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Abstract. In this paper we present a new approach for establishinggpoon-
dences between sparse image features related by an unkoowigid mapping
and corrupted by clutter and occlusion, such as points@eiidrom a pair of im-
ages containing a human figure in distinct poses. We formtités matching task
as an energy minimization problem by defining a complex dhjedunction of
the appearance and the spatial arrangement of the fea@pémization of this
energy is an instance of graph matching, which is in genelkiPdnard problem.
We describe a novel graph matching optimization technigdech we refer to
as dual decomposition (DD), and demonstrate on a varietyarhples that this
method outperforms existing graph matching algorithmsh&majority of our
examples DD is able to find the global minimum within a mindtke ability to
globally optimize the objective allows us to accuratelyrifethe parameters of
our matching model from training examples. We show on séweatching tasks
that our learned model yields results superior to thoseatésif-the-art methods.

1 Introduction

Feature correspondence is one of the fundamental problérengouter vision and
is a key ingredient in a wide range of applications includaigect recognition, 3D
reconstruction, mosaicing, motion segmentation, and @magrphing. Several robust
algorithms (see e.g. [1,2]) exist for registration of imag# static scenes and for
visual correspondence under rigid motion. These methquisaly exploit powerful
constraints (e.g. epipolar constraints) to reduce thechkesgpace and disambiguate the
correspondence problem. However, such constraints doppdy & the case of non-
rigid motion or when matching different object instancedpular approach in these
cases is to discard the information about the spatial lagbfeatures, and to find cor-
respondences using appearance only. For example, mangt obj@gnition methods
[3-9] represent images as orderless sets of local appeadascriptors, known as bags
of features. Recent work [10] has suggested that for mangspondence problems,
learned appearance-based models perform similarly agrtibtin state-of-the-art struc-
tural models exploiting information about spatial arramgat of features. This is pri-
marily due to the challenges posed by the optimization aiditrg of structural models,
which often require approximate solution of NP-hard praiseln this paper we con-
trast this theory, and demonstrate that a complex strdatuwdel for image matching
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can be learned and optimized successfully. We cast thelvisueespondence prob-
lem as an energy minimization task by defining a complex inmmag&hing objective
depending on (i) feature appearance, (ii) geometric coitipigt of correspondences,
and (iii) spatial coherence of matched features. Additigneve impose a uniqueness
constraint allowing at most one match per feature. We intceca novel algorithm to
minimize this function based on the dual decomposition epghn (DD) from combi-
natorial optimization, see e.g. [11-16]. The DD method w8drik maximizing a lower
bound on the energy function. The value of the lower boundbzsansed to gauge the
distance from the global minimum and to decide when to stemftimization, in the
event the global minimum cannot be found. For the majoritguwfexamples DD finds
the global minimum in reasonable time, and otherwise prewvi solution whose cost
is very close to the optimum. In contrast, previously prambeptimization methods
such as [17, 18] often fail to compute good solutions for mergy function. Our ex-
perimental evaluation shows that the model and the alguorjiresented in this paper
can be applied to a wide range of image matching problemsneghlts matching or
exceeding those of existing algorithms [10, 19].

1.1 Relation to Previous Work

Models for feature matching Our approach is loosely related to algorithms that find
visual correspondences by matching appearance dessriptoler smooth, or piece-
wise smooth, spatial mappings. For example, Torr [20] dlessra technique for esti-
mating sparse correspondences using RANSAC under the psarthat the images
contain a common set of rigidly moving objects. Howeves fiiece-wise rigid motion
assumption is not appropriate for deformable objects, sgdmuman faces, or for dif-
ferent instances of an object class, such as different ceeged by highly non-linear
mappings. Other approaches [21,22] have proposed to eamgitre correspondence
problem by learning or hand-coding explicit models of howdaddnject is allowed to
deform using parametric 2D or 3D representations, suchnaafieigenshapes or su-
perquadrics. Unlike such approaches, our method does ri@ anparametric assump-
tion about the transformation relating the input imagesd, tans can be used in a wider
range of applications. Belongie et al. [19] inject spatimlogthness in the match by
means of an iterative technique that alternates betweem@rdrrespondences using
shape features, and computing a regularized transformaligning the matching fea-
tures. The shape descriptors are recomputed in each dgteraltier the warping. Since
the objective is changed at each iteration, the convergemgeerties of this algorithm
are not clear. Our approach is most closely related to th& wbBerg et al. [23], and
Leordeanu and Hebert [24], who formulate visual correspogd as a graph match-
ing problem by defining an objective including terms basedpearance similarity as
well as geometric compatibility between pairs of corresfances. Our model differs
from those in [23, 24] in several ways. The methods propos¢a3] and [24] handle
outliers by removing low-confidence correspondences ftogrobtained solutions. In-
stead, we include in our energy an explicit occlusion costfoa example previously
done in [25]. Thus our algorithm solves for the outliers ag p&the optimization. We
add to the objective a spatial coherence term, favoringadggregation of matched
features, which reduces the correspondence error on oormes. We also show that
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geometric penalty functions defined in local neighborhqudside more accurate cor-
respondences than global geometric costs, such as thasey28] and [24]. Finally,
we use the method of Liu et al. [26] to learn the parameteregfar the model from
examples, thus avoiding the need of manual parameter tuning

Graph matching optimization Graph matching is a challenging optimization problem
which received considerable attention in the literatuee (7] for a comprehensive
survey of methods). Proposed techniques include the gradiaasignment algorithm of
Gold and Rangarajan [28], spectral relaxation methodsl[2Z4 COMPOSE method of
Duchi et al. [18]. Maciel and Costeira [29] reduce the prabte concave minimization
and apply the exact method in [30]. Torr [25] and Schellevaadd Schnorr [31] use
semi-definite programming (SDP) relaxation for graph miaighAmong these papers,
only [29] and [31] report obtaining optimal (or near optinsblutions. The method in
[29] was tested only on a single example with quadratic ca8ts conjecture that on
practical challenging instances this method will suffenfran exponential explosién
As shown in [17], the SDP relaxation approach in [31] scal@gecpoorly and is too
expensive for problems of reasonable size.

