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Abstract

In recent years the Markov Random Field (MRF) has
become the de facto probabilistic model for low-level vi-
sion applications. However, in a maximum a posteriori
(MAP) framework, MRFs inherently encourage delta func-
tion marginal statistics. By contrast, many low-level vision
problems have heavy tailed marginal statistics, making the
MRF model unsuitable. In this paper we introduce a more
general Marginal Probability Field (MPF), of which the
MRF is a special, linear case, and show that convex en-
ergy MPFs can be used to encourage arbitrary marginal
statistics. We introduce a flexible, extensible framework
for effectively optimizing the resulting NP-hard MAP prob-
lem, based around dual-decomposition and a modified min-
cost flow algorithm, and which achieves global optimality
in some instances. We use a range of applications, includ-
ing image denoising and texture synthesis, to demonstrate
the benefits of this class of MPF over MRFs.

1. Introduction
A standard approach to solving vision problems today is

to specify a probability distribution over the space of out-
put solutions, then (try to) find that solution with the high-
est probability—the maximum a posteriori (MAP) solution
when a prior model of the likelihood of output solutions is
incorporated using Bayes’ rule. Priors generally model de-
pendencies between the output variables; often these depen-
dencies are local, between each output variable and a small
number of its closest neighbours, generating a Markov Ran-
dom Field (MRF). Indeed, the vast majority of low-level vi-
sion problems, examples of which include image segmenta-
tion, stereo, optical flow and image denoising, employ this
framework. As a result, much effort has been invested over
the past decade or so into improving optimization of this
class of problem, to the extent that other forms of model are
currently at a disadvantage in this respect.

However, MRF1 prior models suffer from a major draw-
back: the marginal statistics2 of the most likely solution un-
der the model generally do not match the marginal statis-

∗The authors contributed equally to this work, therefore assert joint first
authorship.

1We assume that MRFs are translationally invariant. We refer to a
translationally variant MRF as a Conditional Random Field (CRF).

2We refer specifically to the marginal statistics of the cliques used in
the model, which generally equates to those statistics deemed important.

tics used to create the model. For example, given a corpus
of binary training images which each contain 55% white
and 45% black pixels (with no other significant statistic),
a learned MRF prior will give each output pixel an inde-
pendent probability of 0.55 of being white. Since the most
likely value for each pixel is white, the most likely image
under the model has 100% white pixels, which compares
unfavourably with the input statistic of only 55%. When
combined with data likelihoods, this model will therefore
incorrectly bias the MAP solution towards being all white,
the more so the greater the noise and hence data uncer-
tainty. This observation can be extended to any MRF whose
marginal statistics are not delta functions.3

This bias away from the true marginal statistics towards
a delta distribution will not be a problem if either the data
likelihoods are sufficiently strong so as to make the bias
negligible, or the marginal statistics are of secondary im-
portance. The former is a function of the data, while the
latter is a function of the application. However, a large
number of low-level vision applications rely heavily on the
importance of marginal statistics. Image denoising is a clas-
sic example—marginal distributions of zero-mean filter re-
sponses are typically highly kurtotic (heavy tailed), a statis-
tic often cited as significant for the purpose of denoising,
but the MRFs typically used encourage the output statistics
to be less kurtotic. Clearly, finding the MAP solution with
an MRF prior model is not suitable in this situation.

One way round this problem is to change the method
of inference from that of finding the MAP solution to
a sampling-based approach [5]. Their prior models are
learned by maximizing the likelihood of the training data.
Hence, it can be expected that on average a random sam-
ple will match the marginal statistics quite well, see e.g.
[20]. However, we are not aware of any sampling technique
which attempts to have a single output labelling matching
the given statistics, which is the goal of this work. There
are many other interesting differences, like the choice of
loss function, which are, however, not directly relevant for
this paper.

If one is to stick with an MAP framework but avoid the
bias problem then it is the prior model that must be changed.
In particular, a necessary further constraint on the model is
that the marginal statistics of the most likely output(s) under

3In this case the most likely output under the model will also have delta
function marginal statistics.
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the model match the marginal statistics of the training data.
The way to achieve the latter is to have a prior over the

marginal statistics of the output solution. Since comput-
ing marginal statistics involves every output variable, this
model generates a single clique over all variables—what we
call a Marginal Probability Field (MPF)—which means that
the powerful optimization techniques developed for solving
MRFs, with their small cliques, are not suitable. In fact,
there is a paucity of efficient optimization techniques for
MPFs, which we believe has slowed their adoption in com-
parison to the inferior MRF model. The goal of this paper
is redress the balance by developing a powerful inference
framework for optimizing the MAP problem that results
from an MPF.

