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Abstract
Image matting is the task of estimating a fore- and back-

ground layer from a single image. To solve this ill posed
problem, an accurate modeling of the scene’s appearance
is necessary. Existing methods that provide a closed form
solution to this problem, assume that the colors of the fore-
ground and background layers are locally linear. In this
paper, we show that such models can be an overfit when the
colors of the two layers are locally constant. We derive new
closed form expressions in such cases, and show that our
models are more compact than existing ones. In particular,
the null space of our cost function is a subset of the null
space constructed by existing approaches. We discuss the
bias towards specific solutions for each formulation. Exper-
iments on synthetic and real data confirm that our compact
models estimate alpha mattes more accurately than existing
techniques, without the need of additional user interaction.

1. Introduction
Image matting addresses the problem of estimating the

partial opacity of each pixel in a given image. In particular,
one assumes that the intensity Ii of the ith pixel can be writ-
ten as the convex combination of a foreground intensity Fi
and a background intensity Bi, as

Ii = αiFi + (1− αi)Bi, (1)

where αi is referred to as the pixel’s partial opacity value or
alpha matte. By definition, this value is constrained to take
values in [0, 1]. We note that for each pixel in color images,
(1) gives us 3 equations in 7 unknowns. Consequently, the
image matting problem is highly under-constrained. To this
effect, the user is required to provide some additional in-
formation in order to make the problem well posed. Such
information is typically provided in the form of a trimap by
marking different regions in the image as (a) foreground;
α = 1, (b) background; α = 0, and (c) unknown; α ∈ [0, 1].

The goal of image matting algorithms is therefore to es-
timate the alpha mattes of the pixels in the unknown re-
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gion. Incipient methods such as [12] use the trimap to
construct basic color models for the foreground and back-
ground, which are subsequently used to estimate the alpha
mattes in the unknown region as per (1). Due to their naive
modeling schemes, such algorithms fail on images with
complex intensity variations. Methods such as [2, 15] solve
such issues by using local propagation techniques to esti-
mate the alpha mattes. However, their good performance is
subject to the use of a tight trimap.

Subsequent research in image matting witnessed the use
of a number of algorithms originally intended for image
segmentation [11, 17, 3, 4, 1, 20]. In most cases, these al-
gorithms use a sparse trimap to estimate a binary segmenta-
tion, which is then used to generate a tight trimap for the im-
age. The alpha mattes are estimated using this tight trimap
and can then potentially be refined by alternating between
re-estimation of the alpha mattes and the trimap. It is im-
portant to appreciate the fact that matting and segmentation
are different problems. In order to estimate the alpha mattes
of an image, one needs to develop extremely accurate mod-
els for the scene’s appearance. This is not so for the case of
segmentation, where it suffices to define image features that
help to distinguish the object from the background.

Consequently, recent work in image matting has seen
a surge of research towards developing algorithms that
exploit various features specific to the matting problem
[6, 19, 16, 7, 10, 9]. It was shown in [6] that if one as-
sumes the intensities of the foreground and background lay-
ers to vary linearly in small image patches, then the alpha
mattes could be estimated in a closed form fashion. It was
later demonstrated that the performance of local propaga-
tion based methods such as [6] could be improved by ad-
ditionally learning global color models [19, 16, 9]. Recent
work has also focused on enforcing sparsity of the alpha
mattes [7, 10]. For a more detailed review of image matting
algorithms, we refer the reader to [18].

In this paper, we propose to improve the state of the
art for image matting by developing accurate models for a
scene’s appearance, and hence fundamentally improve the
building blocks of matting algorithms. In particular, we
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focus on the Matting Laplacian proposed by [6], which is
a matrix characterizing a cost function for image matting.
This cost function is derived under the assumption that the
foreground and background layers of each image patch ex-
hibit linear variation in the intensities. As we show, this as-
sumption can be an overfit for the image data, if the colors
of either layer are locally constant. Specifically, we show
that for small perturbations in the image data, [6] might
construct a null space of possible solutions, which is larger
than desired, thereby making the problem more ambiguous.
We then show how one can construct more compact models
for the alpha mattes, which have a null space of provably
smaller dimension than that of [6]. Furthermore, the dif-
ferent formulations have a different bias towards specific
solutions, which we will discuss in detail. Compelling ex-
periments on synthetic and real images validate our claims.
Consequently, we present a new framework for closed form
solutions to image matting, which is theoretically principled
and yields high quality alpha mattes.

