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Abstract. In this paper we present a new approach for establishing correspon-
dences between sparse image features related by an unknown non-rigid mapping
and corrupted by clutter and occlusion, such as points extracted from a pair of im-
ages containing a human figure in distinct poses. We formulate this matching task
as an energy minimization problem by defining a complex objective function of
the appearance and the spatial arrangement of the features.Optimization of this
energy is an instance of graph matching, which is in general aNP-hard problem.
We describe a novel graph matching optimization technique,which we refer to
as dual decomposition (DD), and demonstrate on a variety of examples that this
method outperforms existing graph matching algorithms. Inthe majority of our
examples DD is able to find the global minimum within a minute.The ability to
globally optimize the objective allows us to accurately learn the parameters of
our matching model from training examples. We show on several matching tasks
that our learned model yields results superior to those of state-of-the-art methods.

1 Introduction

Feature correspondence is one of the fundamental problems of computer vision and
is a key ingredient in a wide range of applications includingobject recognition, 3D
reconstruction, mosaicing, motion segmentation, and image morphing. Several robust
algorithms (see e.g. [1, 2]) exist for registration of images of static scenes and for
visual correspondence under rigid motion. These methods typically exploit powerful
constraints (e.g. epipolar constraints) to reduce the search space and disambiguate the
correspondence problem. However, such constraints do not apply in the case of non-
rigid motion or when matching different object instances. Apopular approach in these
cases is to discard the information about the spatial layoutof features, and to find cor-
respondences using appearance only. For example, many object recognition methods
[3–9] represent images as orderless sets of local appearance descriptors, known as bags
of features. Recent work [10] has suggested that for many correspondence problems,
learned appearance-based models perform similarly or better than state-of-the-art struc-
tural models exploiting information about spatial arrangement of features. This is pri-
marily due to the challenges posed by the optimization and training of structural models,
which often require approximate solution of NP-hard problems. In this paper we con-
trast this theory, and demonstrate that a complex structural model for image matching
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can be learned and optimized successfully. We cast the visual correspondence prob-
lem as an energy minimization task by defining a complex imagematching objective
depending on (i) feature appearance, (ii) geometric compatibility of correspondences,
and (iii) spatial coherence of matched features. Additionally, we impose a uniqueness
constraint allowing at most one match per feature. We introduce a novel algorithm to
minimize this function based on the dual decomposition approach (DD) from combi-
natorial optimization, see e.g. [11–16]. The DD method works by maximizing a lower
bound on the energy function. The value of the lower bound canbe used to gauge the
distance from the global minimum and to decide when to stop the optimization, in the
event the global minimum cannot be found. For the majority ofour examples DD finds
the global minimum in reasonable time, and otherwise provides a solution whose cost
is very close to the optimum. In contrast, previously proposed optimization methods
such as [17, 18] often fail to compute good solutions for our energy function. Our ex-
perimental evaluation shows that the model and the algorithm presented in this paper
can be applied to a wide range of image matching problems withresults matching or
exceeding those of existing algorithms [10, 19].

1.1 Relation to Previous Work

Models for feature matching Our approach is loosely related to algorithms that find
visual correspondences by matching appearance descriptors under smooth, or piece-
wise smooth, spatial mappings. For example, Torr [20] describes a technique for esti-
mating sparse correspondences using RANSAC under the assumption that the images
contain a common set of rigidly moving objects. However, this piece-wise rigid motion
assumption is not appropriate for deformable objects, suchas human faces, or for dif-
ferent instances of an object class, such as different cars,related by highly non-linear
mappings. Other approaches [21, 22] have proposed to constrain the correspondence
problem by learning or hand-coding explicit models of how anobject is allowed to
deform using parametric 2D or 3D representations, such as linear eigenshapes or su-
perquadrics. Unlike such approaches, our method does not make a parametric assump-
tion about the transformation relating the input images, and thus can be used in a wider
range of applications. Belongie et al. [19] inject spatial smoothness in the match by
means of an iterative technique that alternates between finding correspondences using
shape features, and computing a regularized transformation aligning the matching fea-
tures. The shape descriptors are recomputed in each iteration after the warping. Since
the objective is changed at each iteration, the convergenceproperties of this algorithm
are not clear. Our approach is most closely related to the work of Berg et al. [23], and
Leordeanu and Hebert [24], who formulate visual correspondence as a graph match-
ing problem by defining an objective including terms based onappearance similarity as
well as geometric compatibility between pairs of correspondences. Our model differs
from those in [23, 24] in several ways. The methods proposed in [23] and [24] handle
outliers by removing low-confidence correspondences from the obtained solutions. In-
stead, we include in our energy an explicit occlusion cost, as for example previously
done in [25]. Thus our algorithm solves for the outliers as part of the optimization. We
add to the objective a spatial coherence term, favoring spatial aggregation of matched
features, which reduces the correspondence error on our examples. We also show that
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geometric penalty functions defined in local neighborhoodsprovide more accurate cor-
respondences than global geometric costs, such as those used in [23] and [24]. Finally,
we use the method of Liu et al. [26] to learn the parameter values for the model from
examples, thus avoiding the need of manual parameter tuning.
Graph matching optimization Graph matching is a challenging optimization problem
which received considerable attention in the literature (see [27] for a comprehensive
survey of methods). Proposed techniques include the graduated assignment algorithm of
Gold and Rangarajan [28], spectral relaxation methods [24,17], COMPOSE method of
Duchi et al. [18]. Maciel and Costeira [29] reduce the problem to concave minimization
and apply the exact method in [30]. Torr [25] and Schellewaldand Schnörr [31] use
semi-definite programming (SDP) relaxation for graph matching. Among these papers,
only [29] and [31] report obtaining optimal (or near optimal) solutions. The method in
[29] was tested only on a single example with quadratic costs. We conjecture that on
practical challenging instances this method will suffer from an exponential explosion3.
As shown in [17], the SDP relaxation approach in [31] scales quite poorly and is too
expensive for problems of reasonable size.

2 Energy function

We now describe the energy function of our matching model. Let P ′ andP ′′ be the
sets of features extracted from the two input images. We denote with A ⊆ P ′ × P ′′

the set of potential assignments between features in the twosets. We will use the terms
assignment and correspondence interchangeably to indicate elements ofA. We repre-
sent amatching configurationbetween the two point sets as a binary valued vector
x ∈ {0, 1}A. Each correspondencea ∈ A indexes an entryxa in the vectorx. A cor-
respondencea is active if xa = 1, and it is inactive otherwise. We define an energy
functionE(x) modeling our matching problem assumptions. This will allowus to for-
mulate the matching task as minimization ofE(x). In this paper we consider matching
problems where at most one active correspondence per feature is allowed. This require-
ment is known as the uniqueness constraint and it is commonlyused in correspondence
problems. In order to enforce this condition we define the constraint setM :

M = {x ∈ {0, 1}A |
∑

a∈A(p)

xa ≤ 1 ∀ p ∈ P} (1)

whereP = P ′ ∪ P ′′ is the set of features from both images, andA(p) is the set of
correspondences involving featurep. The goal is to find the configurationx ∈ M
minimizingE(x). We define our energy as a weighted sum of four energy terms:

E(x) = λappEapp(x) + λocclEoccl(x) + λgeomEgeom(x) + λcohEcoh(x) (2)

whereλapp, λoccl, λgeom, λcoh are scalar weights. We describe the energy terms below.

