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Abstract

We propose an algorithm that simultaneously extracts
disparities and alpha matting information given a stereo
image pair. Our method divides the reference image into
a set of overlapping, partially transparent color segments.
Each segment pixel is assigned an alpha value and color.
The disparity inside the segment is modeled via a plane.
The goodness of alphas, colors and disparity planes is mea-
sured by a new energy function. Its basic idea is to use the
three parameters for generating artificial views represent-
ing the left and right images. If alphas, colors and disparity
planes are correct, these artificial images should be very
similar to the real ones. For generating the artificial right
view, we warp all pixels of the left into the geometry of the
right image using the disparity planes. We introduce the
assumption of constant solidity in order to correctly model
how pixels’ alpha values are affected by the warping op-
eration. Experimental results on the Middlebury set show
that our algorithm gives good results in comparison to the
state-of-the-art in stereo matching.

1. Introduction

Modern computer vision applications such as novel view
generation or z-keying require high-quality disparity maps.
For these applications, it is specifically important to produce
precisely delineated disparity borders, which is traditionally
difficult in stereo matching. Ideally, alpha values of border
pixels should also be provided. Using the alpha informa-
tion, one can blend transparent pixels against a novel back-
ground. This avoids border artifacts in the newly composed
image that are extremely disturbing to the human eye.
Besides the requirements of these applications, synergies

between the stereo and matting problems motivate a com-
bined solution strategy. From a stereo perspective, mixed
pixels are problematic, because they violate the color con-
sistency assumption in regions close to disparity discontinu-
ities. For example, consider the case where a red foreground
pixel is mixed with a green background pixel in the left im-
age. This red foreground pixel is mixed with a blue back-
ground in the right image. Due to the high dissimilarity of

the mixed colors (yellow and magenta), it is likely that the
disparity of the foreground pixel will be estimated wrongly.
However, we can overcome this problem by decomposing
the mixed color into its original color components and com-
puting corresponding alpha values, i.e. solving the matting
problem. From the matting perspective, disparity informa-
tion is important, because it provides two instead of one
mixed colors for computing an alpha value. This redun-
dancy can be exploited to reduce matting ambiguities.

In this work, we propose an energy minimization ap-
proach for combined stereo and matting that exploits these
synergies. Our algorithm partitions the left image into seg-
ments of homogeneous color. The segments are enlarged
to include transparencies that typically occur close to seg-
ment borders. To model transparency, we assign each seg-
ment pixel an alpha value and a color. To model disparity,
each segment is assigned to a disparity plane. We test the
goodness of disparity planes and matting information via
image warping. The disparity planes are thereby exploited
to warp the overlapping segments into the geometry of the
right view. The matting information is exploited to sub-
sequently reconstruct the mixed color of each pixel in the
warped view. To derive matching costs, this mixed color is
compared against the pixel’s real color taken from the right
input image. By performing this reconstruction process of
mixed colors, we can overcome the aforementioned color
consistency problem. Our ideas are integrated in an en-
ergy function that we optimize by a combination of a greedy
search procedure and Belief Propagation.

In the context of previous work, our method is related
to various color segmentation-based stereo algorithms (e.g.
[2, 5, 8, 17, 21]). We share their assumption that disparity
inside a segment follows some particular disparity model
(e.g. constant or planar). However, we relax their second
assumption that the disparity borders coincide with segment
borders, since we can alter a segment’s shape by modifying
its pixels’ alpha values. There is a closer relationship to the
methods of [2, 17] that both use image warping to generate
an artificial right view. The major difference is that they
cannot cope with alpha matte information.

Obviously, our method is also related to single-image
matting approaches (e.g. [10, 12, 14, 18, 19]). In contrast
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to these algorithms, we do not require user input and ben-
efit from a second image. More specifically, our method is
similar to [18] in the sense that the authors impose a simple
pairwise smoothness prior on alpha and apply Belief Prop-
agation for optimization. There is also some similarity to
[11, 14] where the problem of composite colors that are the
mixture of more than two pixels is addressed. Since such
pixels occur when coping with more than two depth layers,
our technique also handles this n-layer matting problem.