Related work The task of having the output labelling
match a given distribution has been addressed in different
ways in the literature. There are many vision systems which
have a global prior built into their models, e.g. [27, 20, 21].
However, these works use sampling to produce an output,
which has a different goal in mind than our approach, as dis-
cussed above. For instance, Sudderth et al. [20] recently in-
troduced the Pitman-Yor process to match the heavy-tailed
distribution of object labels, in an object recognition and
segmentation framework.

In the context of MAP inference there are only a few
papers which address the bias of the prior. Most of them
tackle the problem by building new approximate inference
methods in order to match the target statistics, without any
global optimality guarantees. For texture synthesis, both
[7] and [26] compute second-order marginal statistics of an
input texture over a range of different pairwise neighbour-
hood structures. While [7] used ICM, [26] enforced the tar-
get statistics by adapting a Metropolis sampling procedure.
For the same problem, Kopf et al. [14] enforce a global
first-order statistic (i.e. unary cliques) on colour. They used
an approximate EM-style algorithm for MRF optimization,
which we compare to in section 4.4. Other related works
address the problem of binary segmentation where the ap-
pearance of the foreground segment has to match a given
distribution [17, 11, 6]. While [6] used active contours, [17]
developed a trust region graph cut approach, which we will
compare in our experiments.

In this paper we use the dual decomposition approach
[23, 18, 19, 13, 24]. In contrast to approximate methods, it
provides a lower bound which can be used to achieve global
optimality, as we will see for some cases. We introduce two
new methods for use within this framework. The first one
enforces the area constraint of binary segmentations defined
on a tree; this often gives a tighter lower bound compared to
the one in [24]. Our second method is based on a modified
min-cost flow algorithm; it is able to handle convex terms of
global statistics with an arbitrary number of labels. A more
detailed discussion and further related work is presented in

Figure 1. MPF versus MRF. (a) Set of training images for binary
texture denoising. Superimposed is a pairwise feature (transla-
tionally invariant pairwise terms with shift (15, 0); 3 exemplars in
red). Each pairwise feature has one histogram value hk per train-
ing image (with k ∈ K, and |K| = 4). (b) The trained MPF cost
kernel fk (hk), i.e. the negative log of probability of hk over train-
ing images (here k = (1, 1)). The occurrence of label (1, 1)T is
nearly the same for all training images (of same size). It is appar-
ent that the linear cost function of an MRF is a bad fit.

sec. 3.

2. Marginal probability fields (MPFs)
When creating a prior probability model, one typically

chooses4 a subset of features which depend on the output
x. For example, in stereo this might be the derivative of dis-
parity (uni-dimensional), while in texture synthesis it might
be a 5× 5 image patch (multi-dimensional). These features
are computed over neighbourhoods of the output solution.

In an MRF, these features define an independent cost
for every such neighbourhood in x. Its energy5 is written as

EMRF(x) =
∑

i

fMRF (φi(x)) , (1)

where φi : R|x| → Rn computes the n-d feature vector
centred on element i ofx and fMRF : Rn → R+ is the clique
cost functional. For example, in binary texture denoising
(see details in sec. 4.2), xi ∈ {0, 1}, and a pairwise feature
is of the form φi(x) ∈ {(0, 0)T , (0, 1)T , (1, 0)T , (1, 1)T }
(see e.g. fig. 1(a)).

By contrast, in an MPF the likelihoods of these features
are not independent. Rather, probability is computed as
a function of the marginal statistics of the features. The
energy of an MPF is therefore written as

EMPF(x) =
∫
fk

(∑
i

[φi(x) = k]

)
dk, (2)

where k is an n-d feature vector, fk is the MPF cost kernel
R → R+ for a given feature vector and [·] is the Iverson
bracket.6 Normally the feature vector space is discretized
into a set of labels,K, allowing a histogram, {hk}k∈K, to be
computed as hk =

∑
i [φi = k] (where φi replaces φi(x)

4Even with learned features, there is a decision about what class of
features they should be learned from.

5Energy is the negative log of (usually unnormalized) probability.
6[statement] = 1 if statement is true, 0 otherwise.



for brevity), such that EMPF(x) =
∑

k∈K fk (hk). Fig. 1
illustrates a learned function fk for the denoising example.

