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rithm. Howeverparametricmaxflow algorithms remained

The maximum flow algorithm for minimizing energy unnoticed in vision, despite the fact that the parametric
functions of binary variables has become a standard tool in Problems occur very frequently (see sectiofy. In this pa-
computer vision. In many cases, unary costs of the energyP€r We review algorithmic aspects of solving problem (

depend linearly on parametex. In this paper we study vi-

sion applications for which it is important to solve the max-

flow problem for differenf\’'s. An example is a weighting

in particular the following facts: (i) there is a finite nuntbe
of breakpoints of parameter and corresponding optimal
solutions; (ii) all these solutions can be found in finitedim

between data and regularization terms in image segmenta-Using the ES method.f, 17], which makes at most 2 calls

tion or stereo: it is desirable to vary it both during trairgn

(to learn A from ground truth data) and testing (to select

best\ using high-knowledge constraints, e.g. user input).
We review algorithmic aspects of thpsrametric maxi-

mum flow problem previously unknown in vision, such as

the ability to compute all breakpoints afand correspond-
ing optimal configurations in finite time.
These results allow, in particular, to minimize the ratio

to the maxflow algorithm per breakpoint (on average); (iii)
the parametric algorithm can be implemented much more
efficiently in themonotoniccase when coefficients, are
either all non-negative or all non-positive4, 32, 15] *.

To the best of our knowledge, these results have not
been used in vision. Thus, one of our contributions is
to show the relevance of efficient algorithms for solving
the parametric maxflow problent)( for vision applica-

of some geometric functionals, such as flux of a vector fieldtions: Note, however, that a similar algorithm has been

over length (or area). Previously, such functionals were

used for image restoration using total variation minimiza-

tackled with shortest path techniques applicable only in 2D tion [18, 37, 11, 8].

We give theoretical improvements for “PDE cuts3][

1.1. Parametric maxflow problem(*) in vision

We present experimental results for image segmentation, 3D  Many vision problems, e.g. binary image segmentation

reconstruction, and the cosegmentation problem.
1. Introduction

This paper focuses on the following problem:

[Parametric maxflow] Minimize energy functions of b
nary variablesE* (x) for values of parametek in the
set/ C R where

Z(au—i-bu/\)a?u—i- Z Vo (T, o) (%)

uey (u,v)€E
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HereG = (V,€) is an undirected graph,, € {0,1} is the
label of nodeu. TermsV,, are assumed to be submodular,
i.€. Viu(0,0) + Vi (1,1) < Vi (0,1) 4 Vi (1,0). Set]
may be given in advance as some intefp&® \max] or
it can be provided online (i.e. the next valueXak selected
after the problem is solved for previons).

It is well known in computer vision that for a fixed value
A energy {) can be minimized via a min cut/max flow algo-

and stereo, can be formulated in the MAP-MRF frame-
work: the goal is to minimize an energy function which
is a weighted sum of the data term and the regularization
term. This naturally leads to the parametric maxflow prob-
lem, where) represents the weighting factor between the
two terms. Choosing the correct value ofs a very chal-
lenging task. One standard approach taken e.g2]irfiof
image segmentation is cross-validation: le&miscrimina-
tively on a dataset with ground truth segmentations. This
requires solving the parametric maxflow problem, so the
learning task will benefit from the algorithms reviewed in
this papet.

While such learning may provide a reasonable value of

INote that the algorithm ini[5] for the monotonic case is called “para-
metric maximum flow”, which clashes with the name of problem Ve
use the term “parametric maxflow” for the general problémn (

2Note that this is a very simple form of learning. A large numbg
more advanced statistical techniques were developed ilit¢ngture, e.g.
pseudo-likelihood and contrastive divergence. More ganlearning is
outside the scope of this paper; we refer2g][for more details.