Although early work on combined stereo and matting
dates back a decade [1, 15], there has been relatively lit-
tle progress since then. The matting problem is sometimes
solved in a post-processing step. For example, Zitnick et al.
[21] first compute a disparity map and then apply a single-
image matting technique on the detected disparity bound-
aries. However, this approach cannot succeed if the dispar-
ity discontinuities have been extracted erroneously. Hasi-
noff et al. [7] fit a 3D curve to precomputed disparity bor-
ders. The shape of this curve is then optimized to make
it consistent with the stereo information, which enables re-
covery from small errors in the initial disparity map.

There are two papers that we consider closely related
to our work. Xiong and Jia [20] propose a method that
achieves disparity and matting results of high quality on
complex fractional boundaries. The method exploits the
problem synergies described above, but has the limitation
that it needs to segment the image into a foreground and
a background region. Matching and matting is then per-
formed at the expanded border of these regions. However,
in scenes containingmany objects at different depths, such a
two-layer segmentation hardly makes sense, which severely
reduces the applicability of this approach. Taguchi et al.
[16] propose a stereo method that works for multiple depth
layers. They apply an adaptive color segmentation. A seg-
ment should thereby not be expanded to pixels that show
high stereo matching costs. Pixel mattes are handled via a
parametric model. However, the synergies between stereo
and matting are not modeled. The authors neither use the
matting information in the matching process nor take ad-
vantage of the stereo redundancy in the alpha computation.
The problem of color inconsistencies is also ignored.

We make five contributions. First, we propose a formu-
lation for combined stereo and matting that is applicable to
scenes with an arbitrary number of depth layers. Despite
this ability, our method still exploits the aforementioned
problem synergies. Second, the idea of image warping
[2, 17] is extended for handling transparent pixels. Third,
we introduce the novel assumption of constant solidity that
is used to convert alpha values between the stereo views and
is more general than assumptions of previous approaches
[20]. Fourth, our stereo formulation handles mixed colors
that are composed of more than two pixels. Fifth, the com-
bination of these ideas leads to a new energy function.

input stereo pair

colour segmentation left image

trimap computation

collection of colour
samples

initial disparity planes initial matting information

refined disparity planes refined matting information

initial disparity map
via fast method

plane fitting

single image matting

optimize disparities given alphas
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Figure 1. Overview of the algorithm.

2. Algorithm

Figure 1 shows a block diagram of the proposed algo-
rithm. The algorithm takes left and right images as input.
These images are assumed to be rectified so that correspon-
dences lie on the same horizontal scanline. Our method pro-
vides a disparity map and matting information as output.
We describe the individual steps in this section.

2.1. Initialization

The algorithm starts by dividing the left input image
into non-overlapping segments of homogeneous color us-
ing mean-shift based color segmentation [4]. As is com-
mon in segmentation-based stereo, an oversegmentation is
computed. The set of segments forms the starting point for
generating initial disparity and matting solutions.

2.1.1 Initial disparity planes

We first compute a dense disparity map using the fast pixel-
based dynamic programming method of [3]. The results of
this method are of medium quality, but good enough to ob-
tain reliable disparity models for the segments. We have
chosen a planar disparity model that is able to cope with
slanted surfaces. Although disparity planes may oversim-
plify the real surface shape, they work surprisingly well in
practice, especially if used in conjunctionwith oversegmen-
tation. The disparity dp of a pixel p that belongs to segment
S is computed using the segment’s disparity modelDS :

dp = DS [a] · xp + DS [b] · yp + DS [c]. (1)

Here, the x- and y-coordinates of p are denoted as xp and
yp. The plane parameters a, b and c of DS are derived by
least-squared error fitting. We fit a disparity plane to all
pixels of S from the initial disparity map. Since the least-
squared error solution is sensitive to outliers, we perform
the iterative plane fitting procedure described in [2].
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Figure 2. Initialization of matting information. (a) An overlapping
segment O is computed by dilation of segment’s S borderline. U
and F represent the transparent and non-transparent regions of O,
respectively. (b) Overlayed unknown regions. Gray values indi-
cate that the unknown regions of 0 (white), 2 (gray) or more than
2 (black) segments overlap at this pixel. (A point of the unknown
region that does not overlap with another segment’s unknown re-
gion is deleted from its segment’s unknown region.) (c) Collection
of color samples from the non-transparent region.