Note that since the Matting Laplacian has been used in
[6, 19, 16, 7, 10, 9] for regularization of the alpha mattes,
our framework can be used to improve the performance of
these algorithms. Furthermore, our framework can be ap-
plied to alternative applications such as light mixture esti-
mation [5], since they use variants of the Matting Laplacian.

2. The Matting Laplacian: A Review
Omer and Werman [8] empirically showed that the dis-

tribution of colors in real images is locally linear in RGB
space. Inspired by this work, Levin et al. [6] state that given
any small patch in the query composite image, the intensi-
ties of the corresponding foreground and background layers
can be assumed to lie on lines in RGB space. In particu-
lar, for a small patchWi centered around pixel i, there ex-
ist colors (Fi1, Fi2, Bi1, Bi2) such that the foreground and
background colors (Fj , Bj) of each pixel j ∈ Wi can be
expressed as

Fj = βFj Fi1 + (1− βFj )Fi2, and

Bj = βBj Bi1 + (1− βBj )Bi2.
(2)

Under this assumption, [6] showed that there exist affine
functions vi = (aRi , a

G
i , a

B
i , bi) characteristic to the patch

Wi, such that the alpha matte αj of each pixel j ∈ Wi can
be written as

αj = aRi I
R
j + aBi I

B
j + aGi I

G
j + bi, (3)

where IRj , IGj and IBj refer to the RGB values of pixel j.
The problem of estimating the mattesα in the image can

consequently be posed as one of finding the minimizer of

J(α, v)=
∑
i∈V

[ ∑
j∈Wi

(
αj−aRi IRj −aBi IBj −aGi IGj −bi

)2 ]
,

(4)

where V is the set of all pixels in the image. Essentially, this
corresponds to minimizing the residual of the affine model
vi defined in (3) for every small patch Wi. Note that [6]
actually uses a modification of the cost function J(α, v) by
introducing an additional regularization term, as

Jε(α, v) = J(α, v) + ε
∑
i∈V

(
aRi

2
+ aGi

2
+ aBi

2
)
. (5)

The regularization term is introduced in order to enforce
the affine function (aRi , a

G
i , a

B
i , bi) = (0, 0, 0, c), c ∈ [0, 1],

or in other words, enforce constancy of alpha mattes over
the patchWi. The motivation for this is twofold. Firstly, the
user provided scribbles are typically sparse and constrain
far fewer pixels than the perfectly tight trimap. Hence,
for many pixels in the image, an α of 0 or 1 is desired,
independent of the appearance model. Secondly, real im-
ages often have highly textured patches that do not satisfy
the color line model, but nonetheless may have uniform
alpha mattes across the patch. The alpha mattes of such
patches can be explained by an affine model of the form
v = (0, 0, 0, c), c ∈ [0, 1]. Therefore, the model allows for
certain complex cases beyond the color line model of (2).

Note that the constructed cost function Jε(α, v) depends
on two unknown quantities; the alpha mattes α and the
affine functions v. However, [6] showed that this can be
reduced to a cost function that depends solely on the alpha
mattes. For the sake of simplicity, let us define matrices
Gi ∈ R(|Wi|+3)×4 and ᾱi ∈ R|Wi|+3. The first |Wi| rows
ofGi are given by

[
IRj IGj IBj 1

]
, j ∈ Wi and the last

three rows are given by
[√

(ε)I3 0
]
, where In is an iden-

tity matrix of size n × n. The first |Wi| entries of ᾱi are
given by αj , j ∈ Wi and the last three entries are equal to
0. Given this notation, Jε(α, v) can be rewritten as

Jε(α, v) =
∑
i∈V
‖Givi − ᾱi‖2. (6)

Now, we see that we can estimate the affine function vi
for each patchWi, as

vi = argminv‖Giv − ᾱi‖2 = (G>i Gi)
−1G>i ᾱi. (7)

Therefore, using the expression for vi from (7), we see
that the cost function Jε(α, v) can be reduced to a cost func-
tion dependent on the alpha mattes only, as

Jε(α) =
∑
i∈V

[
ᾱ>i (I |Wi|+3−Gi(G>i Gi)−1G>i )ᾱi

]
= α>Lα.

