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Abstract

Graph cut is a popular technique for interactive image

segmentation. However, it has certain shortcomings. In

particular, graph cut has problems with segmenting thin

elongated objects due to the “shrinking bias”. To overcome

this problem, we propose to impose an additional connectiv-

ity prior, which is a very natural assumption about objects.

We formulate several versions of the connectivity constraint

and show that the corresponding optimization problems are

all NP-hard.

For some of these versions we propose two optimization

algorithms: (i) a practical heuristic technique which we call

DijkstraGC, and (ii) a slow method based on problem de-

composition which provides a lower bound on the problem.

We use the second technique to verify that for some practi-

cal examples DijkstraGC is able to find the global minimum.

1. Introduction

The task of interactive image segmentation has attracted

a significant attention in recent years [10, 3, 18, 6, 24, 21].

The ultimate goal is to extract an object with as few user in-

teractions as possible. It is widely accepted that some prior

on segmentations is needed for achieving this goal. Dif-

ferent priors have a preference towards different types of

shapes, as we discuss next.

Graph cut A very popular approach, which we also use

in this paper, is based on graph cut [7, 3, 18]. It minimizes

an energy function consisting of a data term (computed us-

ing color likelihoods of foreground and background) and a

spatial coherency term. The latter term is the length of the

boundary modulated with the contrast in the image, there-

fore minimizing the energy with this term has a bias towards

shorter boundaries. (This behavior is sometimes referred to

as the “shrinking bias”.) In particular, it is hard for the graph

cut approach to segment thin elongated structures. Consider

Fig. 1. First the user constrains some pixels to be fore- and

background using brushes (a). The segmentation by graph

cut (b) cuts off some of the legs of the insect. If we re-

duce the influence of the coherency term then the legs get
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segmented but the overall quality of the the segmentation is

decreased (c). This shows the trade-off between data terms

and regularization, and it indicates that some form of co-

herency is crucial.

Alternative segmentation models One approach to over-

come the shrinking bias is to add flux of some vector field

to the model [10, 25, 12, 15]. It has been shown to be ef-

fective for segmenting thin objects such as blood vessels in

grayscale images [25]. The vector field was taken as the

image gradient, which corresponds to the assumption that

the object is bright and the background is dark. However,

extending this approach to arbitrary color images, which is

the scenario considered in this paper, may be challenging.

To our knowledge it was not addressed so far. The difficulty

here is choosing the vector at each point and the sign of this

vector. Imperfect vector field might lower the segmentation

quality. The issue of choosing the sign can be overcome in

the level set framework [12], but at the expense of losing

global optimality.

One possible method to integrate flux into segmentation

is to optimize the ratio of flux over boundary length [10, 16].

Thus, we are looking for the boundary with the highest aver-

age contrast. Arguably, this model has no bias towards any

particular shape [10, 16]. However, the issue of choosing a

good vector field for color images remains.

Other interesting approaches include the method in [21]

which imposes a prior on the curvature of the bound-

ary, spectral techniques [22] and the random walker algo-

rithm [6]; results in [24] indicate that this method is slightly

more robust towards the shrinking bias.

Our approach In this paper we propose a very differ-

ent way to solve the task of segmenting challenging objects

with very thin, elongated parts. We build the coherency

prior in form of an explicit connectivity prior into the

model. Assume that the user has already segmented a part

of the object using graph cut [18] as in Fig. 1(b). In our in-

teractive framework the user has to click only those pixels

which must be connected to the main object. As Fig. 1(d)

shows a few clicks are sufficient to obtain a satisfying result

(e). We believe that this is a new and very powerful user

interface for segmenting challenging objects.