2.1.2 Initial matting information

To cope with mixed pixels that occur at segment boundaries,
we generate overlapping, partially transparent segments.
For each segment S, we extract its borderline to all neigh-
boring segments. This borderline is then expanded using
morphological dilation (figure 2a). The dilated borderline
represents our unknown regionU . We assume that transpar-
ent pixels only occur inside U . Note that this assumption is
consistent with recent matting [12] and deblurring [9] ap-
proaches. These approaches suggest that in scenes with
non-transparent objects, alpha is caused by convolving a
camera’s point spread function (PSF) with a hard (non-
transparent) segmentation. The PSF models many effects
like defocus blur and discretization artifacts. We use the
same image formation process, which means that for non-
transparent objects, alphas are only caused around the seg-
ment boundaries. We strongly believe that non-transparent
objects are predominant for typical stereo applications.
In figure 2b, we overlay the unknown regions of all over-

lapping segments in the Cones test set [13]. One can see that
pixels can lie in the unknown regions of three or more seg-
ments (black pixels in the figure). This makes sense, since
a mixed pixel can be composed of colors coming from mul-
tiple (> 2) depth layers. Hence, as opposed to traditional
matting algorithms that solve the two-layer matting prob-
lem with dedicated fore- and background, we handle the
n-layer problem in our formulation.
As depicted in figure 1, our algorithm continues by col-

lecting color samples from regions that are not affected by
the matting problem [19]. We therefore compute the region
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Figure 3. Basic idea. Our method estimates the pixels’ alpha val-
ues and colors as well as disparity planes of segments. These pa-
rameters are optimized so that artificial left and right views be-
come similar to the real left and right views. The axes represent
x-coordinates (x) and disparities (d).

F = S \U that is assumed to be the non-transparent part of
the overlapping segment. For each pixel u ∈ U , we search
its closest pixel in F (Euclidean distance). Starting from
this pixel, we trace the boundary between U and F in both
directions (figure 2c). The colors of visited pixels are stored
as color samples for u. (In our implementation, we take 15
color samples.) If F = ∅, which can occur for very small
segments, we just store a single color sample, i.e. the mean
color of all pixels inside the corresponding non-overlapping
segment S. We also store a color sample for each pixel f of
the non-transparent region F . This color sample is the color
of f in the left image.
Our method proceeds by computing initial matting in-

formation. To be more precise, by matting information, we
mean an alpha value αp and a color cp for each pixel p of
the overlapping segments. To avoid unnecessary overlap
with section 2.2, we present only a rough outline of the ini-
tialization algorithm. Let S be a non-overlapping segment
andO its corresponding overlapping segment derived by di-
lation. In the starting configuration, αp of each pixel p ∈ O
is set to 1 if p ∈ S and to 0 if p /∈ S. The color cp is set ran-
domly to one of the color samples that have been collected
for p. We then minimize an energy function that is the sum
of equations (6), (7) and (9), using the optimization strategy
of section 2.2.3.

2.2. Combined stereo and matting

2.2.1 Image warping with transparent pixels

Figure 3 illustrates the principle of our combined stereo and
matting approach. We first generate a buffer representing
the left image that stores all pixels of the overlapping seg-
ments. In the buffer, each pixel p has an alpha value αp and
a color cp, which is represented by the numbers and differ-



ent colors in the figure. Multiple pixels can reside on the
same image coordinate. In this context, we use the expres-
sion cell to refer to an array of pixels that share the same
image coordinates. Given alpha values and colors, we can
compute the mixed color of each cell. This leads to an ar-
tificial left view. If alpha vales and colors are correct, this
artificial view should be very similar to the real left view.
In addition to the left buffer, we also generate a buffer

