satisfactorily
consistent with the experimental results.
Color discount constant ρ, defined in section III-
B equation (14), gives best error rates around ρ =
0.5. Without a discount (ρ = 1) error rates are
appreciably higher, and this confirms the need for
a discount to modify the generative assumption of
independence of color at neighboring pixels.
Contrast parameter ε, defined in section III-C,
equation (16) to impose figural continuity, has a
mild effect on error rate performance. Our default
ε = 1 performs a little better than either removing
the contrast term altogether (ε = ∞), or setting it at
full strength (ε = 0) as done in GrabCut [16].

In all four cases, error rate performance is seen to be quite
robust as parameters vary around their default values.

Pixelwise background model: We further experimented with
an extension to the background model of section III-B, mixing
in a probability density learned, for each pixel, by pixelwise
background maintenance [28], [29], [30]. The learned pix-
elwise densities pB

k (zk) are typically strongly peaked, and

2Ground truth segmentation data is publicly available [1].
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a) F-expansion b) O-expansion region c) O-expansion

Fig. 5. One iteration of the expansion move algorithm in LGC. Configuration is initialized with xm = B for all pixels,
then subjected to F-expansion to give (a). (b) O-expansion is restricted to a region close to B-F transitions, shown shaded, to
give the final result (c), in which the O-label is shown in green. (Results for sequence AC at frame 0.)
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Fig. 6. Effect of values of LGC parameters N0, γ, ρ and ε on segmentation error rate, for each of 6 test-data sets — see
text for detailed discussion. The default value of each parameter is indicated by an arrow on the abscissa axis.

hence very informative, but sensitive to movement in the
background. That sensitivity is robustified by adding in the
general background distribution pB(zk) as the contamination
component in the mixture. However, rather surprisingly, ex-
periments showed negligible improvement from the extended
background model, presumably because of the strength of the
other cues. A density equally weighted between pB

k (zk) and

pB(zk) decreased error rates by just 0.03–0.3% across the 6
data sets tested (see section VI), compared with using pB(zk)
alone. Note however that using the pixelwise pB

k (zk) alone,
without any pB(zk) component, increased error rates by a
disastrous 0.5− 8.1%. That is in addition to the disadvantage
that pixelwise background models are sensitive to camera
shake.
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Fig. 7. Segmentation performance advantage from fusion. Segmentation error (percentage of misclassified pixels) is computed
on all six sequences, frame by frame, for LDP, LGC, color only and stereo only. Error bars are also shown, on the right of each
plot, for temporal mean and standard error. Note that fused stereo and color/contrast (LGC and LDP) perform substantially
better than either stereo or color/contrast alone.

B. Error rate reduction due to fusion of stereo/color/contrast

Segmentation performance for the various stereo test-
sequences, including the AC sequence of figure 1 and five
others, is compared for color/contrast, for stereo alone, and
for color/contrast with stereo fused together (figure 7). The

color/contrast algorithm here is simply LGC in which the
stereo component is switched off. The stereo-only algorithm
is 4-state DP [13]. Fusion of color/contrast and stereo by
the LGC and LDP algorithms both show similarly enhanced
performance compared with color/contrast or stereo alone.
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LDP LGC

Fig. 8. Extracted foreground layer (top) for the left view of sequence AC, frame 100, for LGC and LDP. Segmentation error
maps (bottom).

subject VK frame 60 subject IU-JW frame 30

Fig. 9. LGC Segmentation error illustrations. We show here two results corresponding to high error rates in the test data of
figure 7. Segmented foreground is shown against a grey background.

The six test sequences include one with two subjects in the
foreground (IU-JW) and another with people moving in the
background (IU). Even in those difficult cases, the power
of fusing color/contrast and stereo is immediately apparent.
In fact, the error rates shown for color/contrast alone are
even optimistic, in that color maps are trained from ground
truth segmentations whereas practically they would have to be
trained adaptively from the imperfect segmentations obtained
online. Note that while LDP and LGC conclusively achieve
better performance than either color/contrast or stereo alone,
neither of LDP or LGC performs conclusively better than the
other. An example of a segmented image from the AC sequence
is shown in figure 8 together with the spatial distribution
of segmentation errors: the errors tend to cluster closely
around object boundaries. Finally figure 9 shows two results
corresponding to high error rates in the test data of figure
7. The first (VK) aparently arises where the subjects hand

saturates the intensity range of one of the cameras, disturbing
the stereo matching. The second (IU-JW), more interesting,
shows slightly over-aggressive action of the coherence con-
straint momentarily gluing two subjects together.

