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Abstract

The availability of quantitative online benchmarks for
low-level vision tasks such as stereo and optical flow has led
to significant progress in the respective fields. This paper
introduces such a benchmark for image matting. There are
three key factors for a successful benchmarking system: (a)
a challenging, high-quality ground truth test set; (b) an on-
line evaluation repository that is dynamically updated with
new results; (c) perceptually motivated error functions. Our
new benchmark strives to meet all three criteria.

We evaluated several matting methods with our bench-
mark and show that their performance varies depending
on the error function. Also, our challenging test set re-
veals problems of existing algorithms, not reflected in pre-
viously reported results. We hope that our effort will
lead to considerable progress in the field of image mat-
ting, and welcome the reader to visit our benchmark at
www.alphamatting.com.

1. Introduction
It is well known that the introduction of quantitative
benchmarks for low-level vision problems, such as stereo
[18] or optical-flow [2], has led to a considerable perfor-
mance boost in the respective fields. To assure continuous
progress, related recent work has focused on providing such
benchmarks on the web, which enables the research com-
munity to add new results as they arise. This allows people
from academia and industry to keep track, analyze and com-
pare recently proposed work in these areas.

Unfortunately, no such standard benchmark has been de-
veloped so far for the task of image matting. Image Matting
is a computer vision problem which aims to extract an ob-
ject from its background by recovering correctly the opac-
ity and corresponding foreground color of each pixel. Mat-
ting has a number of important applications which have led
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to numerous different algorithms over the past few years.
Since a review of previous work in this area is out of the
scope of this paper, we refer the reader to the recent survey
of Wang et al. [22]. As many approaches to matting exist,
a quantitative benchmark for these methods becomes vital
to reveal their strengths and weaknesses, thus providing the
ground for novel research directions.

The major goal of this work is to provide such a bench-
mark for image matting on top of a dataset with correspond-
ing high quality ground truth. Unfortunately, recently pro-
posed ground truth datasets [14, 23, 16] cannot be used
straightaway for this task, since they have serious flaws.
For instance the data in [14] is considerably affected by
noise and the reference solutions in [23] are biased towards
some matting algorithms. Although the dataset in [16] is of
very high quality, it would greatly benefit from test images
showing natural scenes (as opposed to the currently used
artificial backgrounds) as well as from a larger diversity of
image properties (e.g. images with a larger depth of field).
Therefore, we augmented the high-quality matting database
of [16] with so far missing images from natural scenes that
feature e.g. different focus settings and translucent objects.
This joint dataset largely reflects the challenges inherent to
real images and provides our basis for the comparison of
matting algorithms.

Another issue addressed in this paper is that none of the
previously proposed datasets has emerged as an accepted
standard. As a consequence, comparisons in subsequent
work were conducted on different data, lowering their in-
formative value. This is presumably due to the lack of an
appropriate online benchmark system that allows other re-
searchers to include novel results. Thus we establish a dy-
namic online benchmark that provides all data and scripts
that enable the research community to complement our
evaluation with new results. This will bring researchers in
the favorable position to interactively analyze recent work
which will hopefully inspire further research.

Our third contribution is to improve on the evaluation
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methodology for image matting that has been previously
tied to simple pixel-wise error measures that do not always
correlate to the visual quality as perceived by humans. Thus
we go beyond these evaluation methodologies and develop
quantitative error measures that are based on subjective hu-
man perception. More specifically, we concentrate on two
properties of alpha mattes that considerably affect the visual
quality of matting results, namely the connectivity of the
foreground object and the preservation of gradients in the
alpha matte. We develop error functions that estimate the
compliance of these properties and validate that our mea-
sures are correlated to human perception in a user study.
Our work is related to research in other areas of computer
vision, where perceptual distance measures were developed
for e.g. image segmentation [15, 5] or color constancy [7].

Experimental results show that our dataset is challenging
and pronounces strength and weaknesses of image matting
algorithms that were not apparent in previous evaluations.
We found that the performance of algorithms varies under
our perceptually motivated error measures that are based on
the connectivity and gradient of the alpha matte. This moti-
vates to strive for more complex perceptual error functions
that combine these measures. However, we believe that this
is a very challenging task, since we found indication that the
visual perception of errors is ambiguous among humans.