(8)

The matrix L is referred to as the Matting Laplacian and we
refer the reader to [6] for a detailed derivation of its entries.
Note that the constructed cost function is quadratic in the
alpha mattes. Therefore, the minimizer of this cost function



can be estimated by solving a linear system. Hence, we
have a closed form solution for the alpha mattes.
What is the null space? It is of interest to inspect the na-
ture of the solutions to this system for a small patch Wi

in the image. Let us define a matrix Mi = I |Wi|+3 −
Gi(G>i Gi)

−1G>i . Note that MiGi = Gi−Gi = 0. There-
fore, by construction, the columns of the matrixGi and their
linear combinations are null vectors of the matrix Mi. If
the foreground and background layers truly satisfy the color
line model, we know that the vector of alpha mattes ᾱi is
given by Givi. In other words, the vector of alpha mattes
is given by a linear combination of the columns of Gi and
hence lies in the null space of Mi. Also, in such cases Gi
is of rank 4, and therefore Mi has a null space of dimension
4. As a result, the vector of alpha mattes is only one of the
potential minimizers of the constructed cost function. For
instance, we have seen from our earlier discussion that the
constant solution is also part of the null space. It is precisely
for this reason that the user is required to mark scribbles in
the image and embed constraints, so that the algorithm can
recover the true alpha mattes as the minimizers of Jε(α).

2.1. Limitations of the Matting Laplacian

In practice, it can be observed that [6] does not always
recover the ground truth alpha mattes. This is due to several
reasons, a few of which are outlined below.

1. Violation of the color-line model: In natural images,
it often happens that the image data does not satisfy
the color line model. In the case of complex intensity
variations, it is obvious that the color line model is too
simple to explain the image intensities. In such sce-
narios, one would have to resort to data driven schemes
such as [19, 9] for generating candidate foreground and
background colors. However, we are particularly in-
terested in the case when the intensity variations are
much simpler than the color line, such as being locally
constant. As we shall show later, the true dimension of
possible solutions for such image patches is less than
4 and hence the algorithm of [6] provides an overfit.
Since such patches occur commonly in natural images,
it is of interest to construct more compact models for
the alpha mattes in such patches.

2. Insufficient user interaction: Recall that the system
constructed by [6] has a 4-dimensional null space for
each local image patch considered by the algorithm.
Hence, high level user interaction is required to re-
solve any ambiguities. One could potentially incor-
porate prior knowledge in order to bias the system to-
wards certain family of solutions. [6] biases the mattes
to be locally constant, which can prove to be unsatis-
factory in practice. As shown in Figure 2(c,e) when
the user marks pixels corresponding to one layer only,
[6] assigns constant alpha mattes equal to 0 or 1 to all

unmarked pixels, based on whether the scribbles cor-
respond to background or foreground respectively. We
will address this problem in detail later. Alternatively,
[7] biases the mattes towards 0 or 1 using non-linear
priors. This resulting system is however prohibitively
slow in practice. Moreover, the mattes estimated at the
scribbled pixels do not necessarily match the values
specified by the user. Note that one could also predict
the alpha value for each pixel with a certain confidence
value, as in [19, 9]. However, such frameworks are be-
yond the scope of this paper.

3. Appearance Models Beyond Color Lines
In this work, we consider the cases when the color line

models are violated, such that at least one of the foreground
or background layers lie on a point rather than a line in color
space. Specifically, we inspect the rank of the matrix Gi
introduced in Section 2 and analyze the cases when the rank
of the matrix is less than 4. We show that for these cases, the
intensities of the composite image lie on linear/affine spaces
of dimension less than or equal to 4. Since in general, the
Matting Laplacian of [6] has a 4 dimensional null space, we
demonstrate that our method is more robust to noisy data.