A, itis generally acknowledged that a fixed value\xafan- form a gradient descent in the space of contours for certain
not work well for all images. (An example is shown in sec- geometric functionals and metrics. In other words, they can
tion 4.) This motivates solving the parametric problem dur- compute the motion of contour/surface under gradient flow,
ing testing. An additional high-knowledge criterion would thus providing an alternative numerical scheme to level set
then be needed to choose the desixehd corresponding  The method in$] uses non-monotonic parametric maxflow
segmentation. In some domains automatic criteria can befor computing each step. ParameXerontrols the time step.
designed by studying the probletd. In the lack of auto-  The largest breakpoint value afcorresponds to the small-

matic criteria, one can always resort to user selection. est detectable move. (Experiments #} yvere performed
Similar issues arise wheflux of some vector field is  using such smallest move).
combined with regularization for image segmentatiog, [ Thus, the method ir5] would benefit from the paramet-

34,21, 23] or 3D reconstructiond]. (By the divergencethe-  ric maxflow algorithm. We show that the smallest move can
orem, flux can be written as a sum of unary terms, thereforebe computed via aonotonicparametric algorithm (see a
it is a special case of the parametric maxflow problem.) proofin [24]), which in general is significantly faster.

Ratio optimization Several authorsl, 19, 36, 16] pro- 2. Solving parametric maxflow
posed to optimize the ratio of certain functionals for im- Consider functionF’(\) = miny EA(x). It is the min-

age segmentation. The “ratio region” methdd)][ mini- . VI . . : .
. : . : imum of 2'V! linear functions, thereforé’ is a piecewise-
mizes Riemannian length of the boundary over weighted . . . L
linear concave function of with a finite number of break-

area, while L9 maximizes flux of some vector field over oints (Fig.1). Configurations which are optimal for at least
the boundary length. Note thai(, 19] use shortest path P 9-)- 9 . P
one)\ are calleddominantsolutions.

based techniques which are applicable to 2D segmentation, ) . . y

We observe that the parametric maxflow allows to extend Computing all b reaﬁgom}'isax To "solve” problem ()
these techniques to 3D. Indeed, it is known in the frac- fpr interval I = [A .’/\ | we couldmci:lcl)mpute solu-
tional programming literature that minimization of theigat ~ 1O™S X1+ Xk and intervalsly = [A™", ] L =

of some discrete functionals can be reduced to the parametg\/\l’ ?Q]Lrh > L :b[/\g‘l’ )\“_‘a"t]hsutch rt]h".’“xi IIS< optimal ft%r Es
ric maxflow problem (see sectiahfor details). Further- € f;. 1NIs can be done via ne technique known as the

more, discrete functionals can approximate certain cantin TﬁthOd_I[_Lr?' 17. tilgal(a)_llltugtratesl_ Its gIeometnc mte}rpre-
ous functionals such as Riemannian length/aBead]. ation. The method maintains a ligt,, 1), ..., (X, 1)
. . . such that solutiork; is optimal for interval\ € I; and
Our experimental results confirm the findings GOJ I < inf I, for adjacent intervalsy, I, (j — i + 1):
about the usefulness of optimizing flux over length, but also Sup i =ty ! A i

show some shortcomings of this criterion. We discuss ways init: compute minimizerg™in | xmax for Amin gnd \max
to overcome these shortcomings. if XM — ymax gat |ist as'(xmin [Amin  ymax])
Incorporating a global constraint into segmenta- elseset list agx™™ , {\min}), (X7max : {’/\max})

tion Parametric maxflow is also useful for optimizing func- | \yhile there are adjacent itents;, 1;),(x;, I;) with a gap,
tions which combine standard MRF terms and a global con- i.e. (\i, \;)=(sup I;, inf I;) is non-empty:
straint which cannot be written down as a sum of unary and|  gg|ve linear equatiofi* (x;) = EX(x;)

pairwise terms. In79 a monotonic parametric maxflow if \; is asolution sef; := I; U[A;, Aj]

was used for obtaining “balanced” binary segmentations.| g|se if\, is a solution sef; := I; U [A;, \;]

(The criterion in P9 was “ratioCut” which is the ratio of elsethere must exist unique solutione (A;, A, ):

the cost of the cut over the product of areas of the two re- compute minimizex of E’\(-)

gions). This approach can potentially be used for optimiz- if x = x; or x = x; set

ing the “normalized cuts” criterion3[l]. Non-monotonic L=TU[N\, AL L =1 U\ A
parametric maxflow was used i8(] for the cosegmenta- elseinsert(x, {\}) betweenx;, I;) and(x;, I;)
tion problem whose goal is to compute spatially coherent

segmentations in two images so that their global histograms  The ES method makes at moaB + 2 calls to the
match. We show experimentally that the ES method im- maxflow procedure wher8 is the number of breakpoints
proves on the procedure used §1]. of function F' in the given interval 17]. Unfortunately, in