The remainder of this paper is organized as follows.
In sec. 2 we discuss the construction of our ground truth
dataset and analyze its properties. We explain the design of
our online benchmark in sec. 3 and derive our perceptually
motivated error functions in sec. 4. Finally, we evaluate and
discuss the performance of matting algorithms in sec. 5.

2. Database
Ideally, a ground truth dataset for image matting should fea-
ture several important properties. Firstly, the data should
cover a variety of conditions found in real-world images
such as color ambiguity, different focus settings, or high-
resolution data. Secondly, the data should be challenging
in order to further push the limits of current methods, and
thirdly the data has to be paired with high quality ground
truth alpha mattes to allow for a fair comparison. We strive
to construct a dataset that has all these properties.

To obtain ground truth information for real-world images
one could follow the approach in [23] where existing mat-
ting methods were applied to natural images and their re-
sults were manually combined to a reference solution. We
applied this approach to several challenging natural images,
but found the resulting alpha matte to be of low quality. Fur-
ther we argue that such a dataset would be biased towards
the algorithms that were used to construct the ground truth.

Since there seems to be no reasonable chance to de-
rive alpha mattes with sufficient quality from real-world im-
agery we decided to capture high-quality ground truth mat-

tes in a restricted studio environment by triangulation [19].
Our set of 8 images is considerably more challenging than
previously used data and depicts natural (indoor) scenes that
comprise of a variety of challenges one faces in real-world
images, like different focus settings (see sec. 2.2). To derive
an even more complete set of 35 images we augmented our
data with the database proposed in [16]. Finally, we split up
this set into 8 test and 27 training images (see sec. 3).

2.1. Data capture

To obtain a composite that can serve as test image for
evaluation purposes we built up a natural scene that was
then photographed with a foreground object. To derive a
high-quality ground truth alpha matte for this composite,
we carefully placed a monitor (Apple Cinema 30” HD) be-
tween the object and the scene, without moving neither the
object nor the camera (all subsequent shots have to be per-
fectly aligned with the composition). We displayed four
single-colored backgrounds (i.e. black, red, green and blue)
on the monitor that were photographed with the foreground
object. After capturing the object in front of the screen, the
object was removed to photograph the plain backgrounds
as well. This allowed us to extract a ground truth matte
by triangulation [19]. In [16] the same setup was used but
image compositions were simply obtained by photograph-
ing the objects in front of a monitor, which showed natural
background images.

Following [16], all images were shot in unprocessed
RAW format with a professional DSLR camera (Canon 1D
MarkIII with a Canon 28-105mm zoom lens) at a resolution
of 10.1 Megapixels with constant camera settings. To avoid
camera shake, we locked the mirror of the camera (hence
the shutter is the only moving part inside the camera) and
used a remote control to trigger the shutter. This enabled
us to take images that are registered to each other with sub-
pixel accuracy. For computing the alpha matte, the RAW
image data was transformed into RGB color images with-
out gamma correction (linear gamma) in order to avoid the
introduction of noise in dark areas. Finally, the images were
cropped at a bounding box that was casually drawn around
the foreground objects, resulting in test scenes with an av-
erage size of about 6 Megapixels.

To assure that our newly recorded ground truth mattes, as
well as those of [16], are indeed of high quality, we evalu-
ated their noise level. For this purpose, we manually marked
pixels which have an alpha value of exactly 1 (i.e. truly fore-
ground) and then computed the number of pixels in this re-
gion with an alpha value lower than 0.97. For our new data,
3.4% (0.3% for the data in [16]) of the pixels are below this
threshold. This is a very good value, compared to the data in
[14], where we found on average 26.7% of true foreground
pixels with an alpha value below 0.97.



2.2. Image properties
Our images exhibit many characteristics of real-world

images, like highly textured backgrounds, different depth
of fields, as well as color ambiguity. We included a range
of foreground objects that have different properties such as
hard and soft boundaries, translucency or different bound-
ary lengths and topologies (e.g. a tree with many holes).