2.1. Characterizing cost functions

The cost function fk has a large bearing on the useful-
ness of an MPF, and also the optimizability of the resulting
energy minimization problem. We categorize such func-
tions according to their second derivative w.r.t. frequency,

f ′′k (hk) =
∂2fk(hk)
∂h2

k

, (3)

and discuss the merits of three main classes.

Linear MPFs have f ′′k = 0, ∀ k, hk, with the result that
fk(hk) = ck + fk · hk. Such an MPF is equivalent7 to an
MRF:

EMPF(x) =
∑

k

fk ·
∑

i

[φi = k] =∑
i

∑
k

fk · [φi = k] =
∑

i

fMRF (φi) = EMRF(x)

therefore can be optimized using standard MRF optimizers.

Concave MPFs have f ′′k ≤ 0, ∀ k, hk. The global min-
imum of any MPF in this (and therefore also the linear)
class will generally, ignoring integrability,8 produce delta
function marginal statistics. This can be seen from the fact
that a concave function

∑
k fk(hk) defined over a simplex

{{hk} : hk ≥ 0,
∑

k hk = const} attains a minimum at an
extreme point of this simplex.

Convex MPFs have f ′′k ≥ 0, ∀ k, hk, and can generate ar-
bitrary marginal statistics, as we will show. This paper in-
troduces a powerful optimization framework for this class
of problem which produces good results and in some cases
even finds a global optimum. Cost functions may of course
have both regions of convexity and concavity, but the prop-
erties of such functions are not discussed here. In fig. 1(b)
we see that a convex function would be a good fit to the
learned function fk.
2.2. Specifying cost functions

When defining the parameters of an MPF one either has a
single marginal statistic, i.e. histogram {h̄k}k, for each fea-
ture, or a training set of such marginal statistics, {{h̄d

k}k}d.
The first case occurs when there is a single training image,
such as in image synthesis from a single exemplar image,
or a user-defined defined statistic, for example the area or
colour histogram of an object to be segmented or tracked.
In this case it is clear that each cost function, fk, should
be unimodal and that its minimum should occur at h̄k, to
encourage the output to have the same marginal statistics.

7The constants, ck , are removed for brevity, without loss of generality.
8Independently selecting the most likely labelling for every clique is

not possible where intersections between clique labellings differ.

However, the shape of the unimodal cost function is an open
variable. Experimentation or learning with ground truth
output is a future possibility, but in this work we generally
use the “V-shaped” kernel.

In the second case the training data provides a set of his-
tograms. Example applications are image and binary tex-
ture denoising, where a set of training images are available.

In this case the training data can be used to specify the
shape of the cost functions, e.g. by histogramming the set
{h̄d

k}d for each k (see fig. 1(b)). In this work we are limited
to convex, piecewise-linear kernels. It is not yet clear for
which applications these statistics tend to be convex, but
we show that simple “V-shaped” kernels can achieve good
results for image denoising and binary texture denoising.

The simplicity of our cost functions stems from the fact
that the main purpose of this paper is not parameter learn-
ing, but rather to show that the convex energy MPF is a bet-
ter prior model than an MRF for most low-level vision ap-
plications using MAP inference. This will hopefully inspire
further research on the subject of learning MPF parameters.
2.3. Incorporating MRFs into MPFs

Posterior probability models generally contain a number
of different terms, making the total energy a sum of, for
example, data likelihoods, MRFs and/or CRFs over various
different features; let fMRF encompass such costs. We can
incorporate these costs into the MPF, and also extend the
MPF over various different features, redefining EMPF thus9

EMPF(x) = fMRF(x) +
∑

t

∑
k

f t
k(ht

k) . (4)

Here we assume that there are several types of features in-
dexed by symbol t. ht

k denotes the histogram of label k over
features of type t: ht

k =
∑

i[φ
t
i = k] where φt

i = φt
i(x) is

the feature of type t at location i taking values in some fi-
nite set Kt. In binary texture denoising K0 = {0, 1} and
K1 = {(0, 0)T , (0, 1)T , (1, 0)T , (1, 1)T } for the unary and
pairwise terms respectively. In our experiments we will
demonstrate various types of MPFs based on unary and
pairwise terms, and leave higher-order clique MPFs as fu-
ture work.