On a high level, parametric maxflow is useful since it the worst casé may be exponential in the size of the prob-
allows to compute a sequence of “reasonable” solutions bylem [7]. (The counter-example originates from the patho-
solving a parametric problem in which MRF terms are com- |ogical graph of Zadeh which was used to show that the
bined with a linear approximation of the global term. The complexity of the simplex method may be exponential).
best solution is then selected by evaluating the global en-This does not necessarily mean, however, that such patho-
ergy function for solutions in the sequence. logical cases will occur in practice. In vision application
PDE cuts It was recently showrd] that graph cuts can per-  that we tested the number of breakpoints was manageable.



tively for A1, A2 andA\; < A < Xy. Then there exists
an optimal solutiorx for A such thatx; > x > xo.
(c) FunctionF'(-) has at mostV| + 1 breakpoints.

(Herex > y means that, > vy, for all nodesu.) Thus,
the ES method can be modified so that the list of solu-
tions satisfiesx; > ... > xj;. For example, when com-
puting optimal solutionx for A € (\;,\;) we can en-
(b) force constraink; > x > x; by fixing nodes in the set

Figure 1.Parametric problem. Each configuratiox corresponds Vi = {u € V| (). = 0} to 0, and nodes in the set
to a linear functionZ* (x). Their lower envelope gives the func- Vi = {u € V| (zj)u = 1} to 1. Thus, the maxflow al-
tion F(\) = min, E*(x) (shown in bold red). (a) Comput- gorithm can be run only for nodes ; =V —V; -V,

ing all breakpoints in the interval\;, 2] for a general para- ~ Which may yield a significant speed-up.

metric problem. The ES method will run maxflow for values We implemented this modified scheme as follows. We

A1, Az, A3, A, As. (D) Ratio optimization problemE™*(x) = explicitly maintain regionsVys, ..., Vy—1 (note that to-
P(x) — MQ(x) (case wheminx R(x) > —oo and there exists gether withV;, V. they form a partition of the set of
with P(x) = Q(x) = 0). Line with a negative slope correspond- nodes)’). Similar to the general case, we also maintain
ing to configurationx intersects the OX axis at point = R(x). a graph with the residual flow from previous computa-

Newton’s method starting with configurationy will produce the

tions. Consider the maxflow algorithm fare (\;, \;) =
sequencéxo, o), (x1, A1), (X2, Aa). 9 (Ni; )

(sup I;, inf I;) which involves nodes iv;;. If these nodes
are all labeled as 0 or all labeled as 1, then= x; or
X = X;, So the intervald;, I; are updated but séi;; is
unchanged. Otherwisg; is split into into two regiond’;,.,
V,; containing nodes iiv;; with label 0 and 1, respectively.

We implemented the ES method using the maxflow algo-
rithm in [4]. When computing maximum flow for the next
value of), we reuse flow from the previous computation, as

weI_I as searc_h trees as iag. (Changing) results in up- (Indexr corresponds to the new intervgh} inserted be-
dating capacities of edges from the source and to the sink.) . . - :
tweeni andj.) After splitting the region, we remove all

Computing one breakpoint  In certain cases computing eqges hetween them. This is justified since all arcs from

all breakpoints may not be necessary. A binary seqrch stylevir to V), are saturated by the Ford-Fulkerson theorem (we
procedure may be more appropriate: after computing solu-,5q;me that the source corresponds to label 0), and it is easy
tion x for value A € (A1, A2) we decide whether 0 pro- 5 a6 that they will remain saturated afterwards.

ceed with interva[\, A or [\, A>]. Then the ES method The worst-case complexity of this technique proposed
can be run only for _the appropriate mterva]. For exam- ;, [14] is O(n) maximum flow computations on a graph
ple, to compute the first breakpoint (W™, A™*] we can \ith 0(|1|) nodes and)(|€|) edges. The worst case may
process the smallest indexor which there is a gap (i.e.  oecyr if, e.g., each tima; is split into regions of size 1

sup I; < inf I;141) until the first breakpoint is identified. and|V;;| — 1. In our experiments, however, the splits were