Our dataset is challenging and exhibits various levels of
difficulty. On our data the mean squared error (normalized
over the number of pixels with unknown alpha values) com-
puted using the algorithms of [23] and [14] (averaged over
the algorithms) varies between 0.3 and 21.8 with an aver-
age value of 4.2. This is considerably larger than the aver-
age error rates we computed with the same procedure on the
datasets of [23] and [14] which are 1.1 and 0.9, respectively.

2.3. User input
Image matting is a severely ill posed problem and there-

fore user interaction is necessary to solve it. The most
common form of user interaction is the trimap interface,
where the user manually partitions the image into fore-
ground, background and unknown regions. Transparency
values are then computed for the unknown regions only.
Some matting algorithms are also capable to work on very
sparse trimaps, commonly denoted as scribbles. However,
scribbles are subject to an even higher variation of inputs
compared to trimaps and are often only used to derive a
more accurate trimap [11, 1, 16].

Therefore, we decided to simulate the user input by a set
of three different trimaps for each test image. Two of them
where generated automatically by dilating the unknown re-
gion of the high-resolution ground truth trimap by 22 and 44
pixels respectively. To account for more natural user input
we also included a hand drawn trimap for every test case.
These were generated by an experienced user given a paint
tool with a set of three brushes (i.e. unknown, foreground
and background) and flood filling capability. The user was
imposed a time constraint of 2 minutes per image, which we
found sufficient to create a reasonable trimap for all images.

Although most matting algorithms accept trimap input,
we plan to extend our benchmark with matting results that
were generated with other forms of user interaction or in a
completely automatic way (e.g. [14] supports a component
picking interface and a completely unsupervised mode).

3. Online Benchmark System

An important reason that has led to the success of recently
proposed benchmarks in computer vision is that they have
been made freely available on the web. Inspired by [18, 2]
we designed an online benchmark that is accessible free of
charge at www.alphamatting.com. Like other online bench-
marks, a major advantage of our repository is that it can

be dynamically updated with novel datasets or error mea-
sures, if needed in the future. We provide all scripts and
data necessary to allow other researchers to submit new re-
sults. We hope that this will encourage many researchers to
participate in the competition. A screenshot of our online
benchmark is shown in fig. 1.
Selecting a representative test set. A comprehensive
benchmark for matting algorithms should be carried out on
a dataset that covers a large variation of different scenar-
ios that are encountered in practical matting applications.
Since we invite other researchers to submit their results to
our benchmark, a very large dataset is unreasonable, espe-
cially when people process high-resolution images with un-
optimized research code. For example, assuming an aver-
age computation time of two minutes per image, computing
results for our dataset of 35 images on 3 different trimaps
requires more than 3 hours. Hence, we need a dataset that
is as small as possible but still largely maintains the same
variations as the full set.

Therefore, we decided to split up our database into a test
and training set. The test set comprises of 8 images for
which the ground truth alpha mattes are hidden from the
public, in order to largely prevent excessive parameter tun-
ing. The remaining 27 images serve as training dataset with
publicly available ground truth. We hope that this set will
be used by other people for parameter learning.

To select a representative test set from our full database
we applied the following strategy. Firstly, we manually
assigned all images to four categories depending on the
amount of transparencies in their respective ground truth
matte. Then we computed error rates (mean squared er-
ror) for all images with a variety of matting algorithms (i.e.
[23, 14, 9, 20, 6, 8]). From each of the four categories, we
selected those two images that were most challenging for
the algorithms (i.e. images with a large average error and
diverging quality of results).

To confirm that we have a chosen a well-balanced sub-
set, we compare the performance of matting algorithms on
our subset against their performance on the average subset.
Therefore, we computed the average ranking of the 6 afore-
mentioned algorithms over all possible subsets of 8 images.
Indeed this ranking is identical to the one obtained on our
particular subset. Furthermore, we computed the average
correlation of rankings obtained from every possible subset
of 8 images with the rankings on the full set, which gives a
value of 0.91. This is very close to the correlation value for
our subset which is 0.87.