2 Energy function

We now describe the energy function of our matching modef.2’eand P be the
sets of features extracted from the two input images. Wetdenith A C P’ x P”

the set of potential assignments between features in theatgo We will use the terms
assignment and correspondence interchangeably to iedétatnents ofA. We repre-
sent amatching configuratiorbetween the two point sets as a binary valued vector
x € {0,1}4. Each correspondeneec A indexes an entry,, in the vectorz. A cor-
respondence is active ifz, = 1, and it is inactive otherwise. We define an energy
function E(a) modeling our matching problem assumptions. This will allesto for-
mulate the matching task as minimizationfofx). In this paper we consider matching
problems where at most one active correspondence perdaataifowed. This require-
ment is known as the uniqueness constraint and it is comnuselgt in correspondence
problems. In order to enforce this condition we define thestraimt set)/:

M={zec{0,1}*] Y z,<1 VpeP} (1)
a€A(p)

whereP = P’ U P” is the set of features from both images, ati@) is the set of
correspondences involving featupe The goal is to find the configuration € M
minimizing E(x). We define our energy as a weighted sum of four energy terms:

E(:c) _ )\appEapp(w) + /\occlEoch(w) + /\geomEgeom(w) + )\cohEcoh(w) (2)
where)aPP, \occl \geom \coh gre scalar weights. We describe the energy terms below.

% The method in [29] first selectdiaear function £~ which is an underestimator on the original
objective functionZ, i.e. E~ (x) < E(x) for all feasible solutions:. It then visitsall feasible
solutionsz with £~ () < E(x™) whereE(x™) is the cost of the optimal solution. For each
solution a linear program is solved.
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Function EPP(x) favors correspondences between features having simijezaap
ance. We define this function as a sum of unary terms:

E*®P() =) 03P, . (3)

a€cA

For an assignmeni = (p/, p”) € A, 65" is the distance between appearance descrip-
tors (such as Shape Context [19]) computed at peirasdp” in the respective images.
We have used different features depending on the task at(seadec. 4).

The termE°°°(z) imposes a penalty for unmatched features. We defiffé!(x)
to be the fraction of unmatched features in the smallestofwlo feature sets. We can
write this function as

1
occl 1 _ .
E (:I:)—]. min{|Pl|,|PN|}t;4:La (4)

by noting thaty _ ,_ , =, is equal to the number of distinct matched featuregirand
P”,Vx € M. This result derives trivially from the uniqueness coristra

The termE9°x) is a measure of geometric compatibility between active cor-
respondences. This term is similar to the distortion costpgsed in [23,24]. Note,
however, that the energy terms used in these previous agmsanclude distortion
costs for all pairs of matched features, which results ingynfinctions penalizing any
deviation from a global rigid transformation. Instead, éunction £9°™x) measures
geometric compatibility of correspondences onlyrieighboringfeatures. We demon-
strate that this model permits more flexible mappings betvike two sets of features
and yields more accurate correspondences. We use a “nefgidzbsystem’V to spec-
ify the pairs of correspondences involved in our measuresofetric compatibility/ N
consists of all correspondence pairs defined over neighpéeatures:

N={{{",p"),(d,q") € AxA|p € Ny Vq € Ny Vp" €Ny Vq" €Ny} (5)

whereN,, indicates the set ok nearest neighbors @f(computed in the set of feature
p), and K is a positive integer value controlling the size of the nbeigthood, which
we callgeometric neighborhood siz&9°™(x) is computed over pairs of active corre-
spondences in the sat:

E9%°"(z) = Z 095",y (6)
(a,b)eN
where: . .
0" = n(e®r/7 — 1) 4 (1 — ) (/7% 1) (7)
AT "o 1
5(1”117”)7(11'#”) = |||p/ q/|| ||p// q//||| (8)
llp" = ¢'[| + 1lp" — "l
p/ o q/ p// o q//
O 1) (o' .q") = ATCCOS . (9)
(®".p"),(a",qa") <||p’—q’|| ||p”—q”||)
Intuitively, #95°™ computes the geometric agreement between neighboring cor-

w'p"),(a",qa") _
respondence§’, p”’),(¢’, ¢") by evaluating how well the segmepty’ matches the



Feature Correspondence via Graph Matching: Models andaG@@jptimization 5

segmenp”¢” in terms of both length and direction. The parametés a scalar value
trading off the importance of preserving distances versasgyving directions.

The termE"\(x) favors spatial proximity of matched features. It incorgesaour
prior knowledge that matched features should form spgt@iherent regions within
each image, corresponding to common objects or parts imthge pair, in analogy
to coherence on a pixel grid, used for example in image setatien. We define the
costEN(x) as the fraction of neighboring feature pairs with differeatlusion status
(this can be viewed as an MRF Potts model over feature ocelusive now show how
to write this function directly in terms of solutiom. Let Np be the set of pairs of
neighboring features in the two images:

Np={(p,q) € (P’ xP)U(P"xP")|pe NyVqgeN,} (10)

Then we can expregs®(z) as a sum of unary and pairwise terms:

Ecoh Z ‘/Ij’q (11)
(P,q JENP
where:
Z Tq + Z Ty — 2 Z Talp - (12)
a€A(p) beA(q) a€A(p),beA(q)

Vp,q() is equal to O ifp, ¢ are either both matched or both unmatchég, () is equal
to 1 otherwise.
Feature correspondence as graph matching The problem defined above can be
written as
min B [0) = > fara+ Y Oapzam (13)

reM
a€A (a,b)eN

where the constraint sét/ is given by (1). This problem is often referred togrsph
matchingin the literature [28, 10]. Featurd¥ andP” are viewed as vertices of the two
graphs. Pairwise ter,,z,z;, with a = (p',p"), b = (¢’,¢") encodes compatibility
between edge®’, ¢'), (p”, ¢") of the first and second graph, respectively, while unary
termf,x, measures similarity between vertigésp” .