In our experiments such a procedure always took just &rather halanced, and so the algorithm was quite effigient
few iterations to converge. In general, however, we are not

aware of any polynomial bounds on the number of steps. It3. Ratio minimization
should be noted that polynomial-time algorithms for com-  Parametric maxflow problem often arises in the context
puting a particular breakpoint do exist (see e2g, [L7]). of ratio optimization Consider two function®, @ : X —
It's not clear, though, whether they would be faster than the R whereX = 2V is the set of configurations arigi(x) > 0
simple method described above, given that experimentallyfor all x € X. The goal is to minimize function
this simple method makes just a few calls to maxflow. P(x)

. . . . o IFQ(x)>0
Monotonic case Finally, let us discuss thenonotonic R(x) = i —op 0
case when coefficients, in (*) are either all non-negative R R Q(x) =0, P(x) <
or all non-positive. For concreteness, let us assume that oo if Q(x) =0,P(x) >0
by > 0 for all nOd_eSu (the Othe_r case is similar). In that 3Note that the worst-case complexity can be improved to thatsin-
case the ES algorithm can be implemented much more ef-gie maxfiow computation1fs]. The method in 15] uses the push-relabel
ficiently [14, 15. The key property is theestednessf algorithm of Goldberg and Tarjan. For given € (sup I;,inf I;) and

optimal solutions 4, 32, 15]: regionV;; two flow computations are performed in parallel, until thetfir
one terminates. While this scheme improves the worst-casplexity, it
Proposition 2.1. (a) Suppose thak; is optimal for \; is not necessarily faster in practice than the simpler tiggten[1].

and \; < ). Then there exists an optimal solution Finally, we mention that there are iterative algorithms goiving the
monotonic parametric maxflow problem converging in the tlifgj 38].
x for A such thatx; > x. p p ging f8i 3¢]

i ) Unlike the methods described above, they are not guaratieiedminate
(b) Suppose that;, xo with x; > x5 are optimal respec-  in finite time.



Let \* = minxex R(x) be the optimal value of the ra- {v}, and to any volumetric potential functigh ns denotes

tio (we assume thah* < +o00), and consider function the outward normal to the surface at point

EMx) = P(x) — AQ(x). Itis easy to see that* < ) In particular,C3andC1’ imply that we can minimize the

if and only if min,cxy E*(x) < 0. Thus, value\* can be following ratios of geometric surface functionals

computed with an arbitrary precision using binary searfch (i

A > —oo),_ if we are able to minimize functioE_A(-). inf Jos 9(s)ds (area/volume C3) 1)
Alternatively, the problem can be solved via the New- sca fS 1-dp

ton’s method for fractional optimization, also known as

Dinkelbach's method][3. Starting with configurationc, i Js f(p)dp (potentialarea C1)  (2)
and value\y = R(xo), it produces a decreasing finite se- sca [os9(s)ds

qguencelp, A1, ..., A"; upon terminationx is an optimal . d

solution and\ = R(x) is the minimum of the ratio: in Jos Vs -1 ds (flux/area-C1)  (3)

ScQ d
[0] Initialize: pick x with R(x) < +o0, Seth = R(x). 2 Josg(s)ds

[1] Compute minimizex* of function E*(-). Our combinatorial optimization approach allows to mini-

[2] If Q(x*) =0, P(x*) > 0 stop. mize these functionals over_shap_ﬁsn a cI_osed bounded

[3] Setx := x*, A\ := R(x*). If A has decreased go to (compact) subse® C RN since in practice we can use
step 1, otherwise stop. only finite grids to represent points 2. In applications

corresponds to a rectangular box representing an image or a
bounded volume of interest in 3D.
Note that the minimal ratio of1) is a (small) non-

This algorithm is illustrated in Figl(b). In step [0] config-
urationx can be set, for example, as a minimumzof(-)

for A > A\*. Note, in the case wheminy R(x) > —oo ) :
and there exists with P(x) = Q(x) = 0 the algorithm is negative numbek, > 0 since both numerator and denom-
inator are non-negative functionals. In contrast, the min-

gggg?gzr&titnostz(?ﬂrgﬂethod for computing the first breakpoint imum ratio for ¢) and @) is a (large) negativé, < 0.

In order to use Newton's method (or binary search), we We will assume that volumetric potential functigip) has

should be able to minimize efficiently functidi(-). This negative yalue; at leaSt at one point (p|>qel}5 0. The_
can be done in the following special cases: flux functional in @) is guaranteed to be strictly negative
for some shapesS unless the divergence of vector figld }

C1 P, Q are submodula®?(x) < 0 for somex. is null everywhere.