representing the right image. The entries in the right buffer
are generated by warping the pixels of the left buffer into
the geometry of the right view. The disparity dp of a pixel
p is computed using equation (1) with the plane parame-
ters taken from the overlapping segment to which p belongs.
The new x-coordinate of p in the right buffer is then com-
puted by xp − dp. In the warping process, we assume that
the pixels’ colors remain constant. However, it is invalid to
assume that alpha values are constant, which is discussed
in the following paragraphs. As before we can generate an
artificial right view. If alpha values, colors and disparity
planes are correct, this artificial image will be very similar
to the real right view.
Let us now discuss how alpha values are affected by im-

age warping. In [20], it is assumed that the alpha values of
foreground pixels remain constant across views. However,
this assumption does not provide information about the be-
havior of background pixels, which also need to be consid-
ered in the warping procedure. Moreover, as is shown later
on, the assumption of constant foreground alpha does not
necessarily hold if there are more than two disparity layers.
To overcome these problems, we propose the use of a more
general property, which we refer to as solidity. The solid-
ity of a pixel p thereby denotes the percentage to which p
occludes pixels of lower disparities that belong to the same
cell. More formally, solidity op is computed in p’s cell by

op =
αp

1 − ∑
q:dq>dp

αq
. (2)

In contrast to the assumption of constant foreground alpha,
we make the reasonable assumption that solidity is constant
across views for all pixels.
To compute the alpha of a pixel p in the right buffer, we

first determine p’s solidity op in its cell of the left buffer
by equation (2). We then convert the solidity back to alpha
using p’s new cell in the right buffer. To perform this con-
version, we compute the new alpha value α′

p in p’s cell of
the right buffer by

α′
p = op(1 −

∑
q:dq>dp

α′
q). (3)

Figure 4 shows three examples of this warping proce-
dure. Here, figure 4b is of specific interest, since it shows
that we can handle the occlusion problem without extra ef-
fort via image warping. An occlusion is detected if the al-
phas in a cell of the right buffer do not sum up to 1 (see
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Figure 4. Examples of image warping with transparent pixels. In
the left buffer, alpha is converted to solidity according to the cur-
rent disparity solution. In the right buffer, solidity is converted
back to alpha according to the new disparity configuration.

region between the dotted lines in figure 4b). Figure 4c
shows a case where the assumption of constant foreground
alphas is broken. Here, the pixel q is a foreground pixel in
the reference image, but becomes partially occluded by the
pixel p in the right image. Consequently, the alpha value
of q is different across the views. Note that our assumption
of constant solidity can tackle this case. Moreover, figure
4c shows that we can tackle cases in which more than two
pixels project to the same coordinate in the right image.

2.2.2 Energy function

The goodness of alphas, colors and disparity planes is mea-
sured via an energy function whose individual terms are de-
fined as follows. The overall energy E is computed as the
sum of these terms (equations (6), (7), (8), (9) and (10)).
However, let us first define two functions that prove to be
useful in this context. The first function asum() sums up
the alpha values of all pixels in a cell at coordinate x:

asum(x) =
∑

p:xp=x

αp. (4)



The second functionmc() computes the mixed color:

mc(x) =

∑
p:xp=x αp · cp

asum(x)
. (5)

Here, the division serves to normalize the mixed color for
those cells that are affected by occlusion, i.e. the cells for
which asum() is smaller than 1 (see figure 4b).
The first data term of our energy function operates on the

left buffer. It generates the artificial left view by computing
the mixed color in each cell and compares this artificial im-
age against the real left view. The term El is defined by

El =
∑
x∈Xl

dis(mc(x), Il(x)) (6)

where Xl denotes all image coordinates of the left view and
Il() returns the color of the real left image at given coordi-
nate. The function dis() computes the dissimilarity of two
colors, which is implemented as the summed-up absolute
differences of color channels in RGB color space.
For the left buffer, we strictly enforce that alpha values in

a cell sum up to 1. This is implemented by the termEasum:

Easum =
∑
x∈Xl

{
0 : asum(x) = 1
∞ : otherwise.