We consider several versions of the connectivity con-

straint. Unfortunately, the corresponding optimization



(a) User input (b) Graph Cut (GC) (c) GC less coherency (d) Additional input (e) DijkstraGC

Figure 1. Image segmentation using graph cut with standard (b) and reduced coherency (c) based on input (a). Our new DijkstraGC

method (e) with additional user input (d).

problems are all NP-hard, as we show. To enable the inter-

face shown in Fig. 1 we propose a heuristic algorithm which

we call DijkstraGC. On an abstract level it merges the Dijk-

stra algorithm and graph cut. Note that Dijkstra-like meth-

ods have already been used for extracting thin objects such

as blood vessels [5], although without an explicit segmen-

tation. (A fast marching technique was used in [5], which

can be viewed as a continuous analogue of the Dijkstra al-

gorithm for discrete graphs.) The key feature of our method

that distinguishes it from [5] is the addition of the graph cut

component. This allows to explicitly use the MAP-MRF

formulation which proved to be very successful [3, 18].

We show that on some practical examples DijkstraGC is

able to find the global minimum. In order to verify this, we

developed a second (slow) technique based on dual decom-

position, which provides a lower bound on the problem.

Related work Connectivity is automatically enforced in

the classical “snakes” approach [11], since the segmenta-

tion is represented by a simple closed contour. Han et al. [9]

proposed a topology preserving level set method which al-

lows to specify more general topologies. A disadvantage of

both techniques is that the objective is optimized via gradi-

ent descent, which can easily get stuck in a local minimum.

Recently, Zeng et al. [29] followed a similar approach with

a discrete graph-based formulation. After posing the prob-

lem the authors of [29] proved an NP-hardness result and

proposed to modify the maxflow algorithm in [4] so that the

topology of the segmentation is preserved. However, de-

spite our best effort we were unable to compare it to our

approach for the task of segmenting thin objects.1 (Note,

results in [29] are shown for very different types of objects.)

2. Problem formulation

We use an energy function of the form which is standard

for graph cut based image segmentation approaches [3, 18]:

E(x) =
∑

p∈V

Ep(xp) +
∑

(p,q)∈E

Epq(xp, xq) (1)

Here (V , E) is an undirected graph whose nodes corre-

spond to pixels. xp ∈ {0, 1} is the segmentation label of

1We downloaded the source code (ver. 0.9) but did not succeed in ap-

plying it to our examples: sometimes user-provided hard constraints were

not satisfied, or the segmented thin structure was clearly incorrect. Reim-

plementing the algorithm in [29] did not look straightforward - we found

that many details were missing.

pixel p, where 0 and 1 correspond to the background and

the foreground, respectively. We assume that the pairwise

terms Epq are submodular, i.e. Epq(0, 0) + Epq(1, 1) ≤
Epq(0, 1) + Epq(1, 0).

As stated in the introduction, our goal is to minimize

function E(x) under certain connectivity constraints on the

segmentation x. Three possible constraints are formulated

below. In all of them we assume that we are given an

undirected graph (V ,F) defining the “connectivity” rela-

tions between nodes in V . This graph can be different from

the graph (V , E) defining the structure of function E(x) in

eq. (1). (In our experiments we usually take (V , E) to be an

8-connected 2D grid graph and (V ,F) to be 4-connected.)

Perhaps, the most natural connectivity constraint is the

following:

C0 The set [x] corresponding to segmentation x must form

a single connected component in the graph (V ,F).

(We denoted [x] to be the set of nodes with label 1, i.e.

[x] = {p ∈ V | xp = 1}.) This constraint seems to be very

useful for solving problems discussed in the introduction.

However, minimizing function (1) under the constraint C0

appears to be a very challenging task. This problem can be

shown to be NP-hard even if function (1) has only unary

terms (see below).

In this paper we will focus on different constraints C1

and C2. We will assume that the user specified two nodes

s, t ∈ V . Constraint C1 is then formulated as follows:

C1 Nodes s, t must be connected in the segmentation set

[x], i.e. there must exist a path in the graph (V ,F)
from s to t such that all nodes p in the path belong to

the segmentation: xp = 1.

We believe that C1 is very useful for interactive image seg-

mentation. It suggests a natural user interface (Fig. 1). In

this interface node s is assumed to lie in the largest con-

nected component of the current segmentation. By clicking

at pixel t the user would get a segmentation which connects

t to the main object. We handle multiple clicks in an incre-

mental fashion.