C2 P is submodular® is supermodulat?(x)>0 for all x. Ratio functionals 1), (2), and @) have already been

C3 P is submodularg) is modular. proposed for image segmentation by a number of authors

Recall the the modular function is both submodular and su-[10, 19]. However, they used various forms of shortest path

permodular; it can be written &@(x) = by + >_, ¢y, buu- techniques restricting their methods to 2D applications. O
In this paper we focus on ca&8 and on the following ~ work extends ratio optimization to 3D problems in com-

special case of1: puter vision. In particular, besides segmentation of 3D-med

ical and video data our method can be used for volumet-

C1’ Pis modular@ are submodulai’(x)<0 for somex. ric multiview reconstruction problems (see Sej. Note

As follows from the discussion above, bal8andC1’ can  thatour approach can not minimize another r%ff%

be reduced to the parametric maxflow problemh ( proposed for 2D image segmentation By]f

Since our method allows to optimize different ratios of
continuous surface functionals, it is helpful to compare-ge
metric properties of the corresponding optimal shapese Not
that problem 1) is related to a well known in geometry
constrained isoperimetric probleor Cheeger problernf9].

The most popular form of the isoperimetric problem is to
find a shape iRV of minimum surface area when the vol-
ume is fixed. Eventhough the solution was known to ancient

Jos Vs - 1s ds (fluy) Greeks (circle or sphere), a discrete version of this prable

[s f(p) dp (volumetric potentil ?s NP_—hard. One form. of constrained is_operimetric problem

is to find the shape with the lowest perimeter-to-volume ra-
can be arbitrarily closely approximated by submodular en- tio among all shapes inside some given closed bounded sub-
ergies of binary variables on an N-dimensional grid. The re- set ofR"V. The optimal value of this ratio is callé@heeger
sults in [3, 23] apply to a wide class of metrigs(including number [33, 20] show some interesting examples of the
general anisotropic Riemannian case), to any vector fieldcorresponding optimaheeger sets

3.1. Optimizing Ratios of Geometric Functionals

We propose to combine the standard combinatorial opti-
mization techniques for ratios of submodular or supermod-
ular energies with the results i6,[23] which show that the
following continuous surface functionals Y

J559(s) ds, g(z) >0 (length (2D) or area (3D)



Ig(s)ds

Jlmv
S

[f()av
S

leﬂs

as

[f (v

Ig(s) [ds

Jor N

S
J'lms
aS

3 X

Figure 2.0ptimizing ratio functionals for three simple images
(top row). Other rows show segmentation results minimizing
(from top to bottom): a) image weighted length of the bougdar
over volume, b) (regional) color model over Euclidean l&ngd)

color model over image weighted length, d) flux of image gradi
ents over Euclidean length of the boundary.

(1) states the constrained isoperimetric problem for non-
Euclidean metric. The second row in Figu2eshows (in

Figure 3.Larger breakpoints. The first column shows the best
ratio solution to problems2j and @) (in both cases, for Euclidean
length). The second and the third columns show represeatati
dominant solutions obtained for > \¢. Such solutions optimize
the ratio among larger objects, see Proposifidn Some real 3D
examples are shown in Fif.

the standard isoperimetric problem of ancient Greeks. Ten-
dency to undersegment is also apparent. The case of image-

red) Cheeger sets that we computed for several synthetic exWeighted (Riemannian) metric (row 4) significantly reduces

amples using standard metiidased on image gradiefits
As pointed out in 10], solving (1) in the context of image

these problems but it still demonstrates a trend to underseg
ment details and to smooth out sharp corners. These prob-

segmentation has a bias to larger volumes. In order to seg!€ms are widely known as the “shrinking problem”.

ment a desired object one may need to crop a siibskise
around its border. At the same time, interesting motivation
to use Cheeger sets for image clustering is presentddjn [

which also provides a heuristic-based approximation algo-

Arguably, optimizing the ratio of flux to length3)
presents no bias to any particular shape present in other ra-
tios in this paper. This ratio functional was first proposed
forimage analysis by Jermyn and Ishikawaif][who also

rithm. Note that related Cheeger numbers and sets in graptPresented an efficient combinatorial optimization aldwrit

theory are used to describe graph’s “bottleneckness”.
Problem @) presents a certain generalization of the con-
strained isoperimetric (Cheeger) problem. If volumetoe p
tential functionf (p) = —1 for all p € Q2 then @) is equiva-
lent to (1). For example, if pixel’s potentialg(p) describe
negative log-likelihoods of desired object intensitiesrth
the bias to larger volume is replaced with the bias to the
right intensity model. For example, in row 3 and 4 of Eig.