Further, we show that the solution space of our formula-
tion includes the constant alpha solution, which is important
for highly textured areas. We will also show that the model
of [6] has a natural bias towards constant solutions, while
our model has a natural bias for a constant 0 (or 1) solution.
Both biases, our and [6] are not optimal, since the ideal bias
is towards 0 and 1 simultaneously. Unfortunately, the ideal
bias leads to a non-linear system, e.g. as shown in [7], which
is very challenging to optimize and hence [7] is not ranked
very well in recent evaluations [10]. We will see in section
4, that our method performs on average favourably, which
suggests that robustness to noise overweighs the influences
of the different bias. Also, we will show that for the special
case where the user specified unknown region is bounded
by constraints of one type only, e.g. only foreground, the
bias of our formulation towards 0 is clearly preferable.

3.1. Line-Point Color Models
We first consider the case when the colors of exactly

one layer satisfy the color line model, while the colors of
the other layer are constant and hence satisfy a color point
model. Without loss of generality, assume that the fore-
ground intensities are constant and that the background in-
tensities lie on a color line. It is easy to check that if the type
of models were interchanged, our following analysis would
result in the same cost function. Now, by the hypothesis,
∀j ∈ Wi, Fj = F and ∀j ∈ Wi, Bj = βjB1 + (1−βj)B2.
Therefore, the composite intensity Ij of a pixel j ∈ Wi can
be expressed as

∀j ∈ Wi :Ij= αjF + (1− αj)[βjB1 + (1− βj)B2]
= αj(F −B2)+(1− αj)βj(B1 −B2)+B2.

(9)



For this scenario, we derive two important results as
given by Theorem 1.

Theorem 1 Consider an image patch Wi around a pixel
i ∈ V , such that the RGB intensities of the pixels in
the patch, satisfy the line-point color models. Define
a matrix GLPi ∈ R|Wi|×3, whose rows are given as[
IRj IGj IBj

]
, j ∈ Wi. Also define a matrix ᾱi ∈ R|Wi|,

whose entries are given by αj , j ∈ Wi

1. If the foreground color point does not lie on the back-
ground color line and there are at least three pixels
a, b, c ∈ Wi such that αa 6=αb 6=αc and (1−αa)βa 6=
(1− αb)βb 6= (1− αc)βc , then Rk(GLPi ) = 3.

2. If Rk(GLPi ) = 3, the alpha matte αj of each pixel
j ∈ Wi, can be expressed as a linear function of
the pixel’s intensities, via unique coefficients vi =
(aRi , a

B
i , a

G
i ) ∈ R3 characteristic to the patchWi, as

∀j ∈ Wi : αj = aRi I
R
j + aBi I

B
j + aGi I

G
j

=⇒ ᾱi = GLPi vi.
(10)

Proof. Please refer to technical report [13].

Observe that this is different from (3) derived under the
color line assumption, where the alpha mattes were affine
functions of the intensities. Now, there is no constant term
present in the expression for the alpha mattes. As earlier, we
can estimate the unknowns by minimizing the cost function

J3(α, v)=
∑
i∈V

∑
j∈Wi

(αj−v>i Ij)2 =
∑
i∈V
‖ᾱi−GLPi vi‖2. (11)

If we assume that the alpha mattes of the pixels in the
patchWi are known, the coefficients vi for each patchWi

can be estimated by minimizing the function J3(α, v), as

vi=argmin
v
‖GLPi v−ᾱi‖2 = (GLPi

>
GLPi )−1GLPi

>
ᾱi. (12)

Substituting the expression for vi from (12), we see that
the cost function J3(α, v) can be reduced to a cost function
dependent on the alpha mattes only, as

J3(α) =
∑
i∈V

[
ᾱ>i (I |Wi|−G

LP
i (GLPi

>
GLPi )−1GLPi

>
)ᾱi
]

= α>L3α.

(13)

As earlier, the constructed cost function is quadratic in the
alpha mattes. Therefore, the alpha mattes can be estimated
in closed form by solving a linear system.
What is the null space? We now repeat the exercise of
inspecting the nature of the solutions to this system for
a small patch Wi in the image. Let us define a matrix

MLP
i = I |Wi|−GLPi (GLPi

>
GLPi )−1GLPi

>. By an ear-
lier argument, we know that the columns of the matrixGLPi
and their linear combinations, are null vectors of the matrix
MLP
i . Recall from Theorem 1 that ᾱi = GLPi vi. There-

fore, we can conclude that the vector of true alpha mattes
lies in the null space of MLP

i .
SinceGLPi is rank 3, we have that the null space ofMLP

i

is of dimension 3. When the image data exactly obeys the
line-point model, the RGB intensities lie on a plane spanned
by the model parameters F , B1 and B2. Since the locus of
any point x on the plane can be expressed in terms of the
perpendicular to the plane d ∈ R3 as d>x = 1, we note that
there exists a linear function d such that ∀j ∈ Wi : d>Ij =
1. Consequently, the matrix Gi constructed by Levin et al.
[6] is also rank 3, because the last column comprising of all
1s can be expressed as a linear combination of the first 3
columns that contain the image intensities. Hence, the null
space of the Matting Laplacian is also 3 dimensional.