Unfortunately, minimizing (1) under C1 is an NP-hard

problem as well (see below). However, it appears that it is

easier to design good heuristic algorithms for C1 than for

C0. In particular, if function E(x) has only unary terms



then the problem with C1 can be reduced to a shortest path

computation with a single source and a single sink and thus

can be solved in polynomial time (see section 3).

Enforcing constraint C1 may result in a segmentation

which has a “width” of one pixel in certain places, which

may be undesirable (see Fig. 6). One way to fix this prob-

lem is to allow the user to specify a parameter δ which con-

trols the minimum “width” of the segmentation. Formally,

assume that for each node p ∈ V we have a subset Qp ⊆ V .

(This subset would depend on δ; for example, for a grid

graph Qp could be the set of all pixels q such that the dis-

tance from p to q does not exceed δ.) Using these subsets,

we define the following connectivity constraint:

C2 There must exist a path in the graph (V ,F) from s to

t such that for all nodes p in the path the subset Qp

belongs to [x], i.e. xq = 1 for q ∈ Qp.

Clearly, C1 is a special case of C2 if we choose Qp = {p}
for all nodes p.

Throughout the paper, we denote P0, P1, P2 to be the

problems of minimizing function (1) under constraints C0,

C1, C2, respectively. The theorem below shows the diffi-

culty of the problems; its proof is given in [26].

Theorem 1. Problems P0, P1, P2 are NP-hard. P0 and P2

remain NP-hard even if the set E is empty, i.e. function (1)

does not have pairwise terms.

Note, it was also shown in [29] that the following prob-

lem is NP-hard: minimize function (1) on a planar 2D grid

so that the foreground is 4-connected and the background is

8-connected. It is straightforward to modify the argument

in [29] to show that the problem is NP-hard if only the 4-

connectedness of the foreground is imposed (in other words,

P0 is NP-hard even for planar 2D grids).

To conclude this section, we will state some simple facts

about the relationship of problems P0-P2 and the problem

of minimizing function E(x) without any constraints.

Theorem 2. Suppose that x is a global minimum of func-

tion (1) without any constraints.

(a) There exists an optimal solution x
∗ of P2 which in-

cludes x, i.e. [x] ⊆ [x∗]. The same holds for the

problem P1 since the latter is a special case.

(b) Suppose that E ⊆ F . Let C1, . . . , Ck ⊆ V be the con-

nected components of the set [x] in the graph (V ,F).
Then there exists an optimal solution x

∗ of P0 such

that each component Ci is either entirely included in

[x∗] or entirely excluded. In other words, if Ci and

[x∗] intersect then Ci ⊆ [x∗].

A proof is given in [26]. The theorem suggests that as

a first step we could run the maxflow algorithm to min-

imize function (1) without any constraints and then con-

tract connected components of the obtained set [x] to sin-

gle nodes. However, it leaves open the most challenging

initialize: S=∅, PARENT (p)=NULL for all nodes p,

d(s) = min{E(x) | Qs ⊆ [x]},

d(p) = +∞ for p ∈ V − {s}

while t /∈S and V − S contains nodes p with d(p)<+∞

• find node p ∈ V − S with the smallest distance d(p)

• add p to S

• for all nodes q ∈ V − S which are neighbors of p (i.e.

(p, q) ∈ F) do

- using PARENT pointers, get path P from s to q
through p; compute corresponding set P̄ = ∪r∈PQr

- compute a minimum x of function (1) under the con-

straint P̄ ⊆ [x]

- if d(q)>E(x) set d(q) :=E(x), PARENT (q) :=p

Figure 2. DijkstraGC algorithm.

question: what to do if a minimum of function (1) does not

satisfy the desired connectivity constraint.

3. Algorithms

The main algorithmic contribution of this paper is a

heuristic method for the problem P2 (and thus for P1 since

the latter is a special case). This method, which we call Di-

jkstraGC, is presented in section 3.1. Then in section 3.2 we

propose an alternative method for a special case of problem

P1 based on the idea of problem decomposition. The main

feature of the second technique is that it provides a lower

bound on the optimal value of P1. We will use it for as-

sessing the performance of DijkstraGC: in the experimental

section it will help us to verify that for some instances Di-

jkstraGC gives an optimal solution.