applicable to 2D problems. As they pointed out, this ratio
functional is scale independent. If vector fisldepresents
image gradients then the optimal ratg) ¢ives the shape of
the highest average contrast (assuming no contrast réversa
on the boundary). Row 5 in Fig.shows optimal segments
for this ratio. The single star segmented in the image on the
right has a slightly brighter color. Unlike the results abpv
the tips of the star are not cut. The divergence theorem im-

we show the optimal ratio sets for the case of Euclidean andplies that §) is a special case offfor f = div v.

image-based metric, respectively. In these cases, the opti

mal sets try to maximize the number of white pixels (object
color model) with the minimum possible length. The case
of Euclidean length (row 3) reveals a strong bias to circular

3.2. Larger breakpoints and ratio optimization

As discussed earlier, the optimal ratio is obtained for so-
lution x* corresponding to the smallest breakpoint value
of function F(\) = miny[P(x)—AQ(x)] (see Figl(b)). In

4In our experiments the boundary of the image was constrainée
background (see?f] for more details).

larger breakpoint§; and obtain a sequensg, x1, . . . Such
thatx; is an optimal solution fol\;;; < A < A\;4o. Inter-
estingly, these consecutive solutions are also relateldeto t



ratio optimization problem and they can be useful forimage
segmentation and multiview reconstruction (see 8gclt
is not difficult to show that (see Fid(b)):

Proposition 3.1. (a) The sequences)(xo), Q(x1), ...
andR(x¢), R(x1), ... are strictly increasing.
(b) Configurationx; is an optimal solution of

min R(x 4
oo (x) (4)

whereC' = Q(x;).

While solving constrained problerd)(for arbitrary val-
ues ofC' appears to be a difficult problem, it can be solved
for specific value$)(xg), Q(x1), - - .. Figure 4.Volumetric Multiview Stereo. Optimizing the ratio

Specifying a lower bound on the denominaf(fx) is a of flux (of photoconsistency gradienfs]) over Euclidean sur-
useful additional tool in finding optimal ratio segments un- face area for “gargoyle” data set (courtesy of K. Kutulakosl a
der extra constraint on segment size (see BigFor exam-  S- Seitz). a) Sample camera view. b) Divergence of photdsons
ple, when we minimize flux over length/area, often the first {€ncy gradients (volumetric potential). c) Reconstrutiiesults.
segmentation corresponds to the highest “contrast” object?ePresentative dominant solutions grow from the highestrast
of small size. As\ increases, we find optimal solutions of region 1 (V.e"OW_)- However, the g_rowth Is not always mondton
the highest contrast among all segments of larger size. our? there s an mtermedlatebic)alutlon betW?eand <AL
segmentation and reconstruction experiments (§eshow P I —
that the optimal shape grows in size incorporating parts of ./
smaller contrast as the boundary length increases. X\

4. Experimental results
4.1. Ratio optimization in 3D

Fig. 4 showsvolumetric multiview stereo reconstruc-
tion obtained by optimizing the ratio dfux of photocon-
sistency gradientgs] over the surface area. Thus, the opti-
mal result has the highest density of photoconsistency gra-
dients. However, the highest “contrast” solution just sele
one “ear” where the gradients are the highest due to visi-
bility from the largest number cameras. We reconstruct the
head and then the whole “gargoyle” by adding larger size
constraint (see Propositighl). Similarly to the synthetic
examples at the bottom of Figug the consecutive break- estimated surface normals) over Euclidean surface aréeclajd

point solutions for ratio%) grew _monotonically (from yel- _ of points from multiple range scans of a “bunny” (see phots).
low to blue) as the surface area increased. Note that the righpivergence of an estimated field of normals, s24 for details.