Note that in the statement of Theorem 1, we have men-
tioned that there must be at least three pixels in the window
a, b, c ∈ Wi such that αa 6= αb 6= αc and (1 − αa)βa 6=
(1 − αb)βb 6= (1 − αc)βc. This corresponds to the condi-
tion that the composite intensities completely span the plane
defined by the foreground color point and the background
color line. However, when the alpha mattes of all the pixels
in a window are constant, i.e. ∀j ∈ Wi, αj = k ∈ [0, 1],
the intensities span only a subset of the plane defined by
the foreground color point and the background color line.
Specifically, they span a line on this plane and hence the
rank of GLPi is 2 in this case. Since this line is a part of
the plane discussed above, all the composite intensities do
still satisfy the locus ∀j ∈ Wi : d>Ij = 1. Hence, we
see that our constructed cost function naturally allows for
locally constant alpha mattes, because there exists a linear
function kd ∈ R3 such that ∀j ∈ Wi, αj = (kd)>Ij =
k(d>Ij) = k. This is an important property when dealing
with trimaps that are not tight.
What happens on real, noisy images? Unfortunately, real
data is always corrupted by some noise. In case the im-
age data has a slight perturbation from the exact color-line
model, the intensities do no longer lie on a plane. Hence,
there is no d ∈ R3 such that ∀j ∈ Wi : d>Ij = 1, and the
matrix Gi constructed by [6] is rank 4. As a result, the null
space of the Matting Laplacian is rank 4. The null space ob-
tained using our framework, however, still has a null space
of dimension 3, by construction. Since the first 3 columns
of Gi are exactly the same as GLPi , the column span of
GLPi is a subset of the column span of Gi. Therefore, the
null space obtained using our framework is a strict subset
of the null space constructed by [6]. This implies that our
proposed model is more compact than that of [6]. Hence,
the key observation is that the extra degree of freedom of
the Matting Laplacian is used to explain image noise.



(a) Composite image (b) Ground truth alpha (c) Trimap

(d) Our result (e) Result of [6]:ε=0 (f) Result of [6]:ε=10−6

Figure 1. Comparison of our proposed framework with that of [6]
for the line-point case.

What is the bias? The space of solutions for the alpha
matte given by our model or the model of [6] is typically
quite large (see [7]). However, there is an implicit bias to-
wards the result given by the linear solver. In fact, this bias
is enforced naturally by the structure of the different cost
functions. While [6] naturally biases the mattes to be locally
constant, our new cost function pushes the alpha mattes to-
wards 0. By construction, the Matting Laplacian L has the
vector with all equal entries, as its trivial null vector. There-
fore, [6] is biased towards estimating locally smooth alpha
mattes. On the other hand, our cost function L3 is a positive
semi-definite matrix and not necessarily a Laplacian matrix.
It has a trivial null vector which has all entries equal to 0,
and consequently our algorithm estimates alpha mattes with
a bias towards 0. Note that by solving for 1− α rather than
α, we can also bias the alpha mattes towards 1.

Result on toy data. Figure 1 illustrates the advantage of
our proposed model. The yellow foreground is a point in
RGB space, and the background lies on a color line, varying
from light to dark blue. Hence, we have a perfect line-point
color model. We add some noise to the composite image
in order to slightly perturb it from this model. Notice that
[6] produces erroneous alpha mattes due to its larger null
space, and our method recovers a much better alpha matte.
As expected [6] has a bias towards locally smooth mattes,
and careful inspection shows that our result has a tiny shift
towards 0. Furthermore, note that the trimap is not very
tight, and our method correctly recovers those pixels which
should be truly 0 or 1.