We further decided to provide our datasets in two differ-
ent resolutions (i.e. full resolution 6 Megapixels and down-
scaled, where the longest image side is 800 pixels), since
most current matting algorithms are not capable of process-
ing high-resolution images. In this work we restricted our
evaluation (sec. 5) to low-resolution data. However, in the



Figure 1. Online benchmark. A screenshot of our online evaluation table. The values in each cell correspond to the error generated by a
specific method (rows) on a test image (columns). Moving the mouse over a specific error value shows images of the corresponding alpha
matte (leftmost image). To allow for a better inspection of the result, a zoom-in of the alpha values in the red box is shown next to it. The
zoomed-in area can be easily changed by moving this box. Further, we show the corresponding input image and trimap.

future we plan to supply the online benchmark with high-
resolution images for those algorithms that can handle them.

4. Perceptually Motivated Error Measures

In order to quantitatively evaluate the performance of mat-
ting algorithms, their outputs (i.e. alpha mattes) have to be
compared to the ground truth using an error metric. In pre-
vious work, simple metrics like the sum of absolute differ-
ences (SAD) or the mean squared error (MSE) have been
used for this task. While these measures provide a good ba-
sis for comparison, they are not always correlated to the vi-
sual quality as perceived by a human observer. An example
is depicted in fig. 2, which shows two image compositions
where the SAD/MSE error is not correlated to the visual
quality. This motivates to study error metrics that are better
suited for a perceptual comparison of matting methods.

Clearly, the development of perceptually driven distance
measures depends on the target application and thus we will
focus on the commonly used application scenario of com-
positing the extracted foreground object onto a new back-
ground (cut & paste). To further reduce the complexity, we
will restrict ourselves to pasting onto a homogeneously col-
ored backing, which is an important application in the me-
dia industry (e.g. creating images for magazine covers).

Human observers judge the visual quality of image com-
positions by perceiving and weighing the different types of
errors that appear in these images. This judgment depends
on many different factors such as the color and texture of
the resulting composite as well as the structure of the alpha
matte. Ideally, one should learn a single visual error func-
tion over image patches that takes all these degrees of free-

(a) (b) (c) SAD: 312 (d) SAD: 83

(e) (f) (g) SAD: 1215 (h) SAD: 806
Figure 2. Motivation for perceptual error measures. Two im-
ages (a; e) were cropped to give the images shown in (b; f). Mat-
ting methods have been applied to generate new compositions (c-
d; g-h). In both cases, the average user ranking was exactly op-
posite to the error computed by SAD or MSE. The top row (c-d)
shows an example of our connectivity set, and the bottom row (g-
h) an example of our gradient set.

dom into account. However, there are two problems with
this approach. Firstly, image patches that are big enough
to preserve the context of the depicted scene, e.g. of size
100x100 pixels, have an exponential number of potential
colors and alpha values. Secondly, given the identical patch
of an image composite, people might disagree on the visual
error, hence a multi-modal error function is needed. For in-
stance, 12% of the participants in our study prefered fig. 2
(d) over fig. 2 (c), while 88% decided the other way round.
To widely circumvent these challenges, we concentrate on
developing perceptual error functions for two specific error



categories where previously used error metrics, like SAD,
largely disagree with humans. In an explorative pre-study
with 4 subjects (3 males and 1 female) two error categories
emerged that seem to considerably degrade the visual qual-
ity of image composites: (i) connectivity errors, which are
a result of disconnected foreground objects, for example a
disconnected piece of hair floating in the air; (ii) gradient
errors, which are due to oversmoothing or erroneous dis-
continuities in the alpha matte (i.e. the gradient in the alpha
matte diverges from the ground truth). Examples for each
of these categories are depicted in fig. 2.

In the remainder of this section, we first derive the visual
quality of image compositions in a user study (sec. 4.1). In
sec. 4.2, we design perceptual distance measures and show
that their correlation to the visual quality is superior, com-
pared to previously used error measures, like SAD.

