3D-aware Image Editing for Out of Bounds Photography

Amit Shesh* Antonio Criminisi ${ }^{\dagger} \quad$ Carsten Rother ${ }^{\ddagger} \quad$ Gavin Smyth ${ }^{\S}$
Illinois State University
Microsoft Research, Cambridge United Kingdom

Note this additional material is not important to understand the content of the paper

Appendix A: Calculating the focal length assuming a rectangular frame

Figure 1: A rectangular frame projected into the 2D image.
In this section we describe how to calculate the focal length f of the camera assuming the frame to be rectangular. Since we set all other intrinsic camera parameters to default values, the full camera matrix K is then uniquely defined. The following is a detailed explanation of [HZ04] (Example 8.28 page 228).

Fig. 1 illustrates the scenario in the 2D image. Let $v_{1}=\left(\begin{array}{lll}a & b & c\end{array}\right)^{\top}$ and $v_{2}=\left(\begin{array}{lll}d & e & g\end{array}\right)^{\top}$ be the two vanishing points (in homogeneous coordinates) of the frame. We assume the intrinsic matrix K to be:

$$
K=\left(\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right)
$$

where p_{x} and p_{y} are the coordinates of the principal point fixed at the center of the image, leaving f as the only unknown. Now, if we assume that the frame is rectangular then we obtain the linear constraint (see details in [HZ04])

$$
v_{1}^{T} \omega v_{2}=0
$$

where $\omega=\left(K^{-\top} K^{-1}\right)=\left(K K^{\top}\right)^{-1}$ is known as the absolute conic, an essential component for camera calibration. Therefore the linear constraint can be written explicitly as

$$
\left(\begin{array}{lll}
a & b & c
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{f^{2}} & 0 & \frac{-p_{x}}{f^{2}} \\
0 & \frac{1}{f^{2}} & \frac{-p_{y}}{f^{2}} \\
\frac{-p_{x}}{f^{2}} & \frac{-p_{y}}{f^{2}} & \frac{p_{x}^{2}}{f^{2}}+\frac{p_{y}^{2}}{f^{2}}+1
\end{array}\right)\left(\begin{array}{l}
d \\
e \\
g
\end{array}\right)=0
$$

and hence the focal f is given as

$$
f=\sqrt{-\frac{a\left(d-g p_{x}\right)+b\left(e-g p_{y}\right)+c\left(g\left(p_{x}^{2}+p_{y}^{2}\right)-d p_{x}-e p_{y}\right)}{c g}}
$$

In order to restrict ourselves to realistic cameras, we clamp the focal length to the range [100, 3000]. If the value of the focal length is a complex number we choose a standard value of $f=750$.

[^0]
Appendix B: Closed-form solution for frame placement

Figure 2: Geometry of the frame in the X-Y plane.

The goal of this subsection is to derive unique 3D coordinates for the four frame corners given in 2D. Let the frame lie in the X-Y plane in the world coordinate system as shown in fig. 2. For simplicity, let us express the geometry in terms of an aspect ratio m and a shear η. Thus, the values in the paper are given by $l=m h$ and $s=\eta h$. The four 3D vertices (in homogeneous coordinates) of the frame within this plane are given by

$$
F_{1}=\left(\begin{array}{l}
0 \tag{1}\\
0 \\
1
\end{array}\right), F_{2}=\left(\begin{array}{c}
m h \\
0 \\
1
\end{array}\right), F_{3}=\left(\begin{array}{c}
(m+\eta) h \\
h \\
1
\end{array}\right), F_{4}=\left(\begin{array}{c}
\eta h \\
h \\
1
\end{array}\right)
$$

Let K be the intrinsic camera matrix, which we assume to be known (from Appendix A). Let ($p_{i 1}, p_{i 2}$) be the rectified screen coordinates of the $i^{t h}$ vertex of the frame (i.e. for every 2 D point $p=(x, y, 1)^{\top}$, the rectified point is given as $\left.K^{-1} p\right)$. Let $T_{\text {camera }}=\left[r_{1}\left|r_{2}\right| r_{3} \mid t\right]$ be the world-to-camera transformation matrix. It is a 3×4 matrix where $R=\left[r_{1}\left|r_{2}\right| r_{3}\right]$ is the camera's rotation. The rotation vectors have unit length $\left(\left|r_{1}\right|^{2}=\left|r_{2}\right|^{2}=\left|r_{3}\right|^{2}=1\right)$ and are orthogonal to each other $\left(r_{1} \perp r_{2}, r_{2} \perp r_{3}, r_{1} \perp r_{3}\right)$, hence R has only 3 DOFs . Then the 2 D points p_{i} and the 3 D points F_{i} are related by