3. Optimization
We now concentrate on the problem of optimizing MPF

energies given by (4). In general, this is a very challenging
task. We are aware of only a few special cases that can be
solved exactly in polynomial time. A notable example is
given in [9]: if x is a binary labelling, fMRF(x) is a sub-
modular function with unary and pairwise terms, features
φt

i correspond to individual pixels (φt
i(x) = xi), and func-

tions f t
k(·) are concave then the problem can be solved via

9Note, eq. (4) can be viewed as a special case of (2), if the domain of
features k in (2) is defined appropriately as a Cartesian product. The form
of eq. (4), however, will be more convenient in sec. 3.



a reduction to a min s-t cut problem. In this paper, how-
ever, we are more interested in the case of convex functions
f t

k(·) which is well-known to be NP-hard (since e.g. it in-
cludes the minimum graph bisection problem as a special
case).

As discussed in section 1, many heuristic techniques
have been proposed. This section, however, considers only
global methods that provide a lower bound on the energy.
In particular, we will use the subproblem decomposition (or
dual decomposition - DD) approach [3], which proved to
be very successful for MRF optimization [23, 18, 19, 13].
Note that such an approach was used in [24] for enforcing a
statistic on the area of a binary segmentation.

Let us introduce vector θ = {θt}t = {θt
ik}t,i,k; we will

denote θt
i(k) = θt

ik. We can rewrite the energy (4) as

EMPF(x) = EMRF(x;θ) +
∑

t

Et(x; θt) where (5)

EMRF(x;θ) = fMRF(x)−
∑

t

∑
i

θt
i(φ

t
i) (6)

Et(x; θt) =
∑

k

f t
k(ht

k) +
∑

i

θt
i(φ

t
i) . (7)

In the decomposition approach we define lower bounds
for individual terms:

ΦMRF(θ) ≤ min
x

EMRF(x;θ) (8)

Φt(θt) ≤ min
x

Et(x; θt) . (9)

The sum of these bounds then gives a lower bound on the
original function:

Φ(θ) = ΦMRF(θ) +
∑

t

Φt(θt) ≤ min
x

EMPF(x) . (10)

In order to get the tightest possible bound on EMPF(x), we
need to maximize function Φ(θ) over θ. Bounds (8) and (9)
are chosen in such a way that function Φ(·) is concave,
therefore one can use a number of standard concave maxi-
mization techniques. Following [18, 19, 13], we maximize
Φ(·) via a subgradient technique.

Let us now discuss how to define bounds (8) and (9).
Possible bounds ΦMRF(θ) on MRF functions have been ex-
tensively studied before. A popular choice is to use a con-
vex combination of trees [23]; more generally, one can use
subproblems with low tree-width. We therefore focus on
lower bounds Φt(θt) on global statistics terms, which have
received less attention in the literature.

Lower bounds on global statistics terms From now on,
we consider a fixed index t. For brevity, we will denote
fk = f t

k, θ = θt, K = Kt. As we just discussed, our goal is
to define a lower bound on function (7):

Et(x; θ) =
∑

k

fk

(∑
i

[φt
i = k]

)
+
∑

i

θi(φt
i) . (11)

Ideally, we would like to take minxEt(x; θ) as the lower
bound. Unfortunately, computing this minimum is an NP-
hard problem even in rather restricted cases.10 To get
a tractable lower bound, we replace features φt

i in (11)
with labels ki ∈ K. We then minimize the energy over
labellings k without enforcing the constraint that k =
φt(x) for some labelling x. (An example, assume φt ∈
{(0, 0), (0, 1), (1, 0), (1, 1)}, and consider three nodes x1−3

where φt(x1, x2) = (0, 1) and φt(x2, x3) = (0, 1). This
provides a valid labelling but an invalid assignment for x2.)
Thus,

Φt(θ) = min
k
Ẽt(k; θ) where (12)

Ẽt(k; θ) =
∑

k

fk(hk(k)) +
∑

i

θi(ki) (13)

hk(k) =
∑

i

[ki = k] (14)

In the remainder of this section we discuss how to solve
the minimization problem (12). We will consider separately
the case of binary variables ki (|K| = 2) and multi-valued
variables (|K| > 2).

3.1. Case I: binary variables

In this section we assume that ki ∈ K = {0, 1} and θt
i0 is

constrained to be 0 for all locations i (possible since adding
a constant to θt

i0 and θt
i1 does not change Φ(θ) for bounds

ΦMRF(θ) used in the literature). We can rewrite (13) as

f(h1(k)) +
∑

i

θiki (15)

where f(h1) = f1(h1) + f0(n− h1), n =
∑

i 1 is the total
number of elements i, and θi = θi1. (We used the fact that
h0(k) = n− h1(k).)