We now address the question of how to optimize problem (18joktunately, this
problem is NP-hard [28]. We propose to use fiieblem decompositioapproach (or
dual decompositionDD) for graph matching. Details are given in the next settio

3 Problem decomposition approach

On the high level, the idea is to decompose the original gmlihto several “easier”
subproblems, for which we can compute efficiently a globaimum (or obtain a good
lower bound). Combining the lower bounds for individual grdblems will then pro-
vide a lower bound for the original problem. The decompositind the corresponding
lower bound will depend on a parameter vedipwe will then try to find a vectof
that maximizes the bound. This approach is well-known inloioitorial optimization;
sometimes it is referred to as “dual decomposition” [11)wéts applied to quadratic
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pseudo-boolean functions (i.e. functions of binary vdealwith unary and pairwise
terms) by Chardaire and Sutter [12]. Their work is perhapsthsest to the method in
this paper. As in [12], we use “small” subproblems for whibk global minimum can
be computed exactly in reasonable time. Our choice of sutms for graph match-
ing, however, is different from [12]. In vision the decomitims approach is probably
best known in the context of the MAP-MRF inference task. Iswdroduced by Wain-
wright et al. [13] who decomposed the problem into a convaxlgioation of trees
and proposed message passing techniques for optimizitgr¥ed hese techniques do
not necessarily find the best lower bound (see [32] or revigiwi@[33]). Schlesinger
and Giginyak [14, 15] and Komodakis et al. [16] proposed te sgbgradient tech-
niques [34, 11] for MRF optimization, which guarantee to\@nge to a vectof giving
the best possible lower bound.

3.1 Graph matching via problem decomposition

We now apply this approach to the graph matching problemngbse eq. (13). We
decompose (13) into subproblems characterized by veéfgrs € I with positive
weightsp, . (These weights are chosen a priori, and may affect the sfestvergence
of the subgradient method in section 3.3.) Héiis a finite set of subproblem indexes.
We will require the vecto® = (07 | o € I) to be ap-reparameterizatioof the original
parameter vectat [13], i.e.

> pet” =10 (14)

oel

For each subproblem we will define a lower bound,, (§7) which satisfies

B,(0°) < min B |0°) (15)

It is easy to see that the function

B(0) =D pePs(67) (16)

oel

is a lower bound on the original function. Indeedgif is an optimal solution of (13)
then from (14)-(16) we get

P(0) <Y po min B(x|6°) < poB(x" | 6°) = B |0)
oel oel

In section 3.2 we will describe the subproblems that we useekch subproblem
o we will do the following: (1) define constraints on vectr, (2) define the function
@, (67); (3) specify an algorithm for computing, (67). In section 3.3 we will discuss
how to maximize the lower bound(0) using the subproblem solutions. Finally, in
section 3.4 we will describe how to obtain solutiere M for our original problem.



Feature Correspondence via Graph Matching: Models andaG@@jptimization 7
3.2 Graph matching subproblems

Linear subproblem In our first subproblem, which we denote by the indéX,“we
require all pairwise terms to be zer@f, = 0 for (a,b) € N. In such case prob-
lem (13) can be solved exactly in polynomial time, for exaenpsing the Hungarian
algorithm [35]. (This is often known as tHaear assignment problemWe define
&1 (07) = minge s E(x | 7). To compute this minimum, we converted the problem
to an instance of a minimum cost circulation with unit capiasiand ran the succes-
sive shortest path algorithm [35]. This solves the problemgaiO(|P| + | A|) Dijkstra
shortest path computations in graphs Wit + 1 nodes and(|P| + | A|) edges.
Maxflow subproblem In the second subproblem, which we denote by the indéX,*
we do not put any restrictions on the vectd¥. To get a lower bound, we ignore
the uniqueness constraipi, . ,,) z. < 1 and leave only the discreteness constraint:
z, € {0,1}. If the function E(z | 6) is submodular (i.e. coefficients! are non-
positive for all pairwise termsa,b) € N), then we can compute a global minimum
using a maxflow algorithm. With arbitras/ the problem becomes NP-hard [36]. We
use theroof duality relaxation [37] to get a lower boungl,, (') on the problem. It
can be defined as the optimal value of the following lineagpam:

& (0M) = min Z oMz, + Z 0M 0t (17)
acA (a,b)eN

. {O <z, <1 Yaec A

subject to

Tab < Tay, Tab < Ty Tap > Ta+Tp— 1, xep >0 V(a,b) EN
This relaxation can be solved in polynomial time by compgignmaximum flow in a
graph with2(|A| + 1) nodes and)(|A| 4+ | N|) edges [38, 36].
Local subproblems For our last set of subproblems we use an exhaustive search to
compute the global minimum (see Appendix A for details). hwe need to make sure
that subproblems are sufficiently small. We use the follg@chnique. For each point
p € Pwe choosei\f;f C P to be the set of(? nearest points in the same image where
K%is a small constant, e.g. 2 or 3. (The supersetigtands for “decomposition”.) We
then consider the subproblem which involves only assigrisignthe setA(N;f) =
{p/,p") e Alp € N;f v e N;f} and the edges between those assignments. More
precisely, we require vectéf corresponding to this subproblem to satisfy the following
constraints:

on =0 if ag¢ AN,
07, =0 if a¢ ANY) or b¢ A(NJ).

ab p
These constraints imply that we can fix assignmengs A — A(NJ) to 0 when com-
puting the minimumningc s E(x | 67). Then we get a graph matching problem where
the set of points in one of the imagesNg.
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3.3 Lower bound optimization

In the previous section we described constraints on vetemd a lower bound(9)
consisting of| P| + 2 subproblems. It can be seen tlais a concave function of.
Furthermore, the constraints éryield a convex sef?. This set is defined by the repa-
rameterization equation (14) and constraints on indiMidubproblem®? € {2, given
by equalitieg)] = 0, 07, = 0 for certain assignmentsand edgesa, b). Let1,, I, C I
be the subsets of subproblem indexes for which elenm&nt®’,, respectively, ar@ot
constrained to be 0. Thus, assignment A is involved in subproblems € 1,, and
edge(a, b) € N is involved in subproblems € I,,.