3 The method in [29] first selects alinear functionE
− which is an underestimator on the original

objective functionE, i.e.E−(x) ≤ E(x) for all feasible solutionsx. It then visitsall feasible
solutionsx with E

−(x) ≤ E(x∗) whereE(x∗) is the cost of the optimal solution. For each
solution a linear program is solved.
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FunctionEapp(x) favors correspondences between features having similar appear-
ance. We define this function as a sum of unary terms:

Eapp(x) =
∑

a∈A

θapp
a xa . (3)

For an assignmenta = (p′, p′′) ∈ A, θapp
a is the distance between appearance descrip-

tors (such as Shape Context [19]) computed at pointsp′ andp′′ in the respective images.
We have used different features depending on the task at hand(see sec. 4).

The termEoccl(x) imposes a penalty for unmatched features. We defineEoccl(x)
to be the fraction of unmatched features in the smallest of the two feature sets. We can
write this function as

Eoccl(x) = 1 −
1

min{|P ′| , |P ′′|}

∑

a∈A

xa (4)

by noting that
∑

a∈A xa is equal to the number of distinct matched features inP ′ and
P ′′, ∀x ∈ M . This result derives trivially from the uniqueness constraint.

The termEgeom(x) is a measure of geometric compatibility between active cor-
respondences. This term is similar to the distortion costs proposed in [23, 24]. Note,
however, that the energy terms used in these previous approaches include distortion
costs for all pairs of matched features, which results in energy functions penalizing any
deviation from a global rigid transformation. Instead, ourfunctionEgeom(x) measures
geometric compatibility of correspondences only forneighboringfeatures. We demon-
strate that this model permits more flexible mappings between the two sets of features
and yields more accurate correspondences. We use a “neighborhood system”N to spec-
ify the pairs of correspondences involved in our measure of geometric compatibility.N
consists of all correspondence pairs defined over neighboring features:

N ={〈(p′, p′′), (q′, q′′)〉 ∈ A×A | p′ ∈ Nq′ ∨ q′ ∈ Np′ ∨ p′′ ∈ Nq′′ ∨ q′′ ∈ Np′′} (5)

whereNp indicates the set ofK nearest neighbors ofp (computed in the set of feature
p), andK is a positive integer value controlling the size of the neighborhood, which
we callgeometric neighborhood size. Egeom(x) is computed over pairs of active corre-
spondences in the setN :

Egeom(x) =
∑

(a,b)∈N

θgeom
ab xaxb (6)

where:
θ

geom
ab = η(eδ2

a,b/σ2

l − 1) + (1 − η)(eα2

a,b/σ2

α − 1) (7)

δ(p′,p′′),(q′,q′′) =
|||p′ − q′|| − ||p′′ − q′′|||

||p′ − q′|| + ||p′′ − q′′||
(8)

α(p′,p′′),(q′,q′′) = arccos

(

p′ − q′

||p′ − q′||
·

p′′ − q′′

||p′′ − q′′||

)

(9)

Intuitively, θgeom
(p′,p′′),(q′,q′′) computes the geometric agreement between neighboring cor-

respondences(p′, p′′),(q′, q′′) by evaluating how well the segmentp′q′ matches the
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segmentp′′q′′ in terms of both length and direction. The parameterη is a scalar value
trading off the importance of preserving distances versus preserving directions.

The termEcoh(x) favors spatial proximity of matched features. It incorporates our
prior knowledge that matched features should form spatially coherent regions within
each image, corresponding to common objects or parts in the image pair, in analogy
to coherence on a pixel grid, used for example in image segmentation. We define the
costEcoh(x) as the fraction of neighboring feature pairs with differentocclusion status
(this can be viewed as an MRF Potts model over feature occlusion). We now show how
to write this function directly in terms of solutionx. Let NP be the set of pairs of
neighboring features in the two images:

NP = {(p, q) ∈ (P ′ × P ′) ∪ (P ′′ × P ′′) | p ∈ Nq ∨ q ∈ Np}. (10)

Then we can expressEcoh(x) as a sum of unary and pairwise terms:

Ecoh(x) =
1

|NP |

∑

(p,q)∈NP

Vp,q(x) (11)

where:
Vp,q(x) =

∑

a∈A(p)

xa +
∑

b∈A(q)

xb − 2
∑

a∈A(p),b∈A(q)

xaxb . (12)

Vp,q(x) is equal to 0 ifp, q are either both matched or both unmatched;Vp,q(x) is equal
to 1 otherwise.
Feature correspondence as graph matching The problem defined above can be
written as

min
x∈M

E(x | θ̄) =
∑

a∈A

θ̄axa +
∑

(a,b)∈N

θ̄abxaxb (13)

where the constraint setM is given by (1). This problem is often referred to asgraph
matchingin the literature [28, 10]. FeaturesP ′ andP ′′ are viewed as vertices of the two
graphs. Pairwise term̄θabxaxb with a = (p′, p′′), b = (q′, q′′) encodes compatibility
between edges(p′, q′), (p′′, q′′) of the first and second graph, respectively, while unary
term θ̄axa measures similarity between verticesp′, p′′.

We now address the question of how to optimize problem (13). Unfortunately, this
problem is NP-hard [28]. We propose to use theproblem decompositionapproach (or
dual decomposition- DD) for graph matching. Details are given in the next section.

3 Problem decomposition approach

On the high level, the idea is to decompose the original problem into several “easier”
subproblems, for which we can compute efficiently a global minimum (or obtain a good
lower bound). Combining the lower bounds for individual subproblems will then pro-
vide a lower bound for the original problem. The decomposition and the corresponding
lower bound will depend on a parameter vectorθ; we will then try to find a vectorθ
that maximizes the bound. This approach is well-known in combinatorial optimization;
sometimes it is referred to as “dual decomposition” [11]. Itwas applied to quadratic
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pseudo-boolean functions (i.e. functions of binary variables with unary and pairwise
terms) by Chardaire and Sutter [12]. Their work is perhaps the closest to the method in
this paper. As in [12], we use “small” subproblems for which the global minimum can
be computed exactly in reasonable time. Our choice of subproblems for graph match-
ing, however, is different from [12]. In vision the decomposition approach is probably
best known in the context of the MAP-MRF inference task. It was introduced by Wain-
wright et al. [13] who decomposed the problem into a convex combination of trees
and proposed message passing techniques for optimizing vectorθ. These techniques do
not necessarily find the best lower bound (see [32] or review article [33]). Schlesinger
and Giginyak [14, 15] and Komodakis et al. [16] proposed to use subgradient tech-
niques [34, 11] for MRF optimization, which guarantee to converge to a vectorθ giving
the best possible lower bound.