3.1. DijkstraGC: Merging Dijkstra and graph cuts

The idea of our first method is motivated by the Dijk-

stra algorithm [1]. Recall that the latter technique com-

putes shortest distances d(p) in a directed graph with non-

negative weights from a specified “source” node s to all

other nodes p.

Similar to the Dijkstra method, we will compute solu-

tions to the problem P2 for a fixed node s and all nodes

p ∈ V (only now these solutions will not necessarily be

global minima). The “distance” d(p) will now indicate the

cost of the computed solution for the pair of nodes {s, p}.

The algorithm is shown in Fig. 2. During the algorithm,

the current solution x
p for node p with d(p) < +∞ can

be obtained as follows: using PARENT pointers get path

P and corresponding set P̄ = ∪r∈PQr, and then compute

a minimum of function (1) under the constraint P̄ ⊆ [x].
Clearly, the obtained solution x

p satisfies the hard con-

straint C2 for the pair of nodes {s, p}.

The set S contains “permanently labeled” nodes: once

a node p has been added to S, its cost d(p) and the corre-
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Figure 3. Suboptimality of DijkstraGC. Examples of problems

on which DijkstraGC give suboptimal results. Graphs shown in

the pictures are the connectivity graphs (V,F). Number cp at

node p gives the unary term cxp, number cpq at edge (p, q) gives

the pairwise term cpq|xq − xp|. Both in (a) and (b) DijkstraGC

will output solution {s,a,b,b′,t} or {s,a′,b,b′,t} with cost 7, while

the optimal solution {s,c,b,b′,t} has cost 6.

sponding solution will not change anymore.

Let us list some of the invariants that are maintained dur-

ing DijkstraGC (they follow directly from the description):

I1 If d(p)=+∞ then p 6=s and PARENT (p)=NULL.

I2 If d(p) < +∞ then PARENT pointers give the unique

path P from s to p, and d(p) = min{E(x) | P̄ ⊆ [x]}
where P̄ = ∪r∈PQr.

I3 If PARENT (q) = p then d(p) ≤ d(q) < +∞.

I4 d(p) < +∞ for nodes p ∈ S.

Theorem 3. If function E(x) does not have pairwise terms

and Qp = {p} for all nodes p (i.e we have an instance of

P1) then the algorithm in Fig. 2 produces an optimal solu-

tion.

A proof is given in [26]. After submission we also found

another special case in which DijkstraGC gives an optimal

result (see [26]).

If conditions of the theorem are relaxed then the problem

may become NP-hard, as theorem 1 states. Not surprisingly,

DijkstraGC may then produce a suboptimal solution. Two

examples are shown in Fig. 3. Note that in these examples

the “direction” of DijkstraGC matters: if we run it from

s to t then we obtain a suboptimal solution, but running

DijkstraGC from t to s will give an optimal segmentation.

We now turn to the question of efficient implementation.

One computational component of the algorithm is finding

a node p ∈ V − S with the smallest value of d(p) (same

as in the Dijkstra algorithm). We used a binary heap struc-

ture for implementing the priority queue which stores nodes

p ∈ V − S with d(p) < +∞. The bottleneck, however, is

maxflow computations: DijkstraGC requires many calls to

the maxflow algorithm for minimizing function (1) under

the constraints xr = 1 for nodes r ∈ P̄ . These computa-

tions are considered in the remainder of this section.