Background substitution in sequences.: Finally, figs. 10-12
demonstrate the application of segmentation to background
replacement in video sequences (further results are available
at [1]). Background substitution in sequences is challenging as
the human eye is very sensitive to flicker artefacts. Following
practice in foreground/background segmentation, α-matting
has been computed by border matting [16] as a (real time)
post-process, though patch based priors can alternatively be
used [31], [18]. The LGC algorithm gives good results, with
blended boundaries and little visible flicker [1, Background
substitution demo]; LDP gives subjectively similar results.
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LGC, frame 0 LGC, frame 100

Fig. 10. Segmentation and background substitution. Here we show background substitution (using LGC) for two frames of
the sequence AC.

Fig. 11. Segmentation with non-stationary background. (Top) Four frames of the input left sequence IU (right frame
not shown here). (Bottom) Corresponding LGC segmentation and background substitution. LDP performs similarly. Note the
robustness of the segmentation to motion in the original background.

Fig. 12. Non-stationary background with more complex foreground. A final example of segmentation and background
substitution (test sequence S3). (Top) Input left images. A third person is moving in the original background. (Bottom) LGC
background-substitution.
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VII. CONCLUSION

This paper has addressed the important problem of seg-
menting stereo sequences. Disparity-based segmentation and
color/contrast-based segmentation alone are prone to failure.
We have demonstrated properties of the LDP and LGC algo-
rithms and underlying models, as follows.

• LDP and LGC are algorithms capable of fusing the two
kinds of information, together with a coherence prior,
with a substantial consequent improvement in segmen-
tation accuracy.

• Fusion of stereo with color and contrast can be captured
in a probabilistic model, in which parameters can mostly
be learned, or are otherwise stable.

• Fusion of stereo with color and contrast makes for more
powerful segmentation than for stereo or color/contrast
alone.

• Good quality segmentation of temporal sequences
(stereo) can be achieved, without imposing any explicit
temporal consistency between neighboring frames. The
subjective effect of temporal artefacts is visible but not
too obtrusive — see results movies [1]. Temporal artefacts
in stereo can be alleviated by explicit temporal modeling
and inference [33], but currently this is too expensive
computationally for a real time system.

Tradeoff between LDP and LGC: Given that the segmen-
tation accuracies of LDP and LGC are comparable, what
is to choose between them? In fact the choice may de-
pend on architecture: the stereo component of LGC can be
done, in principle, on a graphics co-processor, including the
marginalization over disparities. In LDP however, although
stereo-match scores could be computed with the graphics
coprocessor, communicating the entire cost array UM

k (xk , dk)
to the general processor is beyond the bandwidth limitations
of current GPU designs. On the other hand LDP is economical
in memory usage, in that it can proceed scanline by scanline.

There are some other important differences between the
algorithms. First, the LDP algorithm produces the entire
stereo disparity map as a by-product of segmentation, whereas
LGC delivers the segmentation alone. This favors LDP in
applications such as cyclopean view generation, for which
the full disparity map is needed in addition to the occlu-
sion map. Quality of the disparity map computed by LDP,
within segmented regions, is as for 4-state DP [13]. Another
interesting difference is that whereas the figural continuity
constraint, captured by the contrast term of section III-C,
makes only a marginal difference to LGC performance (figure
6), it profoundly improves the performance of LDP (details
of experiments omitted). This may be because Dynamic Pro-
gramming deals independently with each epipolar line, and the
figural continuity constraint of [15] overcomes that limitation
by providing an indirect but effective linkage between nearby
epipolar lines.

Computation times: Both the LDP and the LGC algorithms
are capable of real time operation — in both cases, around
10 fps at 320 × 240 resolution, with 60 disparity levels on
a conventional (3 GHz) processor. For LDP, execution times
scale linearly with image area and with number of disparity

levels. LGC consists of NSSD evaluation and graph cut,
each of which take roughly equal time with the parameters
above. [Ternary graph cut has been applied, in our laboratory,
at around 1.5 M-pixels/second on a 3GHz Pentium desktop
machine.] The NSSD evaluation then scales linearly with
image area, and number of disparity levels. Graph cut scales
approximately linearly with image area, but is, of course,
independent of the number of disparity levels.

A still faster algorithm?: Relative to the full segmentation
model (8), we saw that one set of simplifications leads to the
LDP model, and another leads to the LGC model. It is reason-
able to ask the question, what sort of performance would result
in making both sets of simplifications at once? The resulting
algorithm would require only ternary computation (like LGC)
and be restricted to scan lines (like LDP). Estimation would
simply require DP on a 3-state Markov chain, potentially very
efficient. Experiments with this model gives results which, in
all but one case (AC), show a clear improvement over colour
segmentation alone, for the 6 datasets of figure 7. Typically
error rates are reduced by around a factor of 2. Clearly, stereo
under this reduced model has an effect in improving accuracy.
However, the error rates are between approximately 2 and
5 times greater than for LGC, so a considerable degree of
accuracy is sacrificed in the extra simplification of the model.
Thus the relative computational expense of the LGC and LDP
models brings clear benefits.