Results for insufficient user input. We now demonstrate
that our algorithm can recover the alpha mattes even when
the user provides scribbles for only one of the layers. Recall
that since [6] prefers locally constant mattes, it will produce
a result with all pixels having α = 0 or α = 1. Therefore,
for a fair comparison, we propose a new version of [6], in
order to bias the alpha mattes towards 0. In particular, we
estimate the alpha mattes by minimizing the cost function

(a) (b) (c) (d) (e) (f) (g)

Figure 2. Comparison of our proposed framework with that of [6],
when the user provides scribbles for one layer only. (a) Composite
image (b) Ground truth alpha (c) Trimap (d) Our result (e) – (g)
Result of [6]: ε = 0, ε = 10−4 and ε = 10−2 respectively

J̃ε(α, v)=J(α, v)+ε
∑
i∈V

(
aRi

2
+ aGi

2
+ aBi

2
+ b2

)
. (14)

In this modification, we are biasing the affine models of (3)
towards (0, 0, 0, 0). It can easily be checked that we can
eliminate the unknown affine models in a similar fashion
as described earlier, and obtain a closed form solution for
the alpha mattes. We hence have a formulation which can
potentially estimate the alpha mattes even when the user
provides scribbles for one of the layers only.

Figure 2 shows a toy example for the line-point color
model where the user marks scribbles for the foreground
only. We are able to recover visually pleasing alpha mattes,
since our natural bias towards 0 is the desired bias in this
case. However, we do not get good results with our pro-
posed modification of [6] even when we increase ε in (14).
As discussed, these resulting alpha mattes are biased to be
locally smooth due to the nature of the Matting Laplacian.

3.2. Point-Point Color Models
We now consider the case when the colors of both the

layers are constant and hence satisfy the color point model.
By the hypothesis, ∀j ∈ Wi, Fj = F and ∀j ∈ Wi, Bj =
B. Therefore, the composite intensity Ij of a pixel j ∈ Wi

can be expressed as ∀j ∈ Wi : Ij = αjF + (1− αj)B.
For this scenario, we derive two important results as

given by Theorem 2.
Theorem 2 Consider an image patch Wi around a pixel
i ∈ V , such that the RGB intensities of the pixels in
the patch, satisfy the point-point color models. Define
a matrix GPPi ∈ R|Wi|×3, whose rows are given as[
IRj IGj IBj

]
, j ∈ Wi.

1. If the alpha mattes of all the pixels in the patch are
not equal and the color points of the two layers are
distinct, then Rk(GLPi ) = 2.

2. If Rk(GPPi ) = 2, there exists a projection Π : I ∈
R3 → Ĩ ∈ R2, such that the alpha matte αj of each
pixel j ∈ Wi can be expressed as a linear function
of the projected intensities Ĩi ∈ R2, via unique coeffi-
cients vi = (a1

i , a
2
i ) ∈ R2 characteristic toWi, as

∀j ∈ Wi : αj = a1
i Ĩ

1
i + a2

i Ĩ
2
i . (15)



Proof. Please refer to technical report [13].

As earlier, we define a matrix G̃i ∈ R|Wi|×2, the rows
of which are given by Ĩj , j ∈ Wi, and also a matrix ᾱi ∈
R|Wi|, whose entries are given by αj , j ∈ Wi. The problem
of finding the unknown alpha mattes can then be posed as
one of minimizing the cost function

J2(α, v)=
∑
i∈V

∑
j∈Wi

(αj−v>i Ĩj)2 =
∑
i∈V
‖ᾱi−G̃ivi‖2. (16)

Recall that the coefficients vi for each patch Wi can be
estimated in closed form as

vi = argmin
v
‖G̃iv − ᾱi‖2 = (G̃>i G̃i)

−1G̃>i ᾱi. (17)

Substituting the expression for vi from (17), we see that
the cost function J2(α, v) can be reduced to a cost function
dependent on the alpha mattes only, as

J2(α) =
∑
i∈V

[
ᾱ>i (I |Wi| − G̃i(G̃

>
i G̃i)

−1G̃>i )ᾱi
]

= α>L2α.