It is well-known that the minimum of (15) can be
computed in O(n log n) time [8]. We need to sort val-
ues θi in non-decreasing order, evaluate the cost of n +
1 labellings (0, . . . , 0), (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . .,
(1, . . . , 1) (where we assume that the order of elements is
given by the sorting), and pick the labelling with the small-
est cost. A decomposition with subproblem 15 was used
as an example in [24] for enforcing the area constraint of a
binary segmentation.

Convex case Suppose that function f(·) is convex. This
case is quite special due to the following theorem proved in
[22].

10Suppose, for example, that x is a binary labelling (xp ∈ {0, 1}),
i indexes an edge (p(i), q(i)), feature φt

i = |xp(i) − xq(i)| ∈ {0, 1}
measures the discontinuity between nodes p(i) and q(i), term f0(·) is a
linear function: f0(h) = h, and other terms in (11) are identically zero:
f1(h) = 0, θi(k) = 0. Then Et(x; θ) equals the number of edges
(p(i), q(i)) with the same label (xp(i) = xq(i)). Minimizing Et(x; θ)
is thus equivalent to a maximum cut problem in an undirected unweighted
graph, which is well-known to be NP-hard.



Theorem 3.1 Suppose that function ΦMRF(·) is continuous
and satisfies the following property for all vectors θ and
locations i of feature of type t:

ΦMRF(θ + δ · χi) ≥ ΦMRF(θ) + min
x∈{0,1}

{−xδ} (16)

where χi is a vector of the same dimensions as θ with
(χi)t

i1 = 1 and all other components equal to 0. Then func-
tion (10) has a maximizer θ such that θt

i1 = λ for some
constant λ.

Note, condition (16) is satisfied for many reasonable
choices of ΦMRF(·); in particular it holds if ΦMRF(·) is de-
fined to be equal to the minimum of (6).

The theorem allows us to restrict vector θt to have the
form θt = λ1 where 1 is a vector of size 2n with 1i0 = 0
and 1i1 = 1. This should speed up a subgradient method.
Furthermore, if function (4) has no other global terms ex-
cept for f(h1(φt)) then the bound Φ(·) depends just on a
single parameter λ, hence one can use e.g. a line search.
Evaluating Φt(λ1) is straightforward, so the bottleneck
computation is evaluating ΦMRF(λ1) for different λ’s.

In the experiments we consider the problem of minimiz-
ing a submodular function with unary and pairwise terms
plus a global convex term of the area of the binary seg-
mentation. In this case ΦMRF(λ1) = minx{ΦMRF(x) −
λ
∑

i xi} where ΦMRF(·) is a submodular function with
unary and pairwise terms. It is well-known that the mini-
mum can be computed efficiently for all values of λ using
a parametric maxflow algorithm, see e.g. [11]. We denote
this method as DD.

3.1.1 Adding pairwise terms
For certain problems the bound defined by (10) can be quite
loose. We now discuss one possible way to improve it. Let
us add to function (15) pairwise terms defined on a tree (or
a forest) T :

f(h1(k)) +
∑

i

θiki +
∑

(i,j)∈T

fij(ki, kj) . (17)

Clearly, the minimum of (17) can be computed in O(n2)
time using dynamic programming (see [25] for details). In
our experiments we used it for minimizing functionE(x) =
f(
∑

p xp) +
∑

p fp(xp) +
∑

(p,q)∈E fpq(xp, xq) of binary
labellings x as follows. First, we divide the edges into T
disjoint groups (E = ∪tEt) so that each group Et forms
a forest. We then use the approach described at the be-
ginning of section 3, only instead of (5) we use the de-
composition E(x) =

∑
t[

1
T f(

∑
p xp) + 1

T

∑
p fp(xp) +∑

(p,q)∈Et
fpq(xp, xq) +

∑
p θ

t
pxp] where θt are unknown

vectors that must sum to 0. Each term in this decomposi-
tion is minimized over x via dynamic programming. We
denote this method as DD-DP.

3.2. Case II: multi-valued variables

Let us now consider the case of multi-valued variables
(K = |Kt| > 2). This case was recently analyzed in [8].
The authors mention that the problem can be solved in
O(nK) time, which unfortunately would be too slow in
practice even for small K. The work [8] focuses on the
case when fk(hk(k)) = λ(hk(k))2. The authors observed
that if λ > 0 then the problem can be solved via quadratic
programming. They then proposed an approximation algo-
rithm for the case λ < 0, which they proved to be NP-hard.