Similar to [12, 14-16], we used a projected subgradient owe{B4, 11] for maxi-
mizing @(0) over (2. One iteration is given by

0:=Pn(0+ \g)

wherePy, is the operator that projects a vector( g is a subgradient oP(6) and
A > 0is astep size.

Projection To project vecto® to {2, we first compute vectdt = >, P07 and then
updated as follows:§7 :=0foroc € I —1,,07, :=0foro € I — Iy,

0, — 0

07 =07 + po=e——— Voel,,
Zo'elap%
B, — O

0%, =07 + poem—"%" Vg Iy

delab Pz

Subgradient computation A subgradient of functio®(0) is given by

g=) pog’

oel

whereg? is a subgradient of functioé, (67). If the latter function is the global min-
imum of E(x | %) (which is the case fos € I — {M}) then we can takg? = 7,

97, = xgxy wherex? is a global minimizer off'(x | #7). For the maxflow subprob-
lem a subgradient can be computedgd$ = =" wherex™ is an optimal solution
of linear program (17). The method in [38] produces a haiéger optimal solution
wherez € {0,0.5,1} for all assignments andz/ is determined as follows: if

ab

(M M) # (0.5,0.5) thenz™ = zMaM, otherwiser = 0if 627 < 0 (i.e. the
corresponding term is submodular) anf = 0.5 if 62/ > 0.

Step size An important issue in the subgradient method is the choidhebtep size
A. We used an adaptive technique described in [39,11]. We seta(d(0%) + 6 —
@(0))/||g||> wherea is a constant (1 in our experiment§), is the best vector found
so far (i.e. the vector giving the best lower bound), arid a positive number which
is updated as follows: if the last iteration improved thetbeser bound®(0*) thens

is increased by a certain factor (1.5 in our experimentsgmtise it is decreased by a
certain factor (0.95).

Restarting the subgradient method In our implementation we also used the follow-
ing technique borrowed from [40]. If the best value of the éowoound®(6™) has not
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changed during iterations then we repladg with 8. In the beginningy = 20, and
after every restart it is updated @s= min{~ + 10, 50}.

3.4 Solution computation

To conclude the description of the method, we need to spécify to obtain solution
x € M. If the linear subproblem is included in the decompositiwertit is natural to
use its minimune’ in each iteration, since” is guaranteed to satisfy the uniqueness
constraint. However, we excluded this subproblem for thpeerments presented in this
paper (for reasons explained below). We computed the salinia given iteration as
follows: starting with labelinge = 0, we go through local subproblemss 7—{L, M}
and assignments involved in ¢ (in a fixed order), set;, = 1if 7 = 1 and this
operation preserves the uniqueness constraint.on

We maintain the solution with the smallest energy computefdis and output it as
a result of the method.

3.5 Properties of decomposition

Of course, it is not necessary to use all subproblems destiibsection 3.2. The only
requirement is that each assignmere A and edgda,b) € N should be covered by
at least one subproblem (i.E, and/,;, should be non-empty), otherwise the projection
operation would be undefined. In this section we study hoveliméce of subproblems
affects the optimal value of the lower bounthxgc; ¢(0). Without loss of generality
we can assumg, = 1 for o € I. (Indeed, weight®, may affect the speed of the
subgradient method, but they do not affect the value of thengh bound since the
transformatiorp, := p, /7, 7 := 67 - v with v > 0 preserves the bound.)

First, we compare the bound provided by the decompositicihodewith the fol-
lowing technique which we calPPBQ

1. For each constrairﬁ:aeA(m z, < 1 of the setM add pairwise term§'z,x; for
all pairs of assignments, b € A(p), a # b whereC'is a large constant ensuring
thatz,z, = 0 in the optimal solution. Lef’ (x) be the function that we obtain.
Clearly, the minimization problemingc 134 £'(x) is equivalent to (13).

2. Minimizing E’ is an instance of guadratic pseudo-boolean optimizatipnob-
lem [36]. Apply the roof duality relaxation [37, 36] to get@er bound on (13).

Lemma 1. If the set! includes the linear and maxflow subproblems then the optimal
value of the lower bound(6*) is the same as or larger than the QPBO bound.

A proofis given in Appendix B. In this proof we derive the LRaeation solved by the
decomposition approach in the case wiiea {L, M }.

The next lemma shows that the linear and maxflow subprobleensfgen not es-
sential. (A proofis given in Appendix C.)

Lemma 2. (a) Suppose that for each poipt € P there exists a local subproblem
o € I—{L, M} which covers all assignmentsi(p), i.e.c € I, forall a € A(p).
Then adding or removing the linear subproblem will not &ffee optimal value of
the lower bound of the decomposition approach.
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(b) Suppose that each assignmen& A and each edgéa,b) € N are covered by
at least one local subproblem, i.e. there exist subproblenass — {L, M} with
o € I, and subproblems € I — {L, M} with o € I,;. Then adding or removing
the maxflow subproblem will not affect the optimal value efldwer bound.

It can be seen that our choice of local subproblems alwaysfisatconditions of part
(a). Thus, the linear subproblem would not help (assumiag wWe can compute the
optimal lower bound). We described this subproblem pariyause it was used in pre-
vious work: in [18] the authors computegactmin-marginals for the linear subproblem
in the belief propagation framework.

As for part (b), the answer depends on the structures of tighberhood systems
N,, used for constructing the energy function afn’}d used for constructing local sub-
problems. Recall thaV, andN;f are controlled by parametefs and K ¢, respectively.
If K < K%then conditions of part (b) are always satisfied, otherwiseesedges may
not be covered, and so including the maxflow subproblem mayadwe the optimal
bound.

4 Experimental results

In most of our experiments we learned problem-specific patara of our energy model
from ground truth correspondences. The learning procedaseinitialized using de-
fault parameters corresponding to uniform values for thigihts \;, and variance val-
ueso? = 0.5, 02 = 0.9. We now describe the learning technique.