(7)

The second data term of our energy function operates on
the right buffer that we generate as described in the pre-
vious section. It is important to understand that changing
any of the parameters (alphas, colors or disparity planes)
directly affects this term as this will lead to different artifi-
cial right views. The term Er compares the artificial right
image against the real one and is defined by

Er =
∑

x∈Xr

asum(x) · dis(mc(x), Ir(x))

+(1 − asum(x)) · λocc

(8)

where Xr represents all coordinates in the right image and
Ir() returns the color in the right image. λocc is a user-
defined constant penalty for occlusion. This penalty is
needed to prevent the algorithm from simply maximizing
the number of occluded pixels in the right buffer. Note that
in equation (8) the influence of the dissimilarity function
and λocc is balanced by asum(). The idea is that it might
still be possible to match pixels that are only slightly af-
fected by occlusion (e.g. asum() = 0.9) with high confi-
dence. At pixels that are mostly or completely occluded,
the occlusion penalty λocc dominates.
We expect that alpha varies smoothly within an overlap-

ping segment.1 This assumption is incorporated by a linear

1This is also motivated by our previous discussion that alpha is caused
by the camera’s PSF (highly smooth). It could be worth to consider other
recent cost functions (e.g. [10]) in future work.

smoothness term Easmooth defined by

Easmooth =
∑
O∈O

∑
<p,q>∈NO

|αp − αq| · λasmooth (9)

where O is the set of overlapping segments. NO represents
all pairs of spatially neighboring pixels in the overlapping
segment O. For simplicity, we have chosen 4-connectivity.
λasmooth is a user-defined parameter.
We also apply a smoothness prior on the disparity planes.

The termEdsmooth imposes a penalty if the disparity planes
of two neighboring segments are different:

Edsmooth =
∑

<S,V >∈N ′
T [DS �= DV ]·brd(S, V )·λdsmooth.

(10)
Here, N ′ represents all pairs of neighboring segments. The
function brd() computes the number of pixels that lie on the
common border of two segments in 8-connectivity. Note
that since neighborhood and border length are not straight-
forward to define for fuzzy segments, we operate on the
set of non-overlapping segments here. T [] returns 1 if
two disparity planes are different and 0 otherwise. Finally,
λdsmooth is a constant user-defined penalty.

2.2.3 Energy optimization

We start the optimization process using the alphas, colors
and disparity planes computed in section 2.1 and initialize
our left and right buffers accordingly. To minimize the pro-
posed energy, we apply a two-step procedure. In the first
step, we keep alphas and colors constant and optimize the
disparity planes only. In the second step, we fix the dispar-
ity planes and optimize alphas and colors. These two steps
are iterated until no further improvement of the energy is
achieved. In our experiments, we use three iterations.
Optimization of disparities given alphas and colors
Our optimization strategy works by altering the disparity
planes of single overlapping segments, which is similar to
the approaches taken in [2, 17]. For each overlapping seg-
ment O, we test a candidate plane set composed in the
following manner. First, we add the segment’s O original
plane, i.e. the disparity model derived from the plane fitting
step of section 2.1.1. This ensures that we do not “lose”
planes in the optimization process. Second, we add the dis-
parity planes of all neighboring segments ofO, because it is
likely that a correct disparity plane can be propagated from
a spatial neighbor. Third, for each disparity from 0 to the
maximum allowed disparity value, we add a frontoparallel
plane. This allows us to “fall back” to a constant disparity
model, if the correct disparity plane has not been found in
the initialization. For each plane of the candidate set, we
evaluate our energy function or, more precisely, the terms
(8) and (10). We store the plane that gives the largest en-
ergy improvement. If the energy using this “best” plane is



lower than the energy of O’s current disparity plane assign-
ment, we accept the new plane immediately and modify left
and right buffers accordingly.
We have noticed that this immediate update strategy

leads to considerably lower energies than the delayed up-
date of [2, 17]. To determine the order in which overlap-
ping segments are processed, we proceed across the image
pixels in row-major order and look-up the segment at the
current pixel. If the segment has not been tested already, it
is processed now. We also apply a backward pass where the
segment order is reversed. Forward and backward passes
are iterated until there is no further energy improvement.