Future work: Future work will address several outstanding
issues. One is the solution of the full problem (8), without any
simplifying neglect of disparity constraints or any restriction to
epipolar lines. Possible approaches are being considered both
to the max-sum problem (3) and the max-max variant (9).
Another important issue is the imposition of a restriction of
match-cost computation to a limited range or “Panum-band”.
If this can be achieved without too great a loss of quality
there is a considerable potential gain in efficiency, and ongoing
experiments are producing promising looking results.
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APPENDIX

A. DETAILS OF STEREO LIKELIHOOD MODELLING

In section III-A the likelihood for evaluation of stereo
matches was defined, but there remained the issue of using the
statistics of labelled, matched data sets to justify the detailed
model, and fix the values of parameters λ and N0. We start
from the matching cost UM

k defined in (11), in terms of the
NSSD N . As a refinement, we further allow for subpixel offset
by parabolic interpolation, along epipolar lines, of the NSSD
values

N(LP
m, RP

n−1), N(LP
m, RP

n), N(LP
m, RP

n+1)

at successive pixels, and take the minimum value of the
parabola to replace the value of N(LP

m, RP
n). This subpixel

refinement was found to improve error rates mildly, and was
similar in effect to alternative interpolation schemes [34], [35].

This stereo likelihood model, based on NSSD with subpixel
interpolation, has been tested against the Middlebury data-
sets [36] and found to be reasonable — examples of results
are given in figure 13a). Importantly, linear regression analysis
on UM as a function of N yields −λ as the slope and N0

as the intercept, from (10). This gives useful working values
for λ, which turns out to be quite consistent, across data
sets, at around λ = 10. 3 For the parameter N0, the data
analysis yields a value of approximately 0.3, compared with
the discriminatively optimal value N0 = 0.35 from section VI.

As it has been more conventional [24] in stereo to use
SSD as a match-cost rather than NSSD, results are included
also for UM modeled as a function of SSD, in figure 13b).
Two issues arise from this. The first is that an effect of
normalization is that the UM-characteristic is more consistent
across data sets for NSSD than for SSD. Hence it is reasonable
to fix the parameters used to model the log-likelihood-ratio
in the NSSD case, whereas for SSD, the parameters would
need to be allowed to adapt — an added system complexity.
The second is that the linearity apparent for NSSD is absent
for SSD. Therefore the statistical evidence does not support
the conventional modeling of match-cost as linear in SSD.
Given a non-linear likelihood based on SSD, we have found
DP stereo to perform at comparable error rates to NSSD, or
slightly worse. On balance the linearity and consistency of the
likelihood for NSSD are reasons why we prefer to assume
NSSD as the sufficient statistic for discriminating matches
from mismatches.

B. VIEWING GEOMETRY AND ITS INFLUENCE ON
TRANSITION ENERGIES

This brief section explains the formula (19) for the LDP
energy coefficient aF, and its claimed dependence on viewing
geometry.

3From monochrome components of the 8 images in the Middlebury set, we
obtain λ = 10.5±1.5 for 5×5 patches as used in LGC, and λ = 10.1±1.4

for 3 × 7 patches as used in LDP.
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Fig. 13. Likelihood model: the empirical negative-log-likelihood ratio UM is shown for stereo matches, plotted here (a) as a
function of the NSSD measure N(LP, RP), using the ground truth stereo data from three of the Middlebury data sets [36]
(“cones”, “teddy”, and “sawtooth”). Note the linearity in the region of UM = 0, where the matched/unmatched hypothesis
switches, and hence discrimination is most critical. The more commonly used SSD measure is also analysed (b) but gives a
non-linear UM, which is also less consistent across datasets.

Assume an average slope magnitude of 1, for a visible
surface, in 3D viewer-centred coordinates. In cyclopean match
space coordinates d, k, this slope scales to a slope of B/D
where B is the stereo baseline and D is the nominal distance
from object to viewer. From figure 4, this implies:

exp−aF

exp−cF
=

B

D
, (29)

the ratio of probabilities for following an R-match foreground
transition with another of the same, vs. switching to an L-
match transition. This is simply because a strictly alternating
sequence of L-match and R-match corresponds to a constant
disparity trajectory, a 45o line in match space (figure 3),
and hence a line of gradient 0 in cyclopean coordinates.
Allowing one repeated step, out of M otherwise alternating
steps generates, by straightforward trigonometry, a line in
match-space of gradient 1/M , in cyclopean d, k coordinates.
Now set M = D/B to arrive at (29).

Finally, combining (29) with (21) and bF = log WF (18),
gives the result (19).