breakpoint can be automatically found if a reasonable lower ¢c) Reconstructed 3D model of the “bunny”.
bound on the model’s size is known. One may also select
the last breakpoint just before monotonicity breaks. Alter
natively, the parametric maxflow technique allows a user to bound on surface area increases at consecutive breakpoints
efficiently select a good breakpoint manually. (see Prop3.1). As in earlier examples, rati®) has no bias
We also show results fasurface fitting to a cloud of to any particular shape and shows good alignment to de-
laser scanned points (Fig) based on the minimum ratio of  tails. In contrast, optimizing the ratio of image weighted
flux of the estimated surface norm§?€] over surface area.  (Riemannian) surface area over volume (b) shows a strong
Fig.6 (b,c,d) showsolumetric image segmentatione- bias to circles coming from its close relationship with the
sults optimizing ratios1,2,3), correspondingly. Optimiz- isoperimetric problem. The smallest ratio is achieved ley th
ing flux of image gradients over surface area (d) is equiv- smooth yellow blob around the kidney. Larger breakpoint
alent to finding the segment with the largest average con-solutions monotonically switch to larger segments approx-
trast on its boundary. The colors (from yellow to blue) in- imating Cheeger sets for rectangl&][ Replacing vol-
dicate representative larger optimal segments as the loweume by color model likelihood as in (c) improves the over-

Figure 5.Surface Fitting in 3D. Optimizing the ratio of flux (of



Figure 6.Image Segmentation in 3D Optimizing various ratios
for 3D medical image data (“kidney” CT). a) Two orthogonalim

= Test data (mean)
—image B
8H i —image A

error (percentage)

N
T

ol

Figure 7.Image segmentation - error statistics.The number of
misclassified pixels (error) varies with respecitol he optimal\

does also vary considerably among test images (images A and B
are shown in24)).

segmentations introduced i&]f. We split it randomly into
25 training and 25 test images. We used hard constraints

age slices. b) Ratio of Riemannian area (based on image-gradi Obtained by dilating ground truth segmentation by a fixed

ents) over volume. c) Ratio of data likelihood (intensity dat)
over Riemannian area. d) Ratio of flux (of image gradientgr ov
Euclidean surface area.

smoothing bias but many details are still undersegmented.
Image segmentation results in Fig(b) also illustrate
typical dominant solutions for a closely related multi-
view reconstruction technique using volumetric ballognin
Surface functionals combining photoconsistency-weighte
area with volumetric ballooning are common in 3D recon-
truction (e.g. B5, 27]). Choosing\ to balance these two

terms is equivalent to finding some breakpoint for the con-

strained isoperimetric (Cheeger) problei). (As noted in
[10Q), the ratio of surface area to volum®) as bias to large
segments Prop.3.1 shows that the smallest size break-
point solution (e.g. yellow segment in Figudéo)) is the
one that minimizes ratiolj. This solution is likely to be

amount which gives a “trimap” (see example in Fig. 2
in [2]). The segmentation error is defined as the percent-
age of misclassified pixels within the trimap.

The value of\* that we learned on the training data us-
ing parametric maxflow algorithm was" = 0.074. Fig.7
shows the error on the test data set. We see that there is a
range of\ € [0.023,0.12] where the error is equally low,
i.e. betweerb.27% and5.36%. The error on the test data
set is5.34% for the learned\* and if we were to choose
the optimal fixed\ of 0.023 we would get a test error of
5.27%. This shows that the training set was probably suffi-
ciently large and there was no overfitting.

At the same time, segmentation results can be consider-
ably improved by choosing for each image a different, opti-
mal \. This gives a test error &.79%, which is consider-
ably lower tharb.27%. For50% of the test images choos-

the most appropriate for multiview reconstruction methods INd image-specific improved the error over learned value

using volumetric ballooning.

4.2. Choosing an optimal\

We consider now the problem of segmenting color im-
ages using a regularization enetgyx) = A>_ Dy, () +
qu Vpq(Tp, 2q).

The goal is to demonstrate that (i) discriminative learn-

A* by more thar).5%. Two of these examples are shown
in [24], where the optimal lies even outside the range of
[0.023,0.12]; the corresponding error curves are in Fg.
Thus, it is desirable to run parametric maxflow during
testing and let, for example, the user choose hes&infor-
tunately, our implementation was not fast enough for inter-
active segmentation However, potentially the speed can

ing of A on a training set with ground truth segmentation e improved significantly by solving the parametric prob-
yields a reasonable value for many test images, and (ii)jem via shortest path techniques. (The general scheme of

the learned value* cannot work well for all images, so
the problem may need to be solved for differaist during

the ES method would still be applicable). In order to do
this, we could first compute segmentation fdrand fix the

testing. These points have been raised in previous Work*topology. This is left as a future work.

e.g. 2]. The paper 2] uses a discriminative procedure for
learning), however they do not specify how the parametric
problem is solved.