4.1 Model learning

The energy model defined in Equation (2) is parameterized bgtaf parameters,
denoted here withy = {\3P \occl ygeom ycoh'y, 52 521 In addition, the energy
depends on input features séts and P”’ extracted from the images. Here we high-
light this dependence on parameters and input points, kingithe energy function as
E(x; P, P", 4). We now consider the problem of learning parametefsom a set of
n training matching examples defined by pairs of feature gg®s, P;’), ..., (P., P/)}
and "ground truth” correspondencés;, ..., ¢, }, typically specified by the user. We
use the Nonlinear Inverse Optimization (NIO) algorithmatésed in [26]. The objec-
tive of this method corresponds in our case to minimizinggap in energy value be-
tween the user-provided ground truth correspondencesendatching configurations
estimated via energy optimization. In other words, we miréthe following objective

G(y):
G(/(/)) = ZE(wzaPz/7Pz”7¢) - :II;(IEIJI&E(w,PZ/,P;/,’(/))
i=1

Let A = {\3P )\ocel \geom \com “anda? = {o?,02}. In order to avoid degenerate
solutions withA = 0, and to obtain positive values for the term weightand variances
o7, we define reparameterizatiohs = ¢/ > e, o7 = e, and minimizeG with

i =
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respect td{e, v} instead ofip. As in [26], we optimize5 via gradient descent with line
search. The gradient @f is locally approximated by optimizing the energies givea th
current estimate of the parameters in each iteration.

4.2 Algorithms

In our experiments we compare the following algorithms:

DD We usedk? = min{K, 4}, whereK is the geometric neighborhood size. Moti-
vated by results in sec. 3.5, we did not use the linear sulgmolWe sep, = 1 for all
other subproblems. We used a maximum of 10000 iterations, and stopped edflier i
the gap between the lower bound and the cost became smalteirth®.

FUSION This technique was introduced in [41] for MRF optimizatioithvmulti-
ple labels. We propose to use it for graph matching as follust, we generate 256
solutions by applying one pass of coordinate descent (I@\gto labeling using ran-
dom orders. (Different orders of visiting assignments ligyéeld different solutions.)
We then “fuse” together pairs of solutions using the binaeg tstructure until a sin-
gle solution remains. Fusion of solutiom$, x” is defined as follows. First, we fix all
assignments € A for which z’ andx” agree, i.ex/, = z!/. Then we convert the ob-
tained graph matching problem to a quadratic pseudo-boalgtimization problem as
described in section 3.5. Finally, we run the QPBO-PI mef{d@d starting either with
labelingz’ if E(x'|6) < E(x” | ) or with " otherwise. The produced solutianis
guaranteed to have the same or smaller cost than the castantiz”.

Below we show plots of the energy as a function of time. Cleénkese plots depend
on the order of fusions. We used the following order: we abyaigk the leftmost node
of the binary tree whose parents are available for fusionsTthe plots are independent
of the number of initial solution266 in our case).

BP We converted graph matching to a quadratic pseudobooldanination problem
and ran max-product belief propagation algorithi/e also tested applying the roof
duality approach instead of BP, but results were quite disaging (see below).

SMAC We ran the spectral relaxation method of Cour et al. [L7hgi$he graduated
assignment algorithm [28] for discretization. Since SMA@pDses affine constraints on
the solution, we applied this algorithm only to dataset&wiitt outliers, where the one-
to-one affine constraint is satisfied. In principle, SMAC Icbliandle outliers by the
introduction of dummy nodes. However, this would incredse iumber of variables
and potentially make the problem harder to solve.

COMPOSE We reimplemented the algorithm in [18]. The problem was aastssign-
ing a label from the setl(p’) U {“occlusion’’} to each poinp’ € P’. Min-marginals
for the linear subnetwork were computed 4| A| + | P’|) calls to the Dijkstra algo-
rithm. As in [18], we used Residual Belief Propagation (R8] with damping=0.3
for computing pseudo min-marginals for the “smoothnesbhatwork containing pair-
wise termd),,z,xp. HoOwever, in our experiments messages did not convergee setv
an additional termination criterion for RBP: we stop it afpassing20| N | messages.
As in [18], we computed the configuration by looking at indival messages at each

4 We used the code from http://www.adastral.ucl.ac.uk/ktém/papers/TRW-S.html
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node. We did not use damping for the outer loop since otherttie produced con-
figurations usually did not satisfy the uniqueness condiréie also tested informally
the COMPOSE method with our representation which labell aasignment as 0 or
1. To compute min-marginals for the smoothness subnetwerltiad both a maxflow
algorithm (in the case of submodular potentials) and RBRvéer, it did not seem to
improve the results, and the issue with convergence remaine

HUNG As in [10], we also tested the Hungarian algorithm using agrgy consist-

ing only of linear terms. On problems with occlusions, wedusar occlusion cost in
addition to the appearance energy term,EBYNG (x) = \3PPEaPP(x) 4 \ocCl ocel(gz),

4.3 Comparative results

Hotel sequence: wide baseline matching. In this subsection we report results on
the CMU ’'hotel’ sequenceé. As in previous work [10], we use this dataset to assess
the performance of graph matching methods, and ignore tfié motion constraint
that could be exploited using alternative wide-baselinéchiag algorithms [20]. We
reproduce the experimental setup described in [10] usiagé#me manual labeling of
30 landmark points, and the same subset of 105 frame paifig. thg previous work,
we adopt as unary terms the distances between Shape Coasexipdors. However,
we replace the pairwise terms proposed in [10] with our gd¢dmenergy function
E9°™z), using K = 2. Due to the absence of outliers, we remd&"(x) from our
energy and use a large constant value X¢f¢. We set the remaining parameters to
default values, as defined above. We4et P’ x P”. Figure 1(a) shows the matching
error obtained by optimizing this model with different metls. We include in the plot
also the performance of HUNG. Note the very large variangeatching performance,
with BP and DD being the best methods with errors approacg Note that the
error obtained with our model and our optimization is overtisfes smaller than the
errors recently reported in [10]. On this dataset DD founebgk the global minimum
and in each case within a minute (see Figure 1(b)). We fouatidh this sequence
QPBO does not provide any labeling at all. Figure 1(c) ilatss performance versus
runtime on one image pair (frame 1 and 64). In this plot wedat# convergence to a
global minimum with a green circle. BP does well on this semge nearly matching
the minimization performance of DD, at a reduced cost.