(18)

Since the constructed cost function is quadratic in the
alpha mattes, the alpha mattes can be estimated in closed
form by solving a linear system.
What is the null space? We know that for each small image
patch Wi, since G̃i is of rank 2, the null space of the ma-
trix Mi = I |Wi|−G̃i(G̃>i G̃i)−1G̃>i is of rank 2. Now, we
can proceed as we did in the rank 3 case, and verify that the
column span of G̃i is a subset of the column span of the ma-
trix Gi employed by [6]. Consequently, the 2 dimensional
null space constructed by our framework is a subset of the
4 dimensional null space constructed by [6], and our pro-
posed model for the alpha mattes is more compact than that
of [6]. Also, since the locus of a point (x, y) on a line can
be represented as c1x + c2y = 1, we can always find mod-
els (a1

i , a
2
i ) such that our framework admits locally constant

solutions. It is also easy to show that, as for the rank 3 case,
the Laplacian of [6] is rank 2 for noise free data.
Results on toy data. Figure 3 gives a toy example to il-
lustrate the advantage of our proposed model. The yellow
foreground and blue background constitute distinct points
in RGB space. Therefore, this scenario corresponds to the
point-point color model. We add some noise to the compos-
ite image. The conclusions are the same as in Figure 1, i.e.
[6] produces a solution which is worse than ours. Again,
observe that [6] has biased towards locally smooth mattes,
while ours has a small bias towards 0.

4. Experiments
In this section, we present a quantitative and qualitative

comparison of our proposed framework with that of [6], and
show that our formulation helps to estimate better mattes.
First, we give the details of our numerical implementation
and then present an analysis of our tests.

(a) Composite image (b) Ground truth alpha (c) Trimap

(d) Our result (e) Result of [6]:ε=0 (f) Result of [6]:ε=10−6

Figure 3. Comparison of our proposed framework with that of [6]
for the point-point case.

4.1. Numerical Implementation
Like in [6], we consider image patches of size 3 × 3.

Note that we need to estimate the rank of each patch Wi,
and for this, we first construct a matrix Gi, the rows of
which are given by

[
IRj IGj IBj 1

]
, j ∈ Wi. We then

estimate the singular value decomposition of this matrix as
G = UΣV >, where the diagonal entries of Σ are given by
σ1 > σ2 > σ3 > σ4. Now, we normalize the singular
values as Σ̃ = λΣ, where λ = (σ2

1 + σ2
2 + σ2

3 + σ2
4)−0.5.

This normalization ensures that the rank estimation is not
sensitive to scale variations in the image. We inspect the
normalized singular values σ̃i = λσi, and estimate the rank
as rank(Wi)= argmaxk[σ̃k > δ], where δ is a pre-defined
tolerance value. We use δ = 0.0025 in all our experiments.

Given the rank of a patchWi, we choose the appropriate
cost function Ci for the patch as discussed in Section 3. In
particular, if the rank of Wi is 2, 3 or 4, we construct the
matrix Ci of size |Wi| × |Wi| as Ci = L2 in (16), Ci = L3

in (11), or C = L in (4) respectively, by restricting V = i.
In the case of rank 1, we constructCi using the cost function
of (4), which essentially forces the alpha mattes in the patch
to be equal. We then define a vector ᾱi ∈ R|Wi|, the entries
of which are given by {αj}, j ∈ Wi. We therefore need
to estimate the alpha mattes of the image by minimizing∑
i ᾱ
>
i Ciᾱ = α>L̃α, where α is the vector containing the

alpha mattes of all the pixels in the image. Note that L̃ is
a positive semi-definite matrix of size |α| × |α| obtained
by aggregating the matrices Ci. Now, we need to minimize
this cost function subject to the constraints that the set of
pixels scribbled as foreground (say F) have α = 1 and the
set of pixels scribbled as background (say B ) have α = 0.
As shown in [14], the solution to this problem

α = argmin
α

α>L̃α

s.t. αi = 0 if i ∈ F , and αi = 1 if i ∈ B.
(19)

is equivalent to solving a linear system. Hence, we have a
new closed form solution for the alpha mattes of an image.