Below we present further results for the case when fk(·)
are arbitrary convex functions. We show that the mini-
mization problem (12) can then be reduced to a minimum
cost flow problem (MCF) in a bipartite graph. If all in-
put costs are integers then one could apply the MCF algo-
rithm for bipartite graphs in [2]; the complexity would be
O(nK2 +K3 log(KC)) where n =

∑
i 1 is the number el-

ements i and C is the largest cost. In this paper we used an
alternative algorithm with a strongly polynomial complex-
ity O(nK3 log(n+K)), which we developed.

We denote the dual decomposition approach with this
method as DD-MCF.

Reduction to MCF We assume that the reader is famil-
iar with the MCF problem (see e.g. [1] for details). We
construct a graph with n nodes corresponding to elements
i (called i-nodes) and K nodes corresponding to labels
(called k-nodes). We also add one extra node s called the
source (fig. 2). For each label k and element i we add an
arc i → k with capacity 1 and cost θik. Each i-node will
have an excess flow of +1. This unit of flow must leave i
via some arc i → k; this will correspond to assigning label
k to element i: ki := k.

Now consider label k. The argument of fk(·) can only
take values 0, 1, . . . , n, therefore we can assume without
loss of generality that fk(·) is a piecewise-linear convex
function that attains a minimum of 0 in [0, n]. Let 0 ≤
n1 < . . . < nB ≤ n be the breakpoints of fk(·) and let
s0 < s1 < . . . < sB be the corresponding slopes of linear
segments, with s0 ≤ 0 and sB ≥ 0. Let nb̄ be a break-
point that minimizes fk(·), then sb̄−1 ≤ 0 and sb̄ ≥ 0.
We set the excess (or rather the deficit) of node k to −nb̄.
For b = 1, . . . , b̄ we add an arc from s to k with capacity
nb−nb−1 and cost −sb−1. For b = b̄, . . . , B we add an arc
from k to s with capacity nb+1 − nb and cost sb.

To complete the construction, we assign an excess/deficit
to the source node to make the network balanced. (Recall
that in the MCF formulation the sum of excesses over all
nodes should be zero.)

It is not difficult to see that the cost of a valid flow equals
the cost (13) for the corresponding labelling k. Indeed, arcs
from i-nodes to k-nodes incur cost

∑
i θi(ki). Now con-

sider node k. The amount of flow that comes to k from
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Figure 2. Reduction to min-cost flow.
Example for a function with three pix-
els and three labels (n = K = 3).
Term f1(·) has two breakpoints, terms
f2(·), f3(·) have one breakpoints.

i-nodes is hk(k). If it is equal to the deficit of nb̄ at node
k then no flow will go between i and s, so edges between
k and s will not incur any cost. If hk(k) exceeds nb̄ then
the additional flow will leave k via arcs k → s, incurring
the cost fk(hk(k)). Similarly, if hk(k) is less than nb̄ then
some flow will go from s to k to cancel the deficit at k.

Solving the MCF problem The constructed network con-
tains n+K + 1 nodes and O(nK) arcs. A general-purpose
MCF solver applied to this problem would be quite slow;
for example, the successive shortest path (SSP) algorithm
would have O(nK) iterations consisting of Dijkstra com-
putations, resulting in O(n2K2 log(n + K)) time. We
developed a modification of the SSP algorithm that runs
in O(nK3 log(n + K)); details are given in [25]. After
the submission we learned about an alternative MCF algo-
rithm for bipartite graphs [2] which would have O(nK2 +
K3 log(KC)) complexity for integer costs.11 Unlike our al-
gorithm it is not strongly polynomial since it depends on the
largest cost C, but we expect it to be faster in practice.

4. Experimental results
Our experiments concern two questions. Firstly, how well
can the dual-decomposition approach optimize the MPF
model, especially w.r.t. competitive methods. Secondly,
how does the MPF model compare to a standard MRF
model. For this, we have considered four different appli-
cations: image segmentation, synthesis and denoising, and
binary texture denoising. Note, further results are in [25].

Figure 3. Image segmentation with standard MRF [16] (centre)
and MPF with area (global unary) constraint (right).

4.1. Image Segmentation

We used the GrabCut MRF model with the provided
dataset of 50 images [16].12 Fig 3(centre) shows a result,
where colours were trained from the provided user-defined
trimap [16]. In order to improve on this result we used
two types of high-level knowledge (e.g. from user or previ-
ous frame in tracking). Firstly, we used a global constraint

11We thank Andrew Goldberg for pointing out this reference.
12We downscaled images to max side length of 70 pixels, which only

mildly affects segmentation quality, in order to run many experiments.