3.1 Graph matching via problem decomposition

We now apply this approach to the graph matching problem given by eq. (13). We
decompose (13) into subproblems characterized by vectorsθσ, σ ∈ I with positive
weightsρσ. (These weights are chosen a priori, and may affect the speedof convergence
of the subgradient method in section 3.3.) HereI is a finite set of subproblem indexes.
We will require the vectorθ = (θσ |σ ∈ I) to be aρ-reparameterizationof the original
parameter vector̄θ [13], i.e.

∑

σ∈I

ρσθσ = θ̄ (14)

For each subproblemσ we will define a lower boundΦσ(θσ) which satisfies

Φσ(θσ) ≤ min
x∈M

E(x | θσ) (15)

It is easy to see that the function

Φ(θ) =
∑

σ∈I

ρσΦσ(θσ) (16)

is a lower bound on the original function. Indeed, ifx∗ is an optimal solution of (13)
then from (14)-(16) we get

Φ(θ) ≤
∑

σ∈I

ρσ min
x∈M

E(x | θσ) ≤
∑

σ∈I

ρσE(x∗ | θσ) = E(x∗ | θ̄)

In section 3.2 we will describe the subproblems that we use. For each subproblem
σ we will do the following: (1) define constraints on vectorθσ; (2) define the function
Φσ(θσ); (3) specify an algorithm for computingΦσ(θσ). In section 3.3 we will discuss
how to maximize the lower boundΦ(θ) using the subproblem solutions. Finally, in
section 3.4 we will describe how to obtain solutionx ∈ M for our original problem.
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3.2 Graph matching subproblems

Linear subproblem In our first subproblem, which we denote by the index “L”, we
require all pairwise terms to be zero:θL

ab = 0 for (a, b) ∈ N . In such case prob-
lem (13) can be solved exactly in polynomial time, for example using the Hungarian
algorithm [35]. (This is often known as thelinear assignment problem.) We define
ΦL(θL) = minx∈M E(x | θL). To compute this minimum, we converted the problem
to an instance of a minimum cost circulation with unit capacities and ran the succes-
sive shortest path algorithm [35]. This solves the problem usingO(|P | + |A|) Dijkstra
shortest path computations in graphs with|P | + 1 nodes andO(|P | + |A|) edges.

Maxflow subproblem In the second subproblem, which we denote by the index “M ”,
we do not put any restrictions on the vectorθM . To get a lower bound, we ignore
the uniqueness constraint

∑

a∈A(p) xa ≤ 1 and leave only the discreteness constraint:

xa ∈ {0, 1}. If the functionE(x | θM ) is submodular (i.e. coefficientsθM
ab are non-

positive for all pairwise terms(a, b) ∈ N ), then we can compute a global minimum
using a maxflow algorithm. With arbitraryθM

ab the problem becomes NP-hard [36]. We
use theroof duality relaxation [37] to get a lower boundΦM (θM ) on the problem. It
can be defined as the optimal value of the following linear program:

ΦM (θM ) = min
∑

a∈A

θM
a xa +

∑

(a,b)∈N

θM
abxab (17)

subject to

{

0 ≤ xa ≤ 1 ∀ a ∈ A

xab ≤ xa, xab ≤ xb, xab ≥ xa + xb − 1, xab ≥ 0 ∀ (a, b) ∈ N

This relaxation can be solved in polynomial time by computing a maximum flow in a
graph with2(|A| + 1) nodes andO(|A| + |N |) edges [38, 36].

Local subproblems For our last set of subproblems we use an exhaustive search to
compute the global minimum (see Appendix A for details). Thus, we need to make sure
that subproblems are sufficiently small. We use the following technique. For each point
p ∈ P we chooseNd

p ⊆ P to be the set ofKd nearest points in the same image where
Kd is a small constant, e.g. 2 or 3. (The superscriptd stands for “decomposition”.) We
then consider the subproblem which involves only assignments in the setA(Nd

p ) =

{(p′, p′′) ∈ A | p′ ∈ Nd
p ∨ p′′ ∈ Nd

p } and the edges between those assignments. More
precisely, we require vectorθp corresponding to this subproblem to satisfy the following
constraints:

θp
a = 0 if a /∈ A(Nd

p ),

θp
ab = 0 if a /∈ A(Nd

p ) or b /∈ A(Nd
p ).

These constraints imply that we can fix assignmentsa ∈ A − A(Nd
p ) to 0 when com-

puting the minimumminx∈M E(x |θp). Then we get a graph matching problem where
the set of points in one of the images isNd

p .
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3.3 Lower bound optimization

In the previous section we described constraints on vectorθ and a lower boundΦ(θ)
consisting of|P | + 2 subproblems. It can be seen thatΦ is a concave function ofθ.
Furthermore, the constraints onθ yield a convex setΩ. This set is defined by the repa-
rameterization equation (14) and constraints on individual subproblemsθσ ∈ Ωσ given
by equalitiesθσ

a = 0, θσ
ab = 0 for certain assignmentsa and edges(a, b). LetIa, Iab ⊆ I

be the subsets of subproblem indexes for which elementsθσ
a , θσ

ab, respectively, arenot
constrained to be 0. Thus, assignmenta ∈ A is involved in subproblemsσ ∈ Ia, and
edge(a, b) ∈ N is involved in subproblemsσ ∈ Iab.

Similar to [12, 14–16], we used a projected subgradient method [34, 11] for maxi-
mizingΦ(θ) overΩ. One iteration is given by

θ := PΩ(θ + λg)

wherePΩ is the operator that projects a vector toΩ, g is a subgradient ofΦ(θ) and
λ > 0 is a step size.
Projection To project vectorθ to Ω, we first compute vector̂θ =

∑

σ ρσθσ and then
updateθ as follows:θσ

a := 0 for σ ∈ I − Ia, θσ
ab := 0 for σ ∈ I − Iab,

θσ
a := θσ

a + ρσ
θ̄a − θ̂a
∑

σ∈Ia
ρ2

σ

∀σ ∈ Ia,

θσ
ab := θσ

ab + ρσ
θ̄ab − θ̂ab
∑

σ∈Iab
ρ2

σ

∀σ ∈ Iab.