$$
\begin{equation*}
p_{i} \sim\left[r_{1}\left|r_{2}\right| t\right] F_{i} \tag{2}
\end{equation*}
$$

where " \sim " means equality up to scale. The 3×3 matrix $\left[r_{1}\left|r_{2}\right| t\right]$ is a homography, which we write as H. Explicitly, the homography is

$$
H=\left(\begin{array}{lll}
H_{11} & H_{12} & H_{13} \tag{3}\\
H_{21} & H_{22} & H_{23} \\
H_{31} & H_{32} & H_{33}
\end{array}\right)=\left[r_{1}\left|r_{2}\right| t\right] .
$$

From eqn. 1-3 we obtain 8 linear independent equations on the unknown elements of H and the unknown frame parameters h, m, η :

$$
\begin{aligned}
H_{33} p_{11} & =H_{13} \\
H_{33} p_{21} & =H_{23} \\
\left(m h H_{31}+H_{33}\right) p_{12} & =m h H_{11}+H_{13} \\
\left(m h H_{31}+H_{33}\right) p_{22} & =m h H_{21}+H_{23} \\
\left(h(m+\eta) H_{31}+h H_{32}+H_{33}\right) p_{13} & =h(m+\eta) H_{11}+h H_{12}+H_{13} \\
\left(h(m+\eta) H_{31}+h H_{32}+H_{33}\right) p_{23} & =h(m+\eta) H_{21}+h H_{22}+H_{23} \\
\left(h \eta H_{31}+h H_{32}+H_{33}\right) p_{14} & =h \eta H_{11}+h H_{12}+H_{13} \\
\left(h \eta H_{31}+h H_{32}+H_{33}\right) p_{24} & =h \eta H_{21}+h H_{22}+H_{23}
\end{aligned}
$$

These constraints can be used to express H using the unknown parameters h, m, η, and the known screen coordinates p as:

$$
\begin{array}{rlll}
& & =\left(\begin{array}{ccc}
H_{11} & H_{12} & H_{13} \\
H_{21} & H_{22} & H_{23} \\
H_{31} & H_{32} & H_{33}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{e k_{1}}{h m d} & \frac{e m k_{2}+e \eta k_{3}}{-h m d} & e k_{4} \\
\frac{e k_{5}}{h m d} & \frac{e m k_{6}+e \eta k_{7}}{-h m d} & e k_{8} \\
\frac{e k_{9}}{h m d} & \frac{e m k_{10}+e \eta k_{11}}{-h m d} & e
\end{array}\right) \\
k_{1}= & p_{12} p_{13} p_{21}-p_{12} p_{14} p_{21}-p_{11} p_{13} p_{22}+p_{11} p_{14} p_{22}-p_{11} p_{14} p_{23}+p_{12} p_{14} p_{23}+p_{11} p_{13} p_{24}-p_{12} p_{13} p_{24} \\
k_{2}= & -\left(p_{12} p_{14} p_{21}-p_{13} p_{14} p_{21}-p_{11} p_{13} p_{22}+p_{13} p_{14} p_{22}+p_{11} p_{12} p_{23}-p_{12} p_{14} p_{23}-p_{11} p_{12} p_{24}+p_{11} p_{13} p_{24}\right) \\
k_{3}= & -\left(-p_{12} p_{13} p_{21}+p_{12} p_{14} p_{21}+p_{11} p_{13} p_{22}-p_{11} p_{14} p_{22}+p_{11} p_{14} p_{23}-p_{12} p_{14} p_{23}-p_{11} p_{13} p_{24}+p_{12} p_{13} p_{24}\right) \\
k_{4}= & p_{11} \\
k_{5}= & -\left(-p_{12} p_{21} p_{23}+p_{14} p_{21} p_{23}+p_{11} p_{22} p_{23}-p_{14} p_{22} p_{23}+p_{12} p_{21} p_{24}-p_{13} p_{21} p_{24}-p_{11} p_{22} p_{24}+p_{13} p_{22} p_{24}\right) \\
k_{6}= & -\left(-p_{13} p_{21} p_{22}+p_{14} p_{21} p_{22}+p_{12} p_{21} p_{23}-p_{14} p_{21} p_{23}-p_{11} p_{22} p_{24}+p_{13} p_{22} p_{24}+p_{11} p_{23} p_{24}-p_{12} p_{23} p_{24}\right) \\
k_{7}= & -\left(-p_{12} p_{21} p_{23}+p_{14} p_{21} p_{23}+p_{11} p_{22} p_{23}-p_{14} p_{22} p_{23}+p_{12} p_{21} p_{24}-p_{13} p_{21} p_{24}-p_{11} p_{22} p_{24}+p_{13} p_{22} p_{24}\right) \\
k_{8}= & p_{21} \\
k_{9}= & p_{13} p_{21}-p_{14} p_{21}-p_{13} p_{22}+p_{14} p_{22}-p_{11} p_{23}+p_{12} p_{23}+p_{11} p_{24}-p_{12} p_{24} \\
k_{10}= & -p_{12} p_{21}+p_{13} p_{21}+p_{11} p_{22}-p_{14} p_{22}-p_{11} p_{23}+p_{14} p_{23}+p_{12} p_{24}-p_{13} p_{24} \\
k_{11}= & p_{13} p_{21}-p_{14} p_{21}-p_{13} p_{22}+p_{14} p_{22}-p_{11} p_{23}+p_{12} p_{23}+p_{11} p_{24}-p_{12} p_{24} \\
d= & p_{13} p_{22}-p_{14} p_{22}-p_{12} p_{23}+p_{14} p_{23}+p_{12} p_{24}-p_{13} p_{24}
\end{array}
$$