4.2. Results

We perform our evaluation on the database used in [10],
which contains 27 high quality images. For the purpose
of testing, we dilate the perfect trimap by 22 pixels. Fig-
ures 4–6 are typical examples. In what follows, we com-
pare the performance of the following 4 algorithms: (a)
Rank-adaptive: our proposed algorithm in which we
construct the cost function by analyzing the rank of each
image patch; (b) Rank-adaptive-mod: a modification
of our algorithm, where we treat all rank 2 patches as rank 3;
(c) Levin: the algorithm of [6]; and (d) Levin-mod: the
algorithm of [6] with our proposed modification of biasing
the mattes towards 0 as in (14), but only for those connected
regions in the trimap which have only 1 as boundary condi-
tions. Note, for Levin-mod we tried different values for
ε in eqn. (14) and selected the best as ε = 10−3.

The performance of each algorithm is evaluated using
the following three different metrics. Given the computed
α matte and the ground truth α∗, we compute the metrics
SAD:

∑
i |αi − α∗i |, MSE:

∑
i (αi − α∗i )

2, and gradient er-
ror:

∑
i (∇αi −∇α∗i )

2.
Table 1 shows these errors for different methods

(averaged over all test cases). The best result for
each metric is highlighted in bold. We note that
Levin-mod obviously outperforms Levin. Inter-
estingly, Rank-adaptive-mod performs better than
Rank-adaptive. Visual inspection shows that the bias
towards 0 is more pronounced for the rank 2 case than for
rank 3. This points towards the fact that for real images, our
rank 3 formulation can account for the rank 2 cases also and
has much more stable performance. Note that this is not a
drawback of our formulation, since we can have a black box
for rank estimation, which always gives values of 3 or 4.

Importantly, the modification of our algorithm
Rank-adaptive-mod performs better than Levin as
well as Levin-mod in 2 out of the 3 metrics. These
improvements can also be observed visually, since these
three error metrics may not be representative of the error
observed by a human.

Table 1. Mean errors for the estimation of alpha mattes
Method SAD MSE Gradient
Levin 4733 0.3276 679.3
Levin-mod 4727 0.3173 678.3
Rank-adaptive 5583 0.3328 690.9
Rank-adaptive-mod 5171 0.2788 633.9

Figures 4–6 show typical results obtained in the above
error analysis. We show the results of Levin-mod and
Rank-adaptive-mod since these algorithms rank the
best in the error metrics. In the images displaying the rank
estimated by us, we use the following color-coding: dark
blue - marked pixels, light blue - rank 1, green - rank 2,
orange - rank 3, and red - rank 4. It is important to note that

most of the unmarked pixels in the trimap have rank less
than 4. In spite of introducing a bias towards 0 alpha mattes,
Levin-mod cannot deal with holes in the trimap. This
is due to its inherent bias to estimate locally smooth alpha
mattes. Our method, however, has no such problem and is
able to recover visually pleasing alpha mattes. Moreover,
in spite of an inherent bias of our method towards 0 alpha
mattes, our algorithm is able to accurately estimate 1 alpha
mattes in several regions of the trimap, such as the boundary
of the ball, the girl and the leaves in Figures 4–6.

We now address the issue of using scribbles vs. trimap
as user interaction. In Figure 7, we see that when we use
the same scribbles as used in [6], our framework is able
to capture finer details of the alpha matte of the dandelion,
as compared to [6]. On the other hand, in Figure 8, we
see that when we use the same scribbles used in [6], our
method gives suboptimal performance. Specifically, due
to the inherent bias, our method tries to fit fractional al-
pha even though the true alpha matte is 1 in large portions
of the bear. However, this can be easily fixed by connect-
ing the scribbles and flood filling them to create a trimap,
as shown in Figure 8(d). Our result (Fig. 8(f)) with this
trimap is comparable to that of [6] (Fig. 8(e)). In general,
our method outperforms [6] when the user input is a trimap,
which as exhibited in our experiments, need not be tight.
Note that this is not a limitation, since recent methods such
as [1, 10, 9, 20] also use the given scribbles to generate a
trimap, and then estimate the alpha mattes using this trimap.

5. Conclusions
In this work, we have presented new appearance models

for the problem of image matting. By construction, these
appearance models are more compact than that proposed by
[6], and as shown in our analysis, outperform the traditional
color line model of [6], without the need of any additional
user interaction. Future work entails the need of closed form
solvers for the mattes of image patches that have complex
intensity variation and hence do not satisfy the color line
model or the color point model.
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