Subgradient computation A subgradient of functionΦ(θ) is given by

g =
∑

σ∈I

ρσgσ

wheregσ is a subgradient of functionΦσ(θσ). If the latter function is the global min-
imum of E(x | θσ) (which is the case forσ ∈ I − {M}) then we can takegσ

a = xσ
a ,

gσ
ab = xσ

axσ
b wherexσ is a global minimizer ofE(x | θσ). For the maxflow subprob-

lem a subgradient can be computed asgM = xM wherexM is an optimal solution
of linear program (17). The method in [38] produces a half-integer optimal solution
wherexM

a ∈ {0, 0.5, 1} for all assignmentsa andxM
ab is determined as follows: if

(xM
a , xM

b ) 6= (0.5, 0.5) thenxM
ab = xM

a xM
b , otherwisexM

ab = 0 if θM
ab ≤ 0 (i.e. the

corresponding term is submodular) andxM
ab = 0.5 if θM

ab > 0.
Step size An important issue in the subgradient method is the choice ofthe step size
λ. We used an adaptive technique described in [39, 11]. We setλ = α(Φ(θ∗) + δ −
Φ(θ))/||g||2 whereα is a constant (1 in our experiments),θ∗ is the best vector found
so far (i.e. the vector giving the best lower bound), andδ is a positive number which
is updated as follows: if the last iteration improved the best lower boundΦ(θ∗) thenδ
is increased by a certain factor (1.5 in our experiments), otherwise it is decreased by a
certain factor (0.95).
Restarting the subgradient method In our implementation we also used the follow-
ing technique borrowed from [40]. If the best value of the lower boundΦ(θ∗) has not
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changed duringγ iterations then we replaceθ with θ∗. In the beginningγ = 20, and
after every restart it is updated asγ := min{γ + 10, 50}.

3.4 Solution computation

To conclude the description of the method, we need to specifyhow to obtain solution
x ∈ M . If the linear subproblem is included in the decomposition then it is natural to
use its minimumxL in each iteration, sincexL is guaranteed to satisfy the uniqueness
constraint. However, we excluded this subproblem for the experiments presented in this
paper (for reasons explained below). We computed the solution in a given iteration as
follows: starting with labelingx = 0, we go through local subproblemsσ ∈ I−{L, M}
and assignmentsa involved in σ (in a fixed order), setxa = 1 if xσ

a = 1 and this
operation preserves the uniqueness constraint onx.

We maintain the solution with the smallest energy computed so far, and output it as
a result of the method.

3.5 Properties of decomposition

Of course, it is not necessary to use all subproblems described in section 3.2. The only
requirement is that each assignmenta ∈ A and edge(a, b) ∈ N should be covered by
at least one subproblem (i.e.Ia andIab should be non-empty), otherwise the projection
operation would be undefined. In this section we study how thechoice of subproblems
affects the optimal value of the lower boundmaxθ∈Ω Φ(θ). Without loss of generality
we can assumeρσ = 1 for σ ∈ I. (Indeed, weightsρσ may affect the speed of the
subgradient method, but they do not affect the value of the optimal bound since the
transformationρσ := ρσ/γ, θσ := θσ · γ with γ > 0 preserves the bound.)

First, we compare the bound provided by the decomposition method with the fol-
lowing technique which we callQPBO:

1. For each constraint
∑

a∈A(p) xa ≤ 1 of the setM add pairwise termsCxaxb for
all pairs of assignmentsa, b ∈ A(p), a 6= b whereC is a large constant ensuring
thatxaxb = 0 in the optimal solution. LetE′(x) be the function that we obtain.
Clearly, the minimization problemminx∈{0,1}A E′(x) is equivalent to (13).

2. Minimizing E′ is an instance of aquadratic pseudo-boolean optimizationprob-
lem [36]. Apply the roof duality relaxation [37, 36] to get a lower bound on (13).

Lemma 1. If the setI includes the linear and maxflow subproblems then the optimal
value of the lower boundΦ(θ∗) is the same as or larger than the QPBO bound.

A proof is given in Appendix B. In this proof we derive the LP relaxation solved by the
decomposition approach in the case whenI = {L, M}.

The next lemma shows that the linear and maxflow subproblems are often not es-
sential. (A proof is given in Appendix C.)

Lemma 2. (a) Suppose that for each pointp ∈ P there exists a local subproblem
σ ∈ I−{L, M} which covers all assignments inA(p), i.e.σ ∈ Ia for all a ∈ A(p).
Then adding or removing the linear subproblem will not affect the optimal value of
the lower bound of the decomposition approach.
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(b) Suppose that each assignmenta ∈ A and each edge(a, b) ∈ N are covered by
at least one local subproblem, i.e. there exist subproblemsσ ∈ I − {L, M} with
σ ∈ Ia and subproblemsσ ∈ I − {L, M} with σ ∈ Iab. Then adding or removing
the maxflow subproblem will not affect the optimal value of the lower bound.

It can be seen that our choice of local subproblems always satisfies conditions of part
(a). Thus, the linear subproblem would not help (assuming that we can compute the
optimal lower bound). We described this subproblem partly because it was used in pre-
vious work: in [18] the authors computedexactmin-marginals for the linear subproblem
in the belief propagation framework.

As for part (b), the answer depends on the structures of the neighborhood systems
Np used for constructing the energy function andNd

p used for constructing local sub-
problems. Recall thatNp andNd

p are controlled by parametersK andKd, respectively.
If K ≤ Kd then conditions of part (b) are always satisfied, otherwise some edges may
not be covered, and so including the maxflow subproblem may improve the optimal
bound.

4 Experimental results

In most of our experiments we learned problem-specific parameters of our energy model
from ground truth correspondences. The learning procedurewas initialized using de-
fault parameters corresponding to uniform values for the weightsλi, and variance val-
uesσ2

l = 0.5, σ2
α = 0.9. We now describe the learning technique.

4.1 Model learning

The energy model defined in Equation (2) is parameterized by aset of parameters,
denoted here withψ = {λapp, λoccl, λgeom, λcoh, η, σ2

l , σ2
α}. In addition, the energy

depends on input features setsP ′ andP ′′ extracted from the images. Here we high-
light this dependence on parameters and input points, by writing the energy function as
E(x; P ′, P ′′,ψ). We now consider the problem of learning parametersψ from a set of
n training matching examples defined by pairs of feature sets{(P ′

1, P
′′
1 ), ..., (P ′

n, P ′′
n )}

and ”ground truth” correspondences{x1, ...,xn}, typically specified by the user. We
use the Nonlinear Inverse Optimization (NIO) algorithm described in [26]. The objec-
tive of this method corresponds in our case to minimizing thegap in energy value be-
tween the user-provided ground truth correspondences and the matching configurations
estimated via energy optimization. In other words, we minimize the following objective
G(ψ):

G(ψ) =

n
∑

i=1

E(xi; P
′
i , P

′′
i ,ψ) − min

x∈M
E(x; P ′

i , P
′′
i ,ψ).