4.1. User study

The main goal of our user study is to infer the visual
quality for image compositions from human observers in
the presence of connectivity and gradient artifacts.
Data. We performed our psychophysical experiments on
two sets of image compositions, each of them afflicted
solely by connectivity or gradient artifacts. To construct
these sets, we applied a variety of matting algorithms on
the input images of our ground truth database and created
composites by pasting the extracted foreground object onto
homogeneously colored backgrounds. We then carefully se-
lected crops of these compositions that mainly exhibited ei-
ther connectivity or gradient artifacts. The size of the crops
was chosen such that are small enough to isolate these error
categories, but big enough to provide the user with sufficient
contextual information to judge about its quality. In our pre-
study, we found that crops with a size of about 100x100
pixels are a good tradeoff between these two factors.

Compositions created from the same image crop (but
with different matting algorithms) were arranged into a sin-
gle test case. Fig. 3 shows an example. To increase the num-
ber of composites per test case, we also included artificial
images that we generated by interpolating some compos-
ites towards their ground truth. Note that by including these
interpolations, the results of this study become more appli-
cable to the output of future matting methods with higher
quality results. From this pool of test cases, we have chosen
only those whose composites could be easily sorted accord-
ing to their quality (no ambiguities) and where we expected
traditional error measures (e.g. SAD) to diverge from the
human perception. For the study we used a total number
of 20 test cases (10 for each error category), each test case
comprising of 6 image compositions.
Study procedure. The study was carried out with 17 par-
ticipants (8 males and 9 females) whose ages ranged from
24 to 67 years, with an average age of 36. The study aimed

Figure 3. Example test case of our study. Explanation in text.

to derive an ordering of the compositions associated with
each test case, from the judgment of the participants. Such
an ordering can be obtained by means of absolute (on a dis-
crete scale) or relative rankings. We preferred to derive rel-
ative rankings, since they have been shown to significantly
raise the agreement between users in the context of web
page ranking [4]. Relative rankings can be obtained by a se-
quence of pairwise comparisons (the user selects one out of
a pair of images) or by sorting the compositions at a glance.
In our pre-study we observed that the participants preferred
to rank the compositions at a glance and therefore decided
for the following experimental setup shown in fig. 3.

For each test case, the subjects were shown the as-
sociated 6 compositions in a list that they could interac-
tively sort by moving the images on the screen (fig. 3(left)).
Each list element shows the original image crop (left) to-
gether with composition on 4 homogeneously colored back-
grounds (i.e. white and shades of red, green and blue).
To provide the user with more contextual information, we
also displayed the corresponding uncropped image (fig.
3(right)). For every participant, the compositions in each
test case were shown in random order. This was done to
overcome any bias of subjects against any particular initial
position of the list of images.

Prior to the study the participants were told that they will
be presented crops of photomontages that had been gener-
ated by inserting objects, extracted from a photograph, onto
a single-colored background. Then we instructed the sub-
jects to rank the results according to how realistic the image
compositions appeared. The users were given the opportu-
nity to indicate cases where two or more compositions could
not be distinguished because they have the same quality. To
reveal further details about the decision making process of
the users we also recorded their verbal feedback.

4.2. Analysis of results

To obtain generalizable results, the study was evaluated
with respect to the ranking of the “average user”. In the av-



erage scores we accounted for image pairs that could not be
clearly ranked (i.e. pairs where the average ranks differed
by less than 0.2) by assigning them to the same score (14%
and 8% of pairs in the gradient and connectivity set were
affected). To validate that an analysis on the average ob-
server basis is valid, we first analyze the variability of the
user judgments with respect to the average rankings. Then,
we examine to which extent several distance measures are
correlated to these average scores. Since the distance mea-
sures give absolute error values, we converted them to rel-
ative rankings beforehand. To measure the similarity be-
tween two rankings we utilized the Kendall’s τ measure
[12] which is commonly used in statistics for comparing
the correlation of ordinal random variables [10].
Agreement of observers. The correlation of the individual
participants (averaged over all test cases and users) with the
average user ranking was 0.90 and 0.87 for the connectiv-
ity and gradient test set, respectively. These are reasonably
high values compared to the zero coefficient that would be
given to a random ranking. However, the remaining varia-
tion in the user judgments implies that even for the identical
image composition, that shows only a single class of arti-
facts, people disagreed on the visual error. This suggests
that there is inherent ambiguity in the perception of errors
and a single visual error function for image matting may not
exist. Note that ambiguity in the perception of errors does
not mean that there is no single global optimum (ground
truth) for the alpha matte.
Error measures. Our perceptual error measures are:

- Gradient. We tried a number of different gradient
measures, including the commonly used angular error be-
tween the gradient vectors, but found the following mea-
sure to work best. The difference between the gradients of
the computed alpha matte α and its ground truth α∗ is de-
fined as

∑
i (∇αi −∇α∗

i )
q, where ∇αi and ∇α∗

i are the
normalized gradients of the alpha mattes at pixel i that we
computed by convolving the mattes with first-order Gaus-
sian derivative filters with variance σ.

- Connectivity. A considerable amount of work has been
devoted to the problem of measuring connectivity [17, 21].
Following recent work in this area [3], we define the de-
gree of connectedness by means of connectivity in binary
threshold images computed from the grayscale alpha matte.

In detail, we define the connectivity error of an al-
pha matte α with its corresponding ground truth α∗ as∑

i (ϕ(αi,Ω) − ϕ(α∗
i ,Ω))p, where ϕ measures the degree

of connectivity for pixel i with transparency αi to a source
region Ω. Consider fig. 4, which illustrates the intensity
function of a row of pixels in an alpha matte. The source
region Ω is defined by the largest connected region where
both the alpha matte as well as its ground truth are com-
pletely opaque (illustrated by the red line in fig. 4). The
degree of connectivity is based on the distance di = αi− li,

Figure 4. Connectivity error. See explanation in the text.

where li is the maximum threshold level where pixel i is 4-
connected to Ω (dashed line in fig. 4). A pixel is said to be
fully connected if li = αi. Finally, the degree of connectiv-
ity ϕ for pixel i is defined as

ϕ (αi,Ω) = 1 − (λi · δ (di ≥ θ) · di) . (1)

This means that a pixel is fully connected if ϕ = 1 and
completely disconnected if ϕ = 0. The δ function enforces
that small variations in di below θ are neglected. We further
weight di at disconnected pixels with their average distance
λi to the source region: λi = 1

|K|
∑

k∈K distk(i) , where
K is the set of discretized alpha values in the range be-
tween li and αi. The function distk gives the normalized
euclidean distance of i to the closest pixel that is connected
to Ω at threshold level k. The intuition behind this is that
unconnected parts that are further away from the connected
region are visually more distracting.

Unfortunately, computing the connectivity under this
metric is computationally rather expensive, since it requires
to evaluate function distk at each threshold level k. To
make the computation tractable in our online evaluation
system, we use a slightly modified version of this metric,
which neglects the distance of unconnected islands to the
connected region. This was done by simply setting λi in eq.
(1) to a constant value of 1.

Agreement of error measures. The agreement of our er-
ror measures on the gradient test set (first row of table 1)
shows that the correlation of SAD and MSE with the av-
erage human observer is rather low (0.45 and 0.51). Our
connectivity measure performs similarly with a correlation
of 0.47. The correlation for our computationally less expen-
sive connectivity measure (shown in brackets in table 1) is
0.41. As expected our gradient measure outperforms all of
them with a correlation of 0.75.

Analysis on the connectivity set (second row of table 1)
shows that SAD and MSE exhibit an even lower correla-
tion than on the gradient set (0.28 and 0.34) and also our
gradient error (0.40) is not capable to capture errors in the
connectivity. As expected our measure for connectivity per-
forms well with a correlation coefficient of 0.75. Interest-
ingly, our modified connectivity metric which neglects the
distance of disconnected islands performs even slightly bet-
ter with a correlation of 0.77.