Matching MNIST digits. Here we describe experiments on images of handwritten
digits from the MNIST dataset [44]. For training, we randgrshmpled from this
dataset one image pair for each of the 10 digits. We repehtedame procedure to
generate a test set of 10 pairs of same digits. From each jpa@xwacted point sets
P’ and P” by uniformly sampling 100 points along the Canny edges oheamage,
using the procedure described in [19]. We defined the unmgrﬁals&?}‘;’,‘fpﬁ) to be
the Euclidean distances between Shape Context descragaionsuted at pointg’, p”.
We formed the set of candidate assignmefite P’ x P” by selecting the 5 most
similar features, in terms of Shape Context distance, fohgmintp € P. We col-
lected ground truth correspondences in the(¢&tx P”) for each of the 20 image
pairs. The parameters of our model were learned from thealfirig image pairs with

5 Available at: http://vasc.ri.cmu.edu/idb/html/motibotel/index.html.
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Fig. 1. Results on the Hotel sequend®{] = |P"”| = 30, |A| = 900). (a) Mismatch
percentages of HUNG and different optimizations appliedto energy model. (b)
Frequency of convergence to global minimum. (c) Energy mination versus time.

NIO. Figure 2(a) shows that the matching accuracy on thesegsiritically depends on
the ability to globally optimize the energies during the rabléarning stage. The left
plot reports the frequency of convergence to a global mininduring learning, plotted
as a function ofi’, the geometric neighborhood size. The second plot showtette
set matching error of DD with learned versus default paramseMatching error here
is measured as percentage of incorrect correspondendesasjiect to ground truth
We can see that the matching is much more accurate when Ungngarameters for
which DD reached more frequently global optimality duriegining. Interestingly, al-
though the frequency of global minimum convergence in@gatightly when varying
K from 2 to 4, the matching error remains roughly the same. Jinjgiests that geomet-
ric penalty terms defined over small neighborhoods are gerftico spatially regularize
the correspondences. Thus, models involving geometrits cefined over all pairs of
matched features, such as those used in [23, 24], may be ess@iy restrictive for
many applications, in addition to being more difficult to iogize.

Given these results, we have used the model learnedAivith3 for the MNIST ex-
periments described below. Figure 2(b) shows the nornthérergy values obtained by
different optimization methods on the test set. For eachilyamhresults we performed
anadditivenormalization so that for each image pair the energy of tis¢ faethod be-
comes a fixed number. On 9 out of the 10 test image pairs, DIhesaglobal optimality,
and provides the minimum energy value on all examples. FOISEP, and COMPOSE
find the global minimum only on 2 images. FUSION finds solusiarth energy values
very close to those obtained by DD. COMPOSE and BP providsidenably higher
energy values on some of the examples.

We have also attempted to minimize the energy by running PB®@algorithm [37,
38, 36,42] on the equivalent quadratic pseudoboolean iation problem described
in section 3.5. This algorithm produces partial labelirtgst tare part of a global opti-
mum. However, we found that on our MNIST matching problemBBQ labeled on
average only 16% of the correspondences, with only 0.12%esfet assignments cor-

8 In order to account for a certain degree of inherent ambjguithe selection of ground truth
correspondences on these images, we did not consider ir@nifea point was assigned to
any of the 3-nearest neighbors of the correct feature. Diagla point with a ground truth
correspondence an outlier (or viceversa) was counted as err
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Fig. 2. Experimental results on MNIST digits®’| = |P”| = 100, |A| = 695, on

average). (a) Correlation between learning accuracy artdhimg performance: the
left plot shows the frequency of global minimum convergedogng learning versus
K; the right plot shows mismatch error on test set. (b) Norpeal energy values. (c)
Optimization performance versus runtime. (d) Mismatcbreromparison between dif-
ferent optimization methods using our energy model. (eyhdih error using different
energy models.

responding to active correspondences. We also tried tg aipplPROBE method [45,
42] to get more labeled nodes. However, in practice we weablerto do so, due to the
high computational cost of running PROBE on our problenmsainses.

Figure 2(c) shows minimization performance as a functiotirog, evaluated on a
sample image pair. Figure 2(d) shows the correspondenceaagcobtained by opti-
mizing our energy with the different methods. Again, we fihdttDD and FUSION
yield the best accuracy. The parameters used for the enélgWNG were learned
from the training examples using NIO with Hungarian matghfior optimization. We
also evaluated variations of the energy model defined in imué2) obtained by us-
ing only the linear tearms (HUNG), by dropping the spatidh@®nce term, and by
forcing all points to be matched (implemented by fixin® to a large value). The
parameters of these modified models were learned again Wi2h ding DD for both
training and testing. We see from Figure 2(e) that both tlaiaglpcoherence prior, as
well as the occlusion cost, improve the matching accuranyth@se instances the sim-
ple appearance-based model used by HUNG gives poor accWvacglso report the
matching error given by the model and optimization methoBelbngie et al., which
was applied to MNIST digit examples in [19]. For this expegimy we use the source
code provided by the authors and the settings describe®]nQur approach performs
better than this state-of-the-art method.
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Fig. 3. Correspondences obtained with (a) Hungarian matching lan®D. The last
two columns show grids warped by the thin-plate spline fi@mnsations computed from
the correspondences of (¢) Hungarian matching and (d) DD.

Figure 3 illustrates some of the matches obtained with DDHIONG. Our model
yields more accurate and geometrically consistent cooredgnces.