The data likelihood®),, of the energy come from learned

gaussian mixture models of foreground and background, as

in [2]. (We usedl0 Gaussians with full covariance for each
region.) We used the datasetsofimages with ground truth

5Since surface area grows quadratically w.r.t. object dtemand vol-
ume grows cubically, the ratio of the two is smaller for largegments.

4.3. Cosegmentation using TRGC
We tested the parametric maxflow algorithm for thest
region graph cut§TRGC) method in 30| for the problem

6http://research.microsoft.com/vision/cambridgeséié{jmentation/GrabCut.htm
“For the range ok € [0, 1] computing all cuts took4.5 € [3.3,61]
secs (average ovéf images; the interval shows minimum and maximum
values), compared t0.9secs on average for*. The number of cuts was
425 € [81,1422]. For a more reasonable rangec [0.023,0.12] (see
Fig. 7) the running time wa$ € [0.64, 16.3] secs, and the number of cuts
was110 € [3, 382].



Error=1.4%

x Error=4.6%
A=0074 (learned)

Image A

A=031 (optimal})

Error =0.51%

Image B
A =0.0006 (optimal)

LError = 2.91%
A=0074 (learned)

Figure 8.Image segmentation - choosing an optimal. Image A has a strong data term but false edges in the bacldyrtherefore
it needs large\ > \*. Image B has good contrast information but ambiguous cdfefilioods, and thus needs strong regularization:
A < X\*. In both cases fixing the segmentation with some user irtieres; e.g. a brush interface, is a very painstaking prodess is

used.

of cosegmenting two images. The key optimization prob-
lem of the cosegmentation task is as follows: given an im-

Here the target histogram is given by the ground truth seg-
mentation. We refer to24] for details of initialization and

age where each pixel is assigned to a certain bin and a tarfurther results.

get histogram over bins is given, compute segmentation
which minimizes functiont(x) = Eyrr(x) + Epist(X).

The first term is a contrast-dependent discontinuity cost,

and the second term is thiel norm of the difference be-
tween the histogram of the regidm | z,, = 1} and the
target histogram.

The TRGC method maintains vectpre RY and con-
figurationx such that linear functioy”z + const is an
approximation of the global tertf},;: (z) andx is a global
minimum of By rr(z) + y''z. In each iteration, new ap-
proximation vectog is chosen, based on current configura-
tionx. (This approximation is exact for althat differ from
x by at most 1 pixel). Ley* = Ay + (1 — \)y be the in-
terpolation betweeg andy. The TRGC method computes
minimumx* of approximation®,; rr (z) + (y*)? z for dif-
ferent)\’s in [0, 1], and selects paily*, x*) corresponding
to the smallest true energy(x*). Note, the energy will not
go up since\ = 0 corresponds to current pdiy, x).

We tested three strategies of searching intelfual]:
[Same as in3d]] Start with A = 1, keep halving it until
one of the following happens: (&) = x; (b) A < 107%;
or (c) energyE(x*) is larger compared to previous
and the energy for the previonsvas smaller thati(x).
B: Similar to A, only nextA in [0, A] is chosen as in the
ES method. (The last will be the smallest breakpoint,
unless the search is stopped earlier).

Compute all breakpoints and solutiong@n1].

A:

C:

The average results on a data-set Withmages (part of the
ground truth data-set introduced i) were as follows (for
an example seefl]):

strategy| final energy| misclass. errof  time
A 1431.7 4.42%% 0.37 secs
B 1111.6 3.21% 0.77 secs
C 1087.3 3.05% 10.5 secs|

5. Conclusions

We showed that parametric maxflow algorithm from
combinatorial optimization is useful for regularization-
based N-D applications in computer vision (segmentation,
cosegmentation, multi-view stereo, surface fitting, ette
algorithm can efficiently find a sequence of solutions for
all values of the trade-off paramet&r The best solution
from this sequence alominant solutiongan be selected
based on any global criteria which otherwise would be prac-
tically infeasible. Examples of such global criteria irdu
minimization of normalized (ratio) functionals, minimum
required size, surface total curvature, proximity to derta
prior shape, or user selection. The algorithm can be also
used to accelerate parameter learning.
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