Let λ = {λapp, λoccl, λgeom, λcoh}, andσ2 = {σ2
l , σ2

α}. In order to avoid degenerate
solutions withλ = 0, and to obtain positive values for the term weightsλi and variances
σ2

i , we define reparameterizationsλi = eνi/
∑

j eνj , σ2
i = eǫi , and minimizeG with
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respect to{ǫ,ν} instead ofψ. As in [26], we optimizeG via gradient descent with line
search. The gradient ofG is locally approximated by optimizing the energies given the
current estimate of the parameters in each iteration.

4.2 Algorithms

In our experiments we compare the following algorithms:
DD We usedKd = min{K, 4}, whereK is the geometric neighborhood size. Moti-
vated by results in sec. 3.5, we did not use the linear subproblem. We setρσ = 1 for all
other subproblemsσ. We used a maximum of 10000 iterations, and stopped earlier if
the gap between the lower bound and the cost became smaller than10−6.
FUSION This technique was introduced in [41] for MRF optimization with multi-
ple labels. We propose to use it for graph matching as follows. First, we generate 256
solutions by applying one pass of coordinate descent (ICM) to zero labeling using ran-
dom orders. (Different orders of visiting assignments usually yield different solutions.)
We then “fuse” together pairs of solutions using the binary tree structure until a sin-
gle solution remains. Fusion of solutionsx′, x′′ is defined as follows. First, we fix all
assignmentsa ∈ A for whichx′ andx′′ agree, i.e.x′

a = x′′
a . Then we convert the ob-

tained graph matching problem to a quadratic pseudo-boolean optimization problem as
described in section 3.5. Finally, we run the QPBO-PI method[42] starting either with
labelingx′ if E(x′ | θ̄) < E(x′′ | θ̄) or with x′′ otherwise. The produced solutionx is
guaranteed to have the same or smaller cost than the costs ofx′ andx′′.

Below we show plots of the energy as a function of time. Clearly, these plots depend
on the order of fusions. We used the following order: we always pick the leftmost node
of the binary tree whose parents are available for fusion. Thus, the plots are independent
of the number of initial solutions (256 in our case).
BP We converted graph matching to a quadratic pseudoboolean optimization problem
and ran max-product belief propagation algorithm4. We also tested applying the roof
duality approach instead of BP, but results were quite discouraging (see below).
SMAC We ran the spectral relaxation method of Cour et al. [17], using the graduated
assignment algorithm [28] for discretization. Since SMAC imposes affine constraints on
the solution, we applied this algorithm only to datasets without outliers, where the one-
to-one affine constraint is satisfied. In principle, SMAC could handle outliers by the
introduction of dummy nodes. However, this would increase the number of variables
and potentially make the problem harder to solve.
COMPOSE We reimplemented the algorithm in [18]. The problem was castas assign-
ing a label from the setA(p′) ∪ {“occlusion′′} to each pointp′ ∈ P ′. Min-marginals
for the linear subnetwork were computed viaO(|A| + |P ′|) calls to the Dijkstra algo-
rithm. As in [18], we used Residual Belief Propagation (RPB)[43] with damping=0.3
for computing pseudo min-marginals for the “smoothness” subnetwork containing pair-
wise termsθabxaxb. However, in our experiments messages did not converge, so we set
an additional termination criterion for RBP: we stop it after passing20|N | messages.
As in [18], we computed the configuration by looking at individual messages at each

4 We used the code from http://www.adastral.ucl.ac.uk/˜ vladkolm/papers/TRW-S.html
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node. We did not use damping for the outer loop since otherwise the produced con-
figurations usually did not satisfy the uniqueness constraint. We also tested informally
the COMPOSE method with our representation which labels each assignment as 0 or
1. To compute min-marginals for the smoothness subnetwork we tried both a maxflow
algorithm (in the case of submodular potentials) and RBP. However, it did not seem to
improve the results, and the issue with convergence remained.
HUNG As in [10], we also tested the Hungarian algorithm using an energy consist-
ing only of linear terms. On problems with occlusions, we used our occlusion cost in
addition to the appearance energy term, i.e.EHUNG(x) = λappEapp(x) + λocclEoccl(x).

4.3 Comparative results

Hotel sequence: wide baseline matching. In this subsection we report results on
the CMU ’hotel’ sequence5. As in previous work [10], we use this dataset to assess
the performance of graph matching methods, and ignore the rigid motion constraint
that could be exploited using alternative wide-baseline matching algorithms [20]. We
reproduce the experimental setup described in [10] using the same manual labeling of
30 landmark points, and the same subset of 105 frame pairs. Asin this previous work,
we adopt as unary terms the distances between Shape Context descriptors. However,
we replace the pairwise terms proposed in [10] with our geometric energy function
Egeom(x), usingK = 2. Due to the absence of outliers, we removeEcoh(x) from our
energy and use a large constant value forλoccl. We set the remaining parameters to
default values, as defined above. We setA = P ′ ×P ′′. Figure 1(a) shows the matching
error obtained by optimizing this model with different methods. We include in the plot
also the performance of HUNG. Note the very large variance inmatching performance,
with BP and DD being the best methods with errors approaching0%. Note that the
error obtained with our model and our optimization is over 50times smaller than the
errors recently reported in [10]. On this dataset DD found always the global minimum
and in each case within a minute (see Figure 1(b)). We found that on this sequence
QPBO does not provide any labeling at all. Figure 1(c) illustrates performance versus
runtime on one image pair (frame 1 and 64). In this plot we indicate convergence to a
global minimum with a green circle. BP does well on this sequence, nearly matching
the minimization performance of DD, at a reduced cost.
Matching MNIST digits. Here we describe experiments on images of handwritten
digits from the MNIST dataset [44]. For training, we randomly sampled from this
dataset one image pair for each of the 10 digits. We repeated the same procedure to
generate a test set of 10 pairs of same digits. From each pair we extracted point sets
P ′ andP ′′ by uniformly sampling 100 points along the Canny edges of each image,
using the procedure described in [19]. We defined the unary potentialsθapp

(p′,p′′) to be
the Euclidean distances between Shape Context descriptorscomputed at pointsp′, p′′.
We formed the set of candidate assignmentsA ∈ P ′ × P ′′ by selecting the 5 most
similar features, in terms of Shape Context distance, for each pointp ∈ P . We col-
lected ground truth correspondences in the set(P ′ × P ′′) for each of the 20 image
pairs. The parameters of our model were learned from the 10 training image pairs with

5 Available at: http://vasc.ri.cmu.edu/idb/html/motion/hotel/index.html.
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Fig. 1. Results on the Hotel sequence (|P ′| = |P ′′| = 30, |A| = 900). (a) Mismatch
percentages of HUNG and different optimizations applied toour energy model. (b)
Frequency of convergence to global minimum. (c) Energy minimization versus time.