Estimating long range non-rigid motion. In this subsection we describe results on
the task of estimating large-disparity motion. For thisexment we used four (time-
separated) video frames of a child jumping. We matched eaelye to every other
image, for a total of six matches. The motion between anyqfdirese pictures is very
large and highly non-rigid. There is self-occlusion creabg the motion of arms and
torso, and occlusion due to a tricycle positioned betweerrkild and the camera. Fea-
ture points were extracted by running the Harris corneralet®n each image. We used
Euclidean distances of geometric blur descriptors [23]moted at each feature point,
both for selecting assignmentsih(by choosing the five most similar features for each
pointp € P) as well as for calculating the unary terms of our energy.&deried the pa-
rameters in our model by applying the NIO algorithm to grotnuth correspondences
of two image pairs from a separate sequence containing the shild walking. Here
we report results usinfy’ = 6. Figure 4 shows two matching examples from this exper-
iment and correspondences found with HUNG and DD. Note tligyabf our system

to cope well with occlusion and multiple motions. DD conweido a global minimum
on all the image pairs in this experiment (see Figure 5(afijjure 5(c) reports the
correspondence errors (including mismatches as well asechigssignments).
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Fig. 4. Estimating human motion P’| = 118, |P”| = 172, |A| = 1128 on average).
Correspondences computed with (a) the Hungarian metho¢bamD. Correct corre-
spondences are shown in blue, missed assignments in grekmismatches in red.
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Fig. 5. Experiments on human motion frames. (a) Frequency of cgevee to global
minimum. (b) Normalized energy values. (c) Correspondenas.

Matching faces. We also carried out experiments on a set of 8 face imagestiriatis
individuals with different facial expressions. We used Zhafse images for learning the
model parameters given their manually labeled correspuwete We then exhaustively
matched the remaining 6 images, for a total of 15 test imagse.foint setd”’ and P’
and candidate assignmemdor each image pair were formed by matching geometric
blur descriptors [23] computed along Canny edges in eaclgeémasing an iterative
procedure. Starting from empty se® = P” = A = {}, we alternate selection of a
new pointp from either the left or the right image, by choosing the edgi@yamong
those not yet considered) having minimum geometric bluadise to points in the other
image. We add the 3 best assignments involving ppitt A, and the corresponding
points to”’ and P”. We then introduce an inhibition window around pgirgo that no
other points in that neighborhood will be selected. We refiga procedure 600 times.
On average this yields point sets with more than 900 pointsach image, and a set
A with over 1700 potential assignments. Here we used gearneighborhood size
K = 6, and defined again the unary term to be the Euclidean distagtweeen geo-
metric blur descriptors. Figure 6(a) shows the normalizezt@y values obtained with
the optimization methods in our comparison. FUSION is th&t performing method
93.33% of the times, while DD is the best on the remainingG.@ases. On all image
pairs DD and FUSION obtain very similar values, but on nong¢heke challenging
matches they are able to reach the lower bound. By droppigdhue of K to 4, we
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found that DD can reach the global minimum in most of the caalésough the corre-
spondences are slightly less accurate than when usirg6. Here BP performs rather
poorly. Figure 6(b) illustrates the correspondences fdunHHUNG and DD on one of
these image pairs. Assignments are shown as feature digpdants in each image. Red
lines denote incorrect assignments.

5 Conclusions

We have introduced novel models and optimization algoritiion feature correspon-
dence. We believe to be the first to demonstrate graph mattbalhniques capable of
reaching global optimality on various real-world image oféig problems. As a future
work, we plan to replace exhaustive search for local subdprnob with a branch-and-
bound method, as in [12]. We hope that this may speed up sulahathe DD method.

Appendix A: exhaustive search

We computed the global minimum for local subproblems usethéndecomposition
approach as follows. Assume that the Béhas a smaller size tha®’ (the other case
is symmetric). First, we select on ordering of pointsfih We then use a depth-first
search to go through all labelings € M. We start with the zero labeling in which
all assignments are passive. At deptlid = 1, ..., |P’|) we pickd-th pointp in P’
and explord A(p)| + 1 possible branches far. (In each branch we either make one
of assignments i (p) active, or declare all assignmentsArp) to be passive.) If we
detect a violation of the uniqueness constrainPihthen we backtrack. For each depth
d we maintain the cost of the current labeling. Updating tloist @t depthl takesO(d)
time. (For this we need to store afi| x |A| matrix of costs in the memory.)

Appendix B: proof of lemma 1

Let us write down the linear program corresponding to the QRiethod. The roof du-
ality relaxation for function® is given by equation (17). Adding pairwise terfis,,z;
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for a,b € A(p), a # b to function (13) will affect the relaxation (17) as follow-
ear term'z,;, will be added to function (17), and corresponding constsamill be
imposed (see (17)). Sineg is a large constant, new variableg, will be forced to0.
Therefore, we arrive at the following linear program:

min Z 0uta + Z OabTab (18)
a€cA (a,b)eN
Ty +ap <1 Ya,be N(p),pe€ P,a#b
0<z, <1 Vaec A

subject to z.p < x4, oy < xp VY (a,b) €N
Tap > g +ap—1 VY(a,b) €N
ZTap >0 V(a,b) € N

Let us now derive the relaxation solved by the decompostioproach with the
linear and maxflow subproblems, i.e. with= {L, M }.It is well-known [35] that the
optimal value of the linear matching probleps (67) is equal to the optimal value of
the following linear program:

min E 0k,
a€A

r, <1 VpeP
subject to} acA(p)

xq 20 Vae A
peP
— _ < L _
subjecttod Fr ~Ha =00 Va=(pg) €A
pp =0 VpeP

Similarly, the lower bound for the maxflow subprobldmy; (") can be written as
the dual problem to (17):

max Z—/\a—i- Z —ab (20)

acA (a,b)eEN
—Aa +Z [Xab_)\ab} S@y Vae A
~ (a,,bZEN
subject to{ —Aab — Ava + Aap < 027 V(a,b) € N
Aa >0 Yaec A

Xab > 0,00 > 0,05 >0 V(a,b) €N

Here we denoted,;, and )\, to be the dual variables for the constraints < z, and
Tap > Tq +xp — 1, respectively. Note that,, and),, are distinct variables, whilg,,
and)\,, denote the same variable.
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Using (19) and (20), we can write the optimal lower bound @& tlecomposition
approach as follows:

max P (0F) 4+ D (0M)

olent
oL +oM=p
= max @L(—G) + @M(é—f' 9)
0:00,=0
= erﬁa/b\}% Z —p + Z —Aa + Z —Aab
R peEP acA (a,b)eN
R T Va=(p,q) €A
Aot [Aab—Aw] <O +0a VaeA
(a,b)eN
subject t0{ —Aas — Aba + Aap < bap V(a,b) €N
fp >0 VpeP
Ao >0 Vae A
Aab > 0, Apq > 0, Agp > 0 V(a,b) € N