Optimization of alphas and colors given disparities For
each overlapping segment, we apply the optimization proce-
dure described in the next two paragraphs. We loop through
the set of overlapping segments a few times.
Now we describe how the optimization for a single over-

lapping segment O is carried out. We start by explaining
how the costs eαp=α,cp=c for assigning a pixel p ∈ O to al-
pha value α and color c are computed. After setting αp = α
and cp = c, the alpha values of the remaining pixels in p’s
cell are scaled so that the cell’s sum of alphas is equal to
1 (equation (7)). We compute the value vl as the color dif-
ference between p’s real left color and the mixed pixel of
p’s modified cell (equation (6)). For each pixel q in p′s cell
(including p itself), we look up its matching point q′ in the
right buffer. We update the cell of q′, compute the modified
mixed color and calculate the color difference to the real
right color (equation (8)). The value vr is then derived as
the sum of these color differences computed for all qs in p’s
cell. The costs eαp=α,cp=c are finally computed by vl + vr.
Given pixel p and its alpha value α, we can cal-

culate the color sample of lowest costs c∗αp=α by
argminc∈Cp

eαp=α,cp=c with Cp representing the color
samples collected for p. Using the best color sample,
the costs e′αp=α for assigning p to α are derived by
minc∈Cp eαp=α,cp=c. To compute the final alpha value of
pixel p, we have to consider the smoothness constraint on
alpha values imposed by equation (9). We construct the set
L that consists of 100 discretized alpha values. For each
pixel p ∈ O and each α ∈ L, we compute e′αp=α. These
values represent the data costs of a Markov Random Field
that we optimize using the computationally efficient Belief
Propagation implementation of [6]. Now that we know the
final alpha value α′ of p, we update the alpha values in
the affected cells of left and right buffers accordingly. The
pixel’s p new color is thereby set to c∗αp=α′ .

3. Results
We evaluate our method using the Middlebury bench-

mark [13]. The parameters in equations (8), (9) and (10) are
set to the constant values of λocc = 30, λasmooth = 0.2 and
λdsmooth = 7.5. Our unoptimized implementation takes

approximately 10 minutes to process a Middlebury pair.
Results are presented in figure 5. Our method assigns

multiple disparity values to a single image coordinate. For
obtaining the single-valued disparity maps of figure 5a, we
extract the pixel of highest alpha value in each cell of the left
buffer and plot its disparity. It can be inferred from the error
images in figure 5b that the computed disparity maps are of
high quality. Our algorithm performs particularly well in
the reconstruction of disparity borders where we can benefit
from matting information. Our method can also reconstruct
fine details such as the cable of the lamp in the Tsukuba set.
For visualizing the alpha information, we use two alter-

native methods. First, we plot the largest alpha value of
each cell in figure 5c. Second, we show the assignments of
disparity planes in figure 5d. Each disparity plane is thereby
given a color. We plot the mixture of plane colors using our
alpha values. (This result can also be interpreted as a “soft”
depth segmentation.) Finally, figure 5e shows the artificial
right views our method has produced in the final iteration.
Since our algorithm uses the matting information in the
warping procedure, we can fuse transparent foreground pix-
els with their novel background. In contrast to conventional
stereo methods (including [16]), we can therefore avoid the
color consistency problem near disparity borders.
For quantitative analysis of our results, we use the Mid-

dlebury online table. We show the results for some selected
algorithms in table 1. Our method (WarpMat) is one of the
top performers and takes rank 6 of 56 methods at the time
of submission. It performs better than its competitor [16] on
three of the four image pairs and is consequently assigned
a better rank. We have also tested our method in conjunc-
tion with using hard segmentation (HardSeg in the table).
We therefore operate on the pixels of the non-overlapping
segments. The pixels’ alpha values are set to 1 and their
colors are taken from the original left image. This makes
our method (and the results thereof) very similar to [2]. As
is depicted from the table, this strategy performs worse than
WarpMat on each of the test pairs. Figure 6 compares the
results ofWarpMat and HardSeg.
A first and natural application of our method is novel