MRF MPF - global area MPF - global distribution
DD DD-DP DD TRGC

hard 2.8 2.6 (11) 2.6 (37) 2.1 (4.3) 2.5
soft 2.8 2.4 (39) 2.5 (57) 1.9 (28) 2.0

Table 1. Image segmentation with different models and methods.
Shown is error (percentage of misclassified pixels) and in brackets
percentage of globally optimal cases (TRGC has no guarantees).

Noise MRF MPF - global unary MPF - global pair.
DD DD-DP DD-MCF

30% 6.9 6.1 (57) 6.2 (50) 6.3 (0)
60% 20.1 14 (23) 13.7 (11) 12.5 (0)
90% 40.6 36.8 (15) 33.4 (0) 31.3 (0)

Table 2. Texture denoising with different models, methods and
noise levels. Shown is error (percentage of misclassified pixels)
and in brackets percentage of global optimal cases.

on the foreground area (defined by the ground truth seg-
mentation), enforced either as soft (with V-shaped cost ker-
nel) or hard constraint, i.e. foreground area perfectly match-
ing ground truth. Table 1 shows results averaged over the
dataset. As expected, the error rate with the area constraint
(MPF - global area) is lower than without (MRF); example
in fig. 3(right).13 More importantly, we obtain global op-
timality for many examples; in particular, this is achieved
more often when using DD-DP (sec. 3.1.1) rather than DD
(sec. 3.1), and also when using a soft constraint. In a sec-
ond experiment, we converted the independent, unary la-
bel costs of the MRF (based on foreground and background
colour models) into an MPF with fixed-size target colour
histograms for foreground and background regions and V-
shaped cost kernels over each colour bin,14 as per [17]. This
is a stronger constraint than global area, with error rates
improving considerably (see table 1, MPF - global distribu-
tion). Our DD method is globally optimal for some cases,
and gives on average (94% “hard” case, 72% “soft” case)
a lower energy than the approximate trust region graph cut
(TRGC) method.15

Figure 4. Binary texture denoising with various models (crop
60 × 60 pixels of Brodatz D101). The input image (b) has 60%
noise. The error rates are (c) 13.7%, (d) 12.8%, (e) 10.6%.

4.2. Binary texture denoising

This toy problem (see fig. 4, 1) has been addressed be-
fore using pairwise MRFs [12, 4]—using a set of (here,

13The slightly higher error for hard constraints is due to the fact that the
ground truth segmentation is not perfectly aligned with edges in an image.

14The two colour histograms are transformed so that their n colour bins
become the features, and the labels foreground and background become
the bins, creating n binary, global subproblems.

15We selected the best performing method from [11], i.e. strategy C.



80) training images, the 6 most “informative” pairwise
features (edges with different length and orientation) are
selected (see [4]), their edge costs defined by the nega-
tive log of the marginal probabilities of each of the labels
{(0, 0)T , (0, 1)T , (1, 0)T , (1, 1)T }, and the prior weight
learned discriminatively (see [12]). The globally optimal
labelling of the resulting MRF (found using QPBO [12])
is over-smoothed (fig. 4(c)), due to the bias towards delta
function marginal statistics.

We considered two alternatives for improving results.
Firstly, we added a V-shaped global unary constraint on
the number of 1s. Secondly, we replaced the MRF pair-
wise terms with V-shaped global potentials (and also kept
the global unary constraint). In both cases we defined the
lowest cost to be at the mean frequency of the training data
statistics, with the kernel gradients being hand-tuned.16 Re-
sults, shown in fig. 4(d,e), are superior to the MRF result.

Table 2 provides some quantitative results, here averaged
over 20 sample runs (for each noise level) and two different
crops (60 × 60 pixels) of Brodatz textures D101 and D20,
reinforcing that the MPF models improve over the MRF.
As expected, the difference is more noticeable for higher
levels of noise, where the prior has greater influence. The
improvement from using global pairwise terms is visually
more noticeable (e.g. fig. 4(e)) than is reflected by the er-
ror rates. In contrast to the previous experiment on image
segmentation, DD-DP achieved global optimality less of-
ten compared to DD. In particular, we observed that they
achieve global optimality for different images. Also, the
lower bound of DD-DP was seldom higher than that of DD,
though it nearly always had a lower energy. We conjecture
that the main reason might be slow convergence of DD-DP.