We can eliminat@,, from the first and the second constraint and combine thenoimto
constraint, then we obtain

mAX - Lep acA (a,b)EN
—Mp — Mg — )\a +Z [Aab - )\ab] S ga
@IEN T Ya=(pg)eA
SUbjeCt to _E\ab - S\ba + )\ab < éab v (a7 b) eEN
fp >0 VpeP
Ao >0 Vae A
Xabzoyj\bazoa)\abzo V(a,b)EN

The dual to this linear program is given by

min Zéaanr Z OabTab

acA (a,b)eN

> > -1 VpeP
acA(p)
—x, > —1 Vaec A

subjectto —Za — @p + Tap = —1 V(a,b) € N

ZTa — Tap > 0,2p —xqp >0 V(a,b) €N
Zq 20 Vae A
Tap > 0 V(a,b) € N
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Thus, we finally obtain that the optimal value of the lower bdequals

min Z Outa + Z OabTab (21)
acA (a,b)eN
Z Tp <1 VpeP
acA(p)
) 0<z, <1 Vaec A
subject to

Tap < Lays Lab < xp V(a,b) cN
Tap > g +ap— 1 V(a,b) €N
Tap 2 0 V(a,b)GN

Itis easy to see that the optimal value of (21) is the sameagetahan the optimal value
of (18). Indeed, the only difference between (18) and (21th& the first constraint
in (21) is tighter than the corresponding constraint in (:@aEA(p) zq, < 1 implies

o +xp < 1fora,b € A(p), a # b, but not the other way around. (Note that the
labelingz, = 0.5 for a € A(p) satisfies the latter constraint but not the former, if

|A(p)| > 2)

Appendix C: proof of lemma 2

Consider a local subproblemne I. Leto’ be a subproblem af, i.e. the feasibility set
of ¢’ is contained in the feasibility set of 2,, C (2,. It can be seen that adding
to I as another local subproblem does not affect the optimaldteand. Indeed, it is
clear that adding’ cannot decrease the optimal bound. The optimal bound afswta
increase since for any vectéf = (...,07,0° ,...) € £, wheref?’ is the constraint
set for the new problem, there exists vedot (...,07 + 9, .. .) € 2 whose bound
is not worse since

D, (07 +6°) = 2, (%) > B, (07) + B (07).

(The inequality holds since,, is the same function aB,,, and it is concave.)

Let us prove part (a). Let be a set of subproblem indexes which does not include
the linear problenT.. We need to show that addirgto I cannot increase the optimal
lower bound. Instead of, let us add a new subproblemto I for each poinp € P
which includes only assignments i(p) (and does not include any edges), i.e. the
feasibility set(2, for this subproblem is defined i} = 0 for all assignments <
A — A(p) and6”, = 0 for all edges(a,b) € N. As follows from the argument above
and conditions of part (a), this operation cannot improesitest lower bound. Thus, it
suffices to prove that replacing the new set of subproblertts ivivould not improve
optimal bound. In other words, we need to show that for &y
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DL(0F) <max > B,(07) (22)
peP
subjectto» ~ 67 = 6"
peEP

Using LP duality, it is easy to show that in fact an equalitidsan (22). Indeed, the opti-
mal solution for vectof” can be obtained as follows;, (0,,) = min{0, minge 4(p) 0% }.
Thus, the maximization problem in (22) can be written as

max Z —lip

peP
0P+ 01 =0 Ya=(pq) €A
subjectto{ —pP < 6P Vpe Pac Alp)
—pp <0 VpeP

Constraints

or + 01 = 0%
—pP < 07
_Mq < gg

fora = (p,q) € A can be replaced with a single constraint? — u¢ < 0L since
variablesf? and ¢ are not involved in any other constraints. Then we arrivehat t
linear program (19) which equafs;, (6%).

Let us now prove part (b). Using a similar argumentation, wectude that it suf-
fices to prove that

Dpr(0M) <max Y B, (0°)+ Y Dap(0) (23)
a€A (a,b)EN
subjectto» 6+ Y 0 =¢M
acA (a,b)eN

whereos = a is a local subproblem in which only the eleméfitis allowed to be non-
zero andr = (a, b) is a local subproblem in which only the elemeéifs, 6%, 6%¢ are
allowed to be non-zero.

It can be shown that if we tak®,;(6°") to be a lower bounthing. (o 134 E(2[0)
rather than the global minimumingc s E(z | %°) then we get an equality in 23. (An
equivalent fact was proved in [37].) This implies (23) siusing the global minimum
instead of a lower bound can only increase the RHS.

For completeness, let us prove this equality. We have

D,(0%) = min{0, 05}
D (0°°) = minf0, 05", 05°, 05" + 05 + 050}

»Ya
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Thus, the maximization problem in (23) can be written as

max Z—)\a—f— Z —Xab

acA (a,b)EN
i+ > 0 =06) Vae A
(a,b)eN
—Ag <09 Vaec A
subjectto{ —Aq, <0 Vaec A

—Aab <O, =Xy <O V(a,b) €N
Ao <020+ 03 +0M VY (a,b) €N
—Aab <0 V(a,b)GN

We can eliminat@? from the first and the second constraint and combine thenoimto
constraint, then we obtain

max Z—)\a—f— Z —Aab

acA (a,b)EN
“Xat D 0 <o) Vac A
(a,b)eN
, Ao >0 Vae A
SUBIECLION pab | 3 > 0,098 4 Ay >0 V¥ (a,b) € N
—Aap — 02 — 030 < oM V(a,b) € N
Aab > 0 V(a,b) € N

Let us use variables,;, instead o#2® such tha¥?® = \,, — Aap, OF Aap = 090 + Agp.
It is straightforward to see that then we arrive at the lirgragram (20) which equals
D (OM).
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