Optimized DijkstraGC First, we will describe a tech-

nique which allows to reduce the number of calls to

initialize: S=∅, PARENT (p)=NULL for all nodes p,

d(s) = min{E(x) | Qs ⊆ [x]},

d(p) = +∞ for p ∈ V − {s}

while t /∈S and V − S contains nodes p with d(p)<+∞

• find node p ∈ V − S with the smallest distance d(p)

• using PARENT pointers, get path P from s to p; com-

pute corresponding set P̄ = ∪r∈PQr

• compute a minimum x of function (1) under the con-

straint P̄ ⊆ [x]

• add p to S, set A = {p}, mark p as “unprocessed”

• while A has unprocessed nodes

- pick unprocessed node p′ ∈ A

- for all edges (p′, q) ∈ F with q ∈ V − S do

⋄ if Qq ⊆ [x] set d(q) :=E(x), PARENT (q) :=p′,
add q to S and to A as an unprocessed node

- mark p′ as “processed”

• for all nodes q ∈ V − S which are neighbors of A (i.e.

(p′, q) ∈ F for some node p′ ∈ A) do

- pick node p′ ∈ A with (p′, q) ∈ F

- using PARENT pointers, get path P from s to q
through p′; compute corresponding set P̄ = ∪r∈PQr

- compute a minimum x of function (1) under the con-

straint P̄ ⊆ [x]

- if d(q)>E(x) set d(q) :=E(x), PARENT (q) :=p′

Figure 4. Optimized version of the DijkstraGC algorithm.

maxflow. Consider the step that adds node p to the set of

permanently labeled nodes S. Denote P to be the path from

s to p given by PARENT pointers, and let P̄ = ∪r∈PQr.

Let us fix nodes in P̄ to 1 and compute a minimum x of

function (1) under these constraints. The segmentation set

[x] will contain P̄ , but it may include many other nodes

as well. Then it might be possible to add several nodes to

S using this single computation. Indeed, suppose p has a

neighbor q ∈ V − S, (p, q) ∈ F , such that Qq ⊆ [x]. The

algorithm in Fig. 2 would set d(q) = d(p) = E(x) while

exploring neighbors of p. This would make the distance

d(q) to be the smallest among nodes in V−S, so the node q
could be the next node to be added to S. Therefore, we can

add q to S immediately.

An algorithm which implements this idea is shown in

Fig. 4. Before exploring neighbors of q, we check which

nodes can be added to S for “free”. The set of these nodes

is denoted as A; clearly, it includes p. After adding nodes in

A to S, we explore neighbors of A which are still in V −S.

Note that there is a certain freedom in implementing the

DijkstraGC algorithm: it does not specify which node p ∈
V − S with the minimum distance to choose if there are



several such nodes. It is not difficult to see that under a

certain selection rule DijkstraGC becomes equivalent to the

algorithm in Fig. 4.

Flow and search tree recycling We used the maxflow

algorithm in [4], and reused flows and search trees as de-

scribed in [13].

In DijkstraGC we often need to fix/unfix nodes in differ-

ent parts of the graph in a rather chaotic order. We believe

that this significantly reduces the effectiveness of flow and

search tree recycling. Two ideas could potentially be used

to overcome this drawback. The first one is based on the ob-

servation that different “branches” are often independent in

a certain sense.This could allow to reorder maxflow com-

putations. To get the same type of result as DijkstraGC

we would need to redo computations if we detect an in-

consistency, as in the Bellman-Ford label-correcting algo-

rithm. The second idea is to maintain multiple graphs for

performing computations in different parts of the image,

so that changes in each graph would be more “local”. It

could also be feasible to store a small subset of the nodes

for each graph, increasing it “on demand”. Reduced mem-

ory requirements could then allow to use a larger number of

graphs. Exploring these ideas is left as a future work.

3.2. Problem decomposition approach

In this section we propose a different technique for a spe-

cial case of problem P1; we will use it for assessing the

performance of DijkstraGC.

Overview On the high level, the idea is to decompose

the original problem into several “easier” subproblems, for

which we can compute efficiently a global minimum (or

obtain a good lower bound). Combining the lower bounds

for individual subproblems will then provide a lower bound

for the original problem. The decomposition and the corre-

sponding lower bound will depend on a parameter vector θ;

we will then try to find a vector θ that maximizes the bound.

This approach is well-known in combinatorial opti-

mization; sometimes it is referred to as “dual decomposi-

tion” [2]. In vision the decomposition approach is probably

best known in the context of the MAP-MRF inference task.