NIO. Figure 2(a) shows that the matching accuracy on the testset critically depends on
the ability to globally optimize the energies during the model learning stage. The left
plot reports the frequency of convergence to a global minimum during learning, plotted
as a function ofK, the geometric neighborhood size. The second plot shows thetest
set matching error of DD with learned versus default parameters. Matching error here
is measured as percentage of incorrect correspondences with respect to ground truth6.
We can see that the matching is much more accurate when using the parameters for
which DD reached more frequently global optimality during learning. Interestingly, al-
though the frequency of global minimum convergence increases slightly when varying
K from 2 to 4, the matching error remains roughly the same. Thissuggests that geomet-
ric penalty terms defined over small neighborhoods are sufficient to spatially regularize
the correspondences. Thus, models involving geometric costs defined over all pairs of
matched features, such as those used in [23, 24], may be unnecessarily restrictive for
many applications, in addition to being more difficult to optimize.

Given these results, we have used the model learned withK = 3 for the MNIST ex-
periments described below. Figure 2(b) shows the normalized energy values obtained by
different optimization methods on the test set. For each family of results we performed
anadditivenormalization so that for each image pair the energy of the best method be-
comes a fixed number. On 9 out of the 10 test image pairs, DD reaches global optimality,
and provides the minimum energy value on all examples. FUSION, BP, and COMPOSE
find the global minimum only on 2 images. FUSION finds solutions with energy values
very close to those obtained by DD. COMPOSE and BP provide considerably higher
energy values on some of the examples.

We have also attempted to minimize the energy by running the QPBO algorithm [37,
38, 36, 42] on the equivalent quadratic pseudoboolean optimization problem described
in section 3.5. This algorithm produces partial labelings that are part of a global opti-
mum. However, we found that on our MNIST matching problems, QPBO labeled on
average only 16% of the correspondences, with only 0.12% of these assignments cor-

6 In order to account for a certain degree of inherent ambiguity in the selection of ground truth
correspondences on these images, we did not consider it an error if a point was assigned to
any of the 3-nearest neighbors of the correct feature. Declaring a point with a ground truth
correspondence an outlier (or viceversa) was counted as error.
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Fig. 2. Experimental results on MNIST digits (|P ′| = |P ′′| = 100, |A| = 695, on
average). (a) Correlation between learning accuracy and matching performance: the
left plot shows the frequency of global minimum convergenceduring learning versus
K; the right plot shows mismatch error on test set. (b) Normalized energy values. (c)
Optimization performance versus runtime. (d) Mismatch error comparison between dif-
ferent optimization methods using our energy model. (e) Mismatch error using different
energy models.

responding to active correspondences. We also tried to apply the PROBE method [45,
42] to get more labeled nodes. However, in practice we were unable to do so, due to the
high computational cost of running PROBE on our problem instances.

Figure 2(c) shows minimization performance as a function oftime, evaluated on a
sample image pair. Figure 2(d) shows the correspondence accuracy obtained by opti-
mizing our energy with the different methods. Again, we find that DD and FUSION
yield the best accuracy. The parameters used for the energy of HUNG were learned
from the training examples using NIO with Hungarian matching for optimization. We
also evaluated variations of the energy model defined in Equation (2) obtained by us-
ing only the linear tearms (HUNG), by dropping the spatial coherence term, and by
forcing all points to be matched (implemented by fixingλoccl to a large value). The
parameters of these modified models were learned again with NIO, using DD for both
training and testing. We see from Figure 2(e) that both the spatial coherence prior, as
well as the occlusion cost, improve the matching accuracy. On these instances the sim-
ple appearance-based model used by HUNG gives poor accuracy. We also report the
matching error given by the model and optimization method ofBelongie et al., which
was applied to MNIST digit examples in [19]. For this experiment, we use the source
code provided by the authors and the settings described in [19]. Our approach performs
better than this state-of-the-art method.
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(a) (b) (c) (d)

Fig. 3. Correspondences obtained with (a) Hungarian matching and (b) DD. The last
two columns show grids warped by the thin-plate spline transformations computed from
the correspondences of (c) Hungarian matching and (d) DD.

Figure 3 illustrates some of the matches obtained with DD andHUNG. Our model
yields more accurate and geometrically consistent correspondences.

Estimating long range non-rigid motion. In this subsection we describe results on
the task of estimating large-disparity motion. For this experiment we used four (time-
separated) video frames of a child jumping. We matched each image to every other
image, for a total of six matches. The motion between any pairof these pictures is very
large and highly non-rigid. There is self-occlusion created by the motion of arms and
torso, and occlusion due to a tricycle positioned between the child and the camera. Fea-
ture points were extracted by running the Harris corner detector on each image. We used
Euclidean distances of geometric blur descriptors [23] computed at each feature point,
both for selecting assignments inA (by choosing the five most similar features for each
pointp ∈ P ) as well as for calculating the unary terms of our energy. We learned the pa-
rameters in our model by applying the NIO algorithm to groundtruth correspondences
of two image pairs from a separate sequence containing the same child walking. Here
we report results usingK = 6. Figure 4 shows two matching examples from this exper-
iment and correspondences found with HUNG and DD. Note the ability of our system
to cope well with occlusion and multiple motions. DD converged to a global minimum
on all the image pairs in this experiment (see Figure 5(a,b)). Figure 5(c) reports the
correspondence errors (including mismatches as well as missed assignments).
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(a) (b)

Fig. 4. Estimating human motion (|P ′| = 118, |P ′′| = 172, |A| = 1128 on average).
Correspondences computed with (a) the Hungarian method and(b) DD. Correct corre-
spondences are shown in blue, missed assignments in green, and mismatches in red.
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Fig. 5. Experiments on human motion frames. (a) Frequency of convergence to global
minimum. (b) Normalized energy values. (c) Correspondenceerror.