The average runtime (3.6GHz) for an example is DD
0.5s, DD-DP 1s per iteration, and DD-MCF 0.06s per it-
eration. The number of iterations (until process seems to
be converged) depends on the image, e.g. 400 for DD-DP
(fig. 4(d)) and 300 for DD-MCF (fig. 4(e)).

4.3. Image denoising
Responses of natural images to zero-mean filters are

known to be highly kurtotic. We use a first derivative fil-
ter (horizontal and vertical) as a feature to regularize noisy
greyscale images, comparing MPF and MRF models. The
image is discretized to 64 grey levels, while the deriva-
tive statistics (magnitude only) are discretized into 11 non-
uniformly distributed bins. A mean image histogram, and
histogram variance, is computed from 100 Berkeley Seg-
mentation Dataset images, and used with a V-shaped cost
kernel (the gradient of which is inversely proportional to
variance) in the MPF, while its negative log is used as the
pairwise energy in the MRF problem. A reasonable prior

16We found that the output labelling was not sensitive w.r.t. settings of
the weight, in contrast to a standard MRF.

weight for each model was hand-picked from a range of val-
ues tested, though the MPF results were found to be much
less sensitive to this value. Fig. 5 shows the results using
the two different models. The MRF model (optimized us-
ing [10]) biases the output (c,d) towards an unnaturally ho-
mogenous image, while the MPF output (e), generated us-
ing DD-MCF, is both more natural-looking (also matching
the mean marginal statistics very closely (f)) and a more
faithful reconstruction (visually) of the original.

4.4. Image synthesis
The goal of image17 synthesis is to generate, from a

small (here, 128 × 128, e.g. fig. 6(a)) exemplar image, a
larger output image. The popular MRF-based technique of
Kwatra et al. [15] fuses shifted copies (we use 70 random
shifts) of the input image together in a series of binary op-
timizations (we use QPBO [12]), by minimizing the pair-
wise transition costs between different copies. The result
(fig. 6(b)) is poor—some rarer elements are lacking, e.g.
dark grass, cow. This can be expected since elements which
occur frequently are more easily pasted together.

We augment the MRF energy with a global term based
on V-shaped cost kernel around the colour histogram of
the input image. This colour histogram has 32 bins whose
centres are computed using k-means on the input colours;
colours are then assigned to the nearest bin centre. Each
binary optimization is then computed using our DD-MCF
technique. This generates the output shown in fig. 6(c),
which shows that the previously missing image elements
have been introduced.

Kopf et al. [14] first introduced a heuristic to enforce
global colour histograms in texture synthesis, inspiring this
choice of application here. However, their method,18 gen-
erating fig. 6(d), fails to reproduce the full gamut of input
colours, a result of the fact that colours, once lost, are not
easily reintroduced. Fig. 6(e) shows the colour histograms
of images (a–e), indicating that our approach generates the
closest match to the ground truth.

5. Conclusions and future work
This paper has introduced a framework for the MAP op-

timization of convex MPFs, powerful in terms of its effi-
cacy, efficiency and flexibility. In doing so it has developed
a more general probabilistic model (of which the MRF is a
special case), shown that MAP inference can generate so-
lutions with correct marginal statistics, when used with a
convex MPF, and that convex MPFs generate improved re-
sults over those of MRF models in a wide range of low-
level vision applications where marginal statistics are both
important and heavy-tailed.

We believe that this work has enormous potential, both
with respect to the applications it can be applied to, and for

17As distinct from texture—images contain non-repetitive features.
18Our own implementation.
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Figure 5. Image denoising. Results for image denoising. (d) shows further MRF results with a lower (top) and higher (bottom) prior
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a large dataset (black), (a) (blue), (b) (yellow), (c) (green) and (e) (red). The runtime for the MRF (c) is 1096s and for MPF (e) 2446s.
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Figure 6. Image synthesis. (a) Input image. (b–d) Larger output images synthesized using (b) the fusion approach of Kwatra et al. [15], (c)
our adaption which incorporates a global colour histogram constraint, and (d) the EM-style, global heuristic approach of Kopf et al. [14].
(e) Colour histograms (bins are those used in the global constraint of (c)) for (a) (black), (b) (red), (c) (blue) and (d) (green).

improvements to the optimization technique itself.
Acknowledgements We thank Tom Minka, Andrew
Blake, Pushmeet Kohli, Victor Lempitsky and Andrew
Goldberg for helpful discussions.
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