It was introduced by Wainwright et al. [27] who decom-

posed the problem into a convex combination of trees and

proposed message passing techniques for optimizing vector

θ. These techniques do not necessarily find the best lower

bound (see [14] or review article [28]). Schlesinger and

Giginyak [19, 20] and Komodakis et al. [17] proposed to

use subgradient techniques [23, 2] for MRF optimization,

which guarantee to converge to a vector θ yielding the best

possible lower bound.

Solving P1 via problem decomposition We now apply

this approach to P1. To get tractable subproblems, we im-

pose the following simplifying assumptions. First, we as-

sume that the graph (V ,F) is planar, and E = F . Sec-

ond, we assume that pixels on the image boundary are con-

strained to be background, i.e. their label is 0. We argue that

these assumptions represent an important practical subclass

of the image segmentation task, and thus can be used for

assessing the performance of DijkstraGC for real problems.

Note that the second assumption encodes the prior knowl-

edge that the object lies entirely inside the image, which is

very often the case in practice.

We denote C(x) to be the hard constraint term which

is 0 if the segmentation x satisfies the connectivity con-

straint C1 and the background boundary condition de-

scribed above, and otherwise C(x) is +∞. Some of these

hard constraints will also be included in function E(x) as

unary terms, namely the background boundary constraints

and foreground constraints xs = xt = 1, which follow

from C1. Our parameter vector θ will have two parts:

θ = (θ1, θ2) where vectors θ1 and θ2 correspond to nodes

and edges of the graph (V , E), respectively (θ1 ∈ R
V ,

θ2 ∈ R
E ). Given labeling x, let φ(x) ∈ {0, 1}E be the

vector of indicator variables showing discontinuities of x,

i.e. φpq(x) = |xq − xp| for an edge (p, q) ∈ E . We will use

the following decomposition:

E(x) + C(x) = E0(x | θ) + E1(x | θ) + E2(x | θ) (2)

where

E0(x | θ) = E(x) − 〈x, θ1〉 − 〈φ(x), θ2〉 (2a)

E1(x | θ) = C(x) + 〈x, θ1〉 (2b)

E2(x | θ) = C(x) + 〈φ(x), θ2〉 (2c)

Let us discuss each subproblem in more detail.

Subproblem 0 Function E0(x | θ) consists of unary and

pairwise terms. We will require this function to be submod-

ular; this is equivalent to specifying upper bounds on com-

ponents θ2
pq . Since there are no connectivity constraints, we

can compute the global minimum Φ0(θ) = minx E0(x | θ)
using a maxflow algorithm2.

Subproblem 1 Function E1(x | θ) has only unary terms

and the connectivity constraint C1. As discussed in the

previous section, we can compute the global minimum

Φ1(θ) = minx E1(x | θ) using, e.g. DijkstraGC algorithm.

Note, in this case it is essentially equivalent to the Dijkstra

algorithm.

Subproblem 2 We will require vector θ2 to be non-

negative. We compute a lower bound Φ2(θ) on E2(x | θ2)
using a very fast technique whose details are given in [26].

In short, we compute two edge disjoint paths of minimum

cost in the dual graph from a set of nodes “behind” node s
to a set of nodes “behind” node t. (This is motivated by the

2Instead of restricting function E
0 to be submodular, one could use the

roof duality approach [8] to get a lower bound on E0(x | θ). For sub-

modular functions this lower bound coincides with the global minimum,

therefore the best lower bound on the original function can only become

better. We have not implemented this yet.



fact that an optimal segmentation can be viewed as a simple

closed contour going “around” s and t.)

Maximizing the lower bound We described a lower

bound on problem P1 which can be written as

Φ(θ) = Φ0(θ) + Φ1(θ) + Φ2(θ) ≤ E(x) + C(x)

where θ belongs to a convex set Ω = {(θ1, θ2 | 0 ≤ θ2
pq ≤

θ2max
pq }. Clearly, Φ is a concave function of θ. Similar

to [19, 20, 17], we used a projected subgradient method [23,

2] for maximizing Φ(θ). Details of our implementation and

the procedure for choosing solution x are given in [26].