Data Grad. Conn. MSE SAD User consent
Grad. 0.75 0.47 (0.41) 0.51 0.45 0.87
Conn. 0.40 0.75 (0.77) 0.34 0.28 0.90

Table 1. Error measure correlations. The correlation coefficients
of four error measures for the connectivity and gradient set. Cor-
relations of the modified connectivity metric that we use for online
evaluation are shown in brackets.

4.3. Choice of parameters

We decided to choose the values for four important pa-
rameters of our error measures according to their robust-
ness and correlation with the user scores. The robustness
of error measures with respect to noise in the data is a test
commonly used in information retrieval [24]. We distorted
the alpha mattes with Gaussian noise (zero mean and vari-
ance ranging from 0.001 to 0.005) and ranked them using
our new perceptual error measures. We then computed the
correlation coefficients between these rankings and the ones
derived on undistorted data. We repeated this K times (we
found K = 200 sufficiently large) and used the average
correlation coefficient as robustness score.

Let us consider fig. 5 (left) which shows the robustness
of our gradient measure for different values of the parame-
ter σ, which is the variance of the Gaussian derivative filters
used to compute the gradients. We can see that for σ = 0.2
(blue curve), the robustness drops off quickly with increas-
ing noise level. This is not surprising since a low σ makes
the estimation of the gradient more sensitive to noise. For
larger values of σ (1.4 and 3) the robustness is constantly
high. Clearly, the choice of a parameter does not only de-
pend on the robustness, but also on the correlation to the
user scores (fig. 5 (right)). We can see that although a large
value of σ = 3 (green curve in fig. 5 (left)) makes the mea-
sure robust to noise, the correlation of the gradient measure
is rather low for this value. Thus we limited the parameters
to a range where the error measures exhibit a robustness
score of at least 0.9 and a correlation that is at worst 10%
lower than its maximum value (avg. over all noise levels).
Therefore a good choice is σ ∈ {1.2, .., 2.0}, where our
measure is robust and highly correlated to the user scores.

Figure 5. Robustness of parameters. See the text for explanation.

Accordingly, we can limit the remaining parameters of
our error measures to the range, q ∈ {1, .., 3}, θ ∈
{0.13, .., 0.25} and p ∈ {1, .., 2}. Finally we select the

number in each range which gives the maximum correla-
tion (i.e. σ = 1.4, q = 2, θ = 0.15 and p = 1). Clearly,
our approach for parameter selection assumes that the user
rankings are invariant to small noise in the alpha mattes.
Note, if we were to have a larger training dataset we may
circumvent this procedure completely and train these pa-
rameters directly, however, we leave this for future work.

5. Experiments

As a basis for evaluation, we have compared 6 matting
methods that mostly represent the current state-of-the-art,
namely Bayesian matting [6], Closed-form matting [13],
Easy matting [9], Poisson matting [20], Random walk mat-
ting [8] and Robust matting [23].1 For all algorithms, we
used the implementations of the respective authors, except
for [20] which we implemented ourselves. To offer a fair
comparison we set the parameters for all algorithms to the
values reported in the respective papers.
Performance. We evaluated all of the above mentioned al-
gorithms on our 8 test images, using three different trimaps
as inputs (see sec. 2.3). We computed the accuracy of the
resulting alpha matte with respect to four error measures de-
fined in sec. 4.2 (i.e. SAD, MSE, gradient and connectivity
error). Each test case (image and trimap) gives a ranking
of all algorithms. This rank, averaged over all test cases, is
shown in table 2.

Method SAD MSE Grad. Conn.
Closed-form [13] 1.3 1.4 1.5 2.0 (1.8)

Robust matting [23] 1.9 1.8 1.7 3.4 (3)
Random walk [8] 3.3 3.2 3.5 1.3 (1.4)
Easy matting [9] 4.0 4.4 4.2 3.7 (4)

Bayesian matting [6] 4.5 4.3 4.3 5.0 (5.1)
Poisson matting [20] 5.9 5.9 6.0 5.6 (5.1)

Table 2. Evaluation. The table reports the overall ranks of the
different algorithms with respect to four error measures. These
ranks were obtained by averaging the ranks over all test cases i.e.
all test image-trimap input pairs. Errors obtained with the modified
connectivity metric that we use for online evaluation are shown in
brackets.