As eqn. 2 is true up to a scale of H, we fix this scale arbitrarily by assigning $e=1$.
Imposing the constraint $r_{1} \perp r_{2}$, we get: $H_{11} H_{12}+H_{21} H_{22}+H_{31} H_{32}=0$
This defines the relationship between η and m as

$$
\begin{align*}
& \text { and } m \text { as } \tag{5}\\
& \eta=\beta m, \beta=-\frac{k_{1} k_{2}+k_{5} k_{6}+k_{9} k_{10}}{k_{1} k_{3}+k_{5} k_{7}+k_{9} k_{11}}
\end{align*}
$$

Next we impose the constraint $\begin{array}{r}\left|r_{1}\right|^{2}= \\ \left|r_{2}\right|^{2} \text { which gives } \\ \\ H_{11}^{2}+H_{21}^{2}+H_{31}^{2}\end{array}$

$$
H_{11}^{2}+H_{21}^{2}+H_{31}^{2}=H_{12}^{2}+H_{22}^{2}+H_{32}^{2}
$$

This uniquely specifies m as

$$
\begin{equation*}
m=\sqrt{\frac{k_{1}^{2}+k_{5}{ }^{2}+k_{9}{ }^{2}}{\left(k_{2}+\beta k_{3}\right)^{2}+\left(k_{6}+\beta k_{7}\right)^{2}+\left(k_{10}+\beta k_{11}\right)^{2}}} \tag{6}
\end{equation*}
$$

and hence η is defined using eqn. 5. Note, eqn. 5 and eqn. 6 always provide a real and positive value for m and a real value for η.

To get the value for h, we apply the constraint that $\left|r_{1}\right|^{2}=1$:

$$
\left(\frac{k_{1}}{h m d}\right)^{2}+\left(\frac{k_{5}}{h m d}\right)^{2}+\left(\frac{k_{9}}{h m d}\right)^{2}=1
$$

which gives h as

$$
\begin{equation*}
h=\sqrt{\frac{k_{1}^{2}+k_{5}^{2}+k_{9}^{2}}{m^{2} d^{2}}} \tag{7}
\end{equation*}
$$

Finally, we obtain our full camera matrix $T_{\text {camera }}$ from eqn. 4 (since $H=\left[r_{1}\left|r_{2}\right| t\right]$) and $r_{3}=r_{1} \times r_{2}$.

References

[HZ04] Hartley R. I., Zisserman A.: Multiple View Geometry in Computer Vision, second ed. Cambridge University Press, ISBN: 0521540518, 2004.

[^0]: *e-mail: ashesh@ilstu.edu
 †e-mail:antcrim@microsoft.com
 \ddagger e-mail:carrot@microsoft.com
 §e-mail:Gavin.Smyth@microsoft.com