4. Experimental results

In the previous section we presented DijkstraGC, a new

algorithm that minimizes energy (1) under certain connec-

tivity constraints on the segmentation x. In this section we

first discuss the advantages of including this algorithm in an

interactive system for image segmentation and second con-

sider the optimality properties of the algorithm.

4.1. DijkstraGC for interactive segmentation

The form of the energy (1) follows the approach of pre-

vious energy minimization techniques for interactive image

segmentation [3, 18]. We define Ep(xp) as a data likelihood

term and Epq(xp, xq) as a contrast-dependent coherency

term, which are defined as follows.

Hard constraints for background and foreground are

specified in the form of brush strokes. Based on

this input a probabilistic model is computed for the

colors of background (GB) and foreground (GF ) us-

ing two different Gaussian Mixture Models. Ep(xp)
is then computed as Ep(0) = − log(Pr(zp|GB)) and

Ep(1) = − log(Pr(zp|GF )) where zp contains the three

color channels of site p (see details in [18]). The co-

herency term incorporates both an Ising prior and a contrast-

dependent component and is computed as

Epq(xp, xq) =
|xq − xp|

dist (p, q)

(

λ1 + λ2 exp−β ‖zp − zq‖
2
)

where λ1 and λ2 are weights for the Ising

and contrast-dependent prior respectively, and

β =
(

2
〈

(zp − zq)
2
〉)−1

, where 〈·〉 denotes expecta-

tion over an image sample (as motivated in [18]). A term

of this form encourages coherence in regions of similar

color and also prevents isolated pixels to appear in the

segmentation (see [3, 18]). In our experiments the number

of components used for GB and GF were 5, we fixed

λ1 = 2.5 and λ2 = 47.5 (which sums up to 50, as in [18]).

We used an 8-neighborhood system for E.

We now discuss how to integrate the DijkstraGC algo-

rithm in an interactive system for image segmentation. Af-

ter the user has provided scribbles a segmentation is com-

puted with graph cut. As in [18] we iterate this process to

further minimize the energy, where the segmentation of a

previous run is used to update color models. It can hap-

pen that part of the foreground is missing or that the fore-

ground region is disconnected. Then the user can specify

with one click such a site that should be connected with the

current result. DijkstraGC algorithm is used to compute the

new segmentation. In this way the user only has to specify

one node (from the two nodes necessary to run DijkstraGC)

since the other node is assumed to be contained within the

largest connected component of the graph cut segmentation.

We have tested this approach on 15 images with in total

40 connectivity problems, i.e. additional clicks for Dijk-

straGC. Fig. 1 and 5 show some results, where we compare

graph cut, using scribbles only, with DijkstraGC, where the

user set additional clicks after obtaining the graph cut result.

We see that usually graph cut based algorithms tend to cut

off thin elongated structures in the image. To retrieve these

thin structures using brush strokes can be very difficult since

they may only be 1 − 2 pixel wide. To obtain a satisfying

result with DijkstraGC the user only needs some additional

clicks and the selection of a width parameter δ, which is

a considerable reduction in the amount of user interactions

needed. For the last example in Fig. 5 the number of clicks

necessary to extract the segmentation was 11 since the thin

structures we want to segment (the legs of the spider) inter-

sect each other and the path that DijkstraGC computes goes

throw the already segmented leg.

The running time presented in the last column of Fig. 5

includes all the clicks in the image, and it is, as to be ex-

pected, related to the number of clicks and image size. The

optimized version of DijkstraGC (Fig. 4) improved the run-

time over the simple version (Fig. 2) from, e.g. 28.4 to 14.8
seconds for the last image in Fig. 5.