viewpoint generation. We can apply our warping procedure
in combination with “scaled” disparity planes to compute
views that lie in-between or beyond the input views. This is
demonstrated for the Tsukuba set in figure 7. As a second
application, we use our results to segment objects based on
their computed disparity in figure 8. This figure also serves
to give an impression about the good quality of our matting
results, because quantitative evaluation is difficult in the ab-
sence of ground truth matting data for the Middlebury set.

4. Conclusions

We have presented a combined stereo and matting algo-
rithm, which takes advantage of synergies between the two
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Figure 5. Results of our algorithm on the Tsukuba, Venus, Teddy and Cones image pairs from the Middlebury data set. (a) Computed
disparity maps. (b) Absolute disparity errors larger than one pixel. Black pixels denote errors in visible regions, while gray pixels are
errors in occluded regions. (c) Computed alpha values. (d) Assignment of pixels to disparity planes. Mixed colors represent pixels that are
assigned to more than one disparity plane. (e) Artificial right views that have led to these results. Occlusions are given white color.

Algorithm Rank
Avg. Tsukuba Venus Teddy Cones
Error nocc all disc nocc all disc nocc all disc nocc all disc

AdaptingBP 1 4.23 1.11 1.37 5.79 0.10 0.21 1.44 4.22 7.06 11.8 2.48 7.92 7.32
SubPixBP 5 4.39 1.24 1.76 5.98 0.12 0.46 1.74 3.45 8.38 10.0 2.93 8.73 7.91
WarpMat 6 4.98 1.16 1.35 6.04 0.18 0.24 2.44 5.02 9.30 13.0 3.49 8.47 9.01
AdaptOvrSeg [16] 8 5.59 1.69 2.04 5.64 0.14 0.20 1.47 7.04 11.1 16.4 3.60 8.96 8.84
HardSeg 11 5.53 1.20 1.54 6.07 0.55 0.64 5.10 5.50 9.73 13.5 3.83 8.66 10.01
Segm+visib [2] 15 5.40 1.30 1.57 6.92 0.79 1.06 6.76 5.00 6.54 12.3 3.72 8.62 10.2

Table 1. Middlebury rankings. Our method denoted byWarpMat takes the sixth rank of 56 evaluated stereo algorithms. Values in the table
represent error percentages measured in different image regions.



(a) (b)
Figure 6. Soft versus hard segmentation. (a) Result of using hard
segmentation (HardSeg). (b) Our result (WarpMat). An improve-
ment of disparity borders is visible.

(a) (b) (c)
Figure 7. Novel view generation. (a) Novel view generated using
our disparity and matting results. (b) Due to using our matting
information, the lamp naturally melts with its new background. (c)
Our disparity results used in combination with hard segmentation.
Disturbing artifacts at the lamp’s border occur.

Figure 8. “Soft” depth segmentation. We segment objects by spec-
ifying a minimum and maximum disparity value. Pixels that fall in
the disparity range are extracted. The computed objects are pasted
against a white background using our matting information.

problems. Our method extends previous warping-based ap-
proaches by handling transparent pixels. We have proposed
the assumption of constant solidity for transforming trans-
parent pixels to the second view. Our approach can handle
mixed colors that are the composite of pixels from more
than two depth layers. The high quality of our disparity
results is demonstrated by a sixth rank in the Middlebury
Online Table. We have exploited our results for novel view
interpolation and depth segmentation.
In future work, our formulation should be extended to

handle the input images symmetrically. Currently, the re-
sults are different depending on which stereo image is used
as a reference. While our method handles segmentation er-
rors that lie inside the unknown regions of segments, it can-
not handle very large segmentation errors. This problem can
be overcome by iteratively updating the unknown regions.
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