Matching faces. We also carried out experiments on a set of 8 face images of distinct
individuals with different facial expressions. We used 2 ofthese images for learning the
model parameters given their manually labeled correspondences. We then exhaustively
matched the remaining 6 images, for a total of 15 test image pairs. Point setsP ′ andP ′′

and candidate assignmentsA for each image pair were formed by matching geometric
blur descriptors [23] computed along Canny edges in each image, using an iterative
procedure. Starting from empty setsP ′ = P ′′ = A = {}, we alternate selection of a
new pointp from either the left or the right image, by choosing the edge point (among
those not yet considered) having minimum geometric blur distance to points in the other
image. We add the 3 best assignments involving pointp to A, and the corresponding
points toP ′ andP ′′. We then introduce an inhibition window around pointp so that no
other points in that neighborhood will be selected. We repeat this procedure 600 times.
On average this yields point sets with more than 900 points ineach image, and a set
A with over 1700 potential assignments. Here we used geometric neighborhood size
K = 6, and defined again the unary term to be the Euclidean distancebetween geo-
metric blur descriptors. Figure 6(a) shows the normalized energy values obtained with
the optimization methods in our comparison. FUSION is the best performing method
93.33% of the times, while DD is the best on the remaining 6.67% cases. On all image
pairs DD and FUSION obtain very similar values, but on none ofthese challenging
matches they are able to reach the lower bound. By dropping the value ofK to 4, we
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(b)

Fig. 6. Results on face images (|P ′| = 922, |P ′′| = 915, |A| = 1782, on average). (a)
Normalized energy values. (b) Correspondences found with Hungarian matching (left)
and DD (right).

found that DD can reach the global minimum in most of the cases, although the corre-
spondences are slightly less accurate than when usingK = 6. Here BP performs rather
poorly. Figure 6(b) illustrates the correspondences foundby HUNG and DD on one of
these image pairs. Assignments are shown as feature displacements in each image. Red
lines denote incorrect assignments.

5 Conclusions

We have introduced novel models and optimization algorithms for feature correspon-
dence. We believe to be the first to demonstrate graph matching techniques capable of
reaching global optimality on various real-world image matching problems. As a future
work, we plan to replace exhaustive search for local subproblems with a branch-and-
bound method, as in [12]. We hope that this may speed up substantially the DD method.

Appendix A: exhaustive search

We computed the global minimum for local subproblems used inthe decomposition
approach as follows. Assume that the setP ′ has a smaller size thanP ′′ (the other case
is symmetric). First, we select on ordering of points inP ′. We then use a depth-first
search to go through all labelingsx ∈ M . We start with the zero labeling in which
all assignments are passive. At depthd (d = 1, . . . , |P ′|) we pickd-th point p in P ′

and explore|A(p)| + 1 possible branches forp. (In each branch we either make one
of assignments inA(p) active, or declare all assignments inA(p) to be passive.) If we
detect a violation of the uniqueness constraint inP ′′ then we backtrack. For each depth
d we maintain the cost of the current labeling. Updating this cost at depthd takesO(d)
time. (For this we need to store an|A| × |A| matrix of costs in the memory.)

Appendix B: proof of lemma 1

Let us write down the linear program corresponding to the QPBO method. The roof du-
ality relaxation for functionE is given by equation (17). Adding pairwise termsCxaxb
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for a, b ∈ A(p), a 6= b to function (13) will affect the relaxation (17) as follows:lin-
ear termsCxab will be added to function (17), and corresponding constraints will be
imposed (see (17)). SinceC is a large constant, new variablesxab will be forced to0.
Therefore, we arrive at the following linear program:

min
∑

a∈A

θ̄axa +
∑

(a,b)∈N

θ̄abxab (18)

subject to































xa + xb ≤ 1 ∀ a, b ∈ N(p), p ∈ P, a 6= b

0 ≤ xa ≤ 1 ∀ a ∈ A

xab ≤ xa, xab ≤ xb ∀ (a, b) ∈ N

xab ≥ xa + xb − 1 ∀ (a, b) ∈ N

xab ≥ 0 ∀ (a, b) ∈ N

Let us now derive the relaxation solved by the decompositionapproach with the
linear and maxflow subproblems, i.e. withI = {L, M}.It is well-known [35] that the
optimal value of the linear matching problemΦL(θL) is equal to the optimal value of
the following linear program:

min
∑

a∈A

θL
a xa

subject to











∑

a∈A(p)

xa ≤ 1 ∀ p ∈ P

xa ≥ 0 ∀ a ∈ A

= max
∑

p∈P

−µp (19)

subject to

{

−µp − µq ≤ θL
a ∀ a = (p, q) ∈ A

µp ≥ 0 ∀ p ∈ P

Similarly, the lower bound for the maxflow subproblemΦM (θM ) can be written as
the dual problem to (17):

max
∑

a∈A

−λa +
∑

(a,b)∈N

−λab (20)

subject to



























−λa +
∑

(a,b)∈N

[

λ̄ab − λab

]

≤ θM
a ∀ a ∈ A

−λ̄ab − λ̄ba + λab ≤ θM
ab ∀ (a, b) ∈ N

λa ≥ 0 ∀ a ∈ A

λ̄ab ≥ 0, λ̄ba ≥ 0, λab ≥ 0 ∀ (a, b) ∈ N

Here we denoted̄λab andλab to be the dual variables for the constraintsxab ≤ xa and
xab ≥ xa + xb − 1, respectively. Note that̄λab andλ̄ba are distinct variables, whileλab

andλba denote the same variable.
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Using (19) and (20), we can write the optimal lower bound of the decomposition
approach as follows:

max
θL∈ΩL

θL+θM=θ̄

ΦL(θL) + ΦM (θM )

= max
θ:θab=0

ΦL(−θ) + ΦM (θ̄ + θ)

= max
θ,µ,λ,λ̄

∑

p∈P

−µp +
∑

a∈A

−λa +
∑

(a,b)∈N

−λab

subject to















































−µp − µq ≤ −θa ∀ a = (p, q) ∈ A

−λa +
∑

(a,b)∈N

[

λ̄ab − λab

]

≤ θ̄a + θa ∀ a ∈ A

−λ̄ab − λ̄ba + λab ≤ θ̄ab ∀ (a, b) ∈ N

µp ≥ 0 ∀ p ∈ P

λa ≥ 0 ∀ a ∈ A

λ̄ab ≥ 0, λ̄ba ≥ 0, λab ≥ 0 ∀ (a, b) ∈ N

We can eliminateθa from the first and the second constraint and combine them intoone
constraint, then we obtain

max
µ,λ,λ̄

∑

p∈P

−µp +
∑

a∈A

−λa +
∑

(a,b)∈N

−λab

subject to















































−µp − µq − λa +
∑

(a,b)∈N

[

λ̄ab − λab

]

≤ θ̄a

∀ a = (p, q) ∈ A

−λ̄ab − λ̄ba + λab ≤ θ̄ab ∀ (a, b) ∈ N

µp ≥ 0 ∀ p ∈ P

λa ≥ 0 ∀ a ∈ A

λ̄ab ≥ 0, λ̄ba ≥ 0, λab ≥ 0 ∀ (a, b) ∈ N

The dual to this linear program is given by

min
∑

a∈A

θ̄axa +
∑

(a,b)∈N

θ̄abxab

subject to















































∑

a∈A(p)