The width parameter δ provides the possibility of spec-

ifying a minimum desired width of the connection between

the two components. This parameter is not included directly

in the formulation of the DijkstraGC algorithm. Instead we

define for all nodes p a set Qp according to δ. For δ = 1,

Qp = {p}; for δ = 2, Qp is the set of 4 nodes in a 2 × 2
square that includes node p and for δ = 3, Qp contains

p and its neighbors in a 4-connected grid. Fig. 6 shows

that this parameter can be important in a practical system to

avoid that the connectivity constraint is satisfied by a seg-

mentation with a one pixel width only. Please note that in

general δ does not have to be the exact width of the structure

we want to segment. In fig. 6 setting the width parameter to

δ = 2 was sufficient to recover the thin leg which has a

larger width than 5 pixels.

Direction of DijkstraGC. Swapping the nodes s and t,
i.e. changing the direction of DijkstraGC, may lead to two

different segmentations as seen in the example of fig. 3.

However we observed that the two segmentations usually

only differ by a small number of pixels (on average less than



(a) User input (b) Graph Cut [18] (c) Additional user input (d) DijkstraGC (e) Problem Specification

size = 481×321

time = 1.0

δ = 1

size = 568×426

time = 2.9

δ = 2

size = 640×865

time = 14.8

δ = 3

Figure 5. Results of the DijkstraGC algorithm. (a) original images with user scribbles (blue background; green foreground); (b) Graph

Cut results using [18]; (c) Selection of sites for connectivity, where numbers present the input order; (d) DijkstraGC results; (e) Problem

specification: image size, running time for DijkstraGC (on 2.16 GHz CPU with 2GB RAM), and minimum width specified by the user.

(a) User input (b) Graph Cut (c) DijkstraGC δ = 1 (d) DijkstraGC δ = 2

Figure 6. Width parameter δ. Two different results obtained with DijkstraGC algorithm for different values of δ (minimum width).

1% of the number of pixels in set [x]) and the difference is

often not visually significant.

In contrast, the difference in speed can be substantial. In

our examples the running time was on average reduced by

half if the “source” node s was in the smaller component

(out of the two components that we want to connect). Ac-

cordingly, we chose it as the default option and used it for

the results presented in Fig. 5 and 6.

4.2. Optimality of DijkstraGC
The dual decomposition algorithm, described in sec-

tion 3.2, gives both a solution for a special case of P1 and

a lower bound on the optimal value of P1. Although this

technique is not useful for a practical system, since the run-

ning time is on average 3 hours, it can be used to assess the

optimality of DijkstraGC.

We considered 40 connectivity problems (i.e. user clicks)

where the dual decomposition approach is applicable, i.e.

all pixels at the image boundary are background. Another

restriction for this approach is that we have to use a pla-

nar graph (4-connected 2D grid) for maxflow computations.

For 12 out of the 40 problems the dual decomposition algo-

rithm gave the global optimum. It is a positive result that for



all these 12 cases also DijkstraGC returned the global opti-

mum. The first image in Fig. 5 is one of the examples for

which we obtained the global optimum for all the connec-

tivity constraints. (Note that the result is slightly different

from the one presented, since for this optimality experiment

we had to choose the graph to be planar, i.e. 4-connected.)

For all the other problems we observed that the result pro-

vided by DijkstraGC was always better in terms of energy

value than the result of the dual decomposition method.

5. Conclusions and Future Work

In this paper we proposed to overcome the “shrinking

bias” of graph cut methods by imposing connectivity con-

straints in the segmentation. We presented a new algorithm

DijkstraGC that computes a segmentation satisfying those

constraints and we showed that integrating this algorithm in

an interactive system for image segmentation reduces con-

siderably the amount of user interaction necessary to seg-

ment thin structures in the image.

Although in general DijkstraGC is not guaranteed to

compute the global minimum of our NP-hard optimization

problem, we believe that in practice it is not an issue. This

claim is supported by two facts: (i) running DijkstraGC in

different directions gives almost the same result, and (ii) Di-

jkstraGC computes the optimal solution for some particular

instances (see sec. 4.2).

Currently, the speed of DijkstraGC is perhaps the main

drawback for a practical interactive segmentation system.

However, we believe that there is a large scope for improve-

ment via rearrangement of the order in which nodes are

visited during the algorithm, or the use of multiple graphs

for maxflow computations (sec. 3.1). We intend to explore

these ideas in the future.
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