When analyzing the results with respect to the SAD and
MSE error measure, we observe that Closed-form matting
and Robust matting outperform the other methods. We also
notice that the performance of Robust matting, Bayesian
matting and Easy matting is lower than what was reported
in previous evaluations [22, 23, 16]. The main difference
of these approaches to their competitors is that they use a
data term in their objective function, which is derived from

1Wherever possible, we provide code (or links to it) for these methods
on the evaluation website. Due to licensing issues we cannot provide code
for [23, 6, 9].



global color models of true fore- and background regions.
These data terms typically require to set a fair amount of
free parameters. Hence, a potential over-fitting of these pa-
rameters to their respective test data may lead to a lower
performance on our unseen data. Note that the test datasets
for these methods were mostly composed of images with
smooth backgrounds, whereas our dataset contains exam-
ples of highly textured backgrounds. A detailed inspec-
tion of these data terms shows that they are fairly sensi-
tive to the exact placement of the trimap (i.e. true fore- and
background regions). This sensitivity can introduce large
artifacts in the alpha matte. Pure propagation based ap-
proaches, like Closed-form matting and Random walk mat-
ting, seem to suffer less from this problem. An exception is
the propagation based Poisson matting algorithm that per-
formed constantly worse than its competitors, since its as-
sumption of smooth fore- and background colors is rarely
met on our dataset.

On the other hand, visual inspection of the results shows
that methods that model the fore- and background col-
ors can sometimes overcome the color ambiguity problem.
For instance, Closed-form matting (which does not have a
global color model) tends to over-smooth holes in the fore-
ground and shortens fine structures like hair. These struc-
tures were sometimes better captured by methods which
have a global color model e.g. Robust matting. However,
on average the drawbacks of the color model based meth-
ods prevailed their advantages, at least on our test set.
Performance on gradient error. Analyzing the scores with
respect to the gradient error we see that Closed-form and
Robust matting perform almost on par and the gap to Ran-
dom walk matting increases slightly. This is mainly be-
cause Closed-form and Robust matting can better preserve
the gradient of the alpha matte in regions like hair. In con-
trast, Random Walk matting tends to oversmooth the alpha
matte which is penalized by our gradient measure.
Performance on connectivity error. When considering the
rankings based on our connectivity error we see that the
Random walk algorithm is clearly the best performer. This
is not surprising, since alpha mattes generated by Random
walk are perfectly connected, i.e. obtain a value of ϕ = 1
(eqn. 1) for each pixel. However, this does not mean that the
connectivity error (which is the difference of the connectiv-
ity of the alpha matte with its ground truth) is zero, since
the ground truth is usually not perfectly connected. How-
ever, the Random walk algorithm shows quite large errors
under the other metrics, which motivates new research for
future matting techniques that recover accurate alpha mattes
while preserving the connectivity of the foreground object.

6. Conclusions and Future Work

We have presented a new benchmark for the evaluation of
image matting algorithms that is freely available on the web

at www.alphamatting.com. The evaluation of state-of-the-
art matting algorithms on our challenging dataset reveals
failures on images containing highly textured backgrounds,
and images where the fore- and background cannot be dif-
ferentiated on the basis of color alone. An important con-
tribution of our work was the proposal and validation of
perceptually motivated error measures based on the con-
nectivity and gradient of the alpha matte. To the best of
our knowledge, this is the first study which validates error
measures for alpha matting using the composition quality
as perceived by humans. We hope that our work will en-
courage researchers to develop new matting algorithms that
pay more attention to visually important features such as
connectivity.

Future work could concentrate on establishing more
complex perceptual measures that take into account other
factors such as color and texture of the image. Such an er-
ror function is highly desirable since it could be used by
machine learning methods as a loss function for alpha mat-
ting. However, more research is needed, since results of our
user study indicate that the visual perception of errors is am-
biguous and thus a multi-modal function might be needed.
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