−xp ≥ −1 ∀ p ∈ P

−xa ≥ −1 ∀ a ∈ A

−xa − xb + xab ≥ −1 ∀ (a, b) ∈ N

xa − xab ≥ 0, xb − xab ≥ 0 ∀ (a, b) ∈ N

xa ≥ 0 ∀ a ∈ A

xab ≥ 0 ∀ (a, b) ∈ N
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Thus, we finally obtain that the optimal value of the lower bound equals

min
∑

a∈A

θ̄axa +
∑

(a,b)∈N

θ̄abxab (21)

subject to







































∑

a∈A(p)

xp ≤ 1 ∀ p ∈ P

0 ≤ xa ≤ 1 ∀ a ∈ A

xab ≤ xa, xab ≤ xb ∀ (a, b) ∈ N

xab ≥ xa + xb − 1 ∀ (a, b) ∈ N

xab ≥ 0 ∀ (a, b) ∈ N

It is easy to see that the optimal value of (21) is the same or larger than the optimal value
of (18). Indeed, the only difference between (18) and (21) isthat the first constraint
in (21) is tighter than the corresponding constraint in (18):

∑

a∈A(p) xa ≤ 1 implies
xa + xb ≤ 1 for a, b ∈ A(p), a 6= b, but not the other way around. (Note that the
labelingxa = 0.5 for a ∈ A(p) satisfies the latter constraint but not the former, if
|A(p)| > 2.)

Appendix C: proof of lemma 2

Consider a local subproblemσ ∈ I. Let σ′ be a subproblem ofσ, i.e. the feasibility set
of σ′ is contained in the feasibility set ofσ: Ωσ′ ⊆ Ωσ. It can be seen that addingσ′

to I as another local subproblem does not affect the optimal lower bound. Indeed, it is
clear that addingσ′ cannot decrease the optimal bound. The optimal bound also cannot
increase since for any vectorθ′ = (. . . , θσ, θσ′

, . . .) ∈ Ω′, whereΩ′ is the constraint
set for the new problem, there exists vectorθ = (. . . , θσ + θσ′

, . . .) ∈ Ω whose bound
is not worse since

Φσ(θσ + θσ′

) = 2Φσ

(

θσ + θσ′

2

)

≥ Φσ(θσ) + Φσ′ (θσ′

).

(The inequality holds sinceΦσ′ is the same function asΦσ, and it is concave.)

Let us prove part (a). LetI be a set of subproblem indexes which does not include
the linear problemL. We need to show that addingL to I cannot increase the optimal
lower bound. Instead ofL, let us add a new subproblemp to I for each pointp ∈ P
which includes only assignments inA(p) (and does not include any edges), i.e. the
feasibility setΩp for this subproblem is defined byθp

a = 0 for all assignmentsa ∈
A − A(p) andθp

ab = 0 for all edges(a, b) ∈ N . As follows from the argument above
and conditions of part (a), this operation cannot improve the best lower bound. Thus, it
suffices to prove that replacing the new set of subproblems with L would not improve
optimal bound. In other words, we need to show that for anyθL
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ΦL(θL) ≤ max
∑

p∈P

Φp(θ
p) (22)

subject to
∑

p∈P

θp = θL

Using LP duality, it is easy to show that in fact an equality holds in (22). Indeed, the opti-
mal solution for vectorθp can be obtained as follows:Φp(θp) = min{0, mina∈A(p) θp

a}.
Thus, the maximization problem in (22) can be written as

max
∑

p∈P

−µp

subject to











θp
a + θq

a = θL
a ∀ a = (p, q) ∈ A

−µp ≤ θp
a ∀ p ∈ P, a ∈ A(p)

−µp ≤ 0 ∀ p ∈ P

Constraints

θp
a + θq

a = θL
a

−µp ≤ θp
a

−µq ≤ θq
a

for a = (p, q) ∈ A can be replaced with a single constraint−µp − µq ≤ θL
a since

variablesθp
a andθq

a are not involved in any other constraints. Then we arrive at the
linear program (19) which equalsΦL(θL).

Let us now prove part (b). Using a similar argumentation, we conclude that it suf-
fices to prove that

ΦM (θM ) ≤max
∑

a∈A

Φa(θa) +
∑

(a,b)∈N

Φab(θ
ab) (23)

subject to
∑

a∈A

θa +
∑

(a,b)∈N

θab = θM

whereσ = a is a local subproblem in which only the elementθa
a is allowed to be non-

zero andσ = (a, b) is a local subproblem in which only the elementsθab
a , θab

b , θab
ab are

allowed to be non-zero.
It can be shown that if we takeΦab(θ

ab) to be a lower boundminx∈{0,1}A E(x|θab)

rather than the global minimumminx∈M E(x | θab) then we get an equality in 23. (An
equivalent fact was proved in [37].) This implies (23) sinceusing the global minimum
instead of a lower bound can only increase the RHS.

For completeness, let us prove this equality. We have

Φa(θa) = min{0, θa
a}

Φab(θ
ab) = min{0, θab

a , θab
b , θab

a + θab
b + θab

ab}
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Thus, the maximization problem in (23) can be written as

max
∑

a∈A

−λa +
∑

(a,b)∈N

−λab

subject to















































θa
a +

∑

(a,b)∈N

θab
a = θM

a ∀ a ∈ A

−λa ≤ θa
a ∀ a ∈ A

−λa ≤ 0 ∀ a ∈ A

−λab ≤ θab
a ,−λab ≤ θab

b ∀ (a, b) ∈ N

−λab ≤ θab
a + θab

b + θM
ab ∀ (a, b) ∈ N

−λab ≤ 0 ∀ (a, b) ∈ N

We can eliminateθa
a from the first and the second constraint and combine them intoone

constraint, then we obtain

max
∑

a∈A

−λa +
∑

(a,b)∈N

−λab

subject to







































−λa +
∑

(a,b)∈N

θab
a ≤ θM

a ∀ a ∈ A

λa ≥ 0 ∀ a ∈ A

θab
a + λab ≥ 0, θab

b + λab ≥ 0 ∀ (a, b) ∈ N

−λab − θab
a − θab

b ≤ θM
ab ∀ (a, b) ∈ N

λab ≥ 0 ∀ (a, b) ∈ N

Let us use variables̄λab instead ofθab
a such thatθab

a = λ̄ab − λab, or λ̄ab = θab
a + λab.

It is straightforward to see that then we arrive at the linearprogram (20) which equals
ΦM (θM ).
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