
1

Fusion Moves for
Markov Random Field Optimization

Victor Lempitsky Carsten Rother Stefan Roth Andrew Blake

Abstract—The efficient application of graph cuts to Markov Random Fields (MRFs) with multiple discrete or continuous labels remains
an open question. In this paper, we demonstrate one possible way of achieving this by using graph cuts to combine pairs of suboptimal
labelings or solutions. We call this combination process the fusion move. By employing recently developed graph cut based algorithms
(so-called QPBO-graph cut), the fusion move can efficiently combine two proposal labelings in a theoretically sound way, which is in
practice often globally optimal.
We demonstrate that fusion moves generalize many previous graph cut approaches, which allows them to be used as building block
within a broader variety of optimization schemes than were considered before. In particular, we propose new optimization schemes for
computer vision MRFs with applications to image restoration, stereo, and optical flow, among others. Within these schemes the fusion
moves are used 1) for the parallelization of MRF optimization into several threads; 2) for fast MRF optimization by combining cheap-
to-compute solutions; and 3) for the optimization of highly non-convex continuous-labeled MRFs with 2D labels. Our final example is
a non-vision MRF concerned with cartographic label placement, where fusion moves can be used to improve the performance of a
standard inference method (loopy belief propagation).

Index Terms—Markov random fields, Computer vision, Combinatorial algorithms, Graph algorithms, Stereo, Motion, Image restoration.

F

1 INTRODUCTION

Many computer vision and image processing tasks are
cast as optimization problems. Quite often these op-
timization problems arise from the need to perform
maximum a-posteriori (MAP) estimation in probabilistic
models. The minimization of energies associated with
Markov Random Fields (MRF energies) has enjoyed
particular popularity, especially in low-level vision ap-
plications. These include stereo matching, image denois-
ing, image inpainting, image segmentation, image super-
resolution and others.

Over recent decades, a number of optimization al-
gorithms have been suggested for MRF energies that
commonly arise in (low-level) vision problems [1]. Graph
cut approaches, which minimize pairwise MRF energies
by solving mincut/maxflow problems on special graph
constructions are among the most successful methods.
Graph cut methods naturally apply to binary-labeled
pairwise MRFs, for which they can often find globally
optimal solutions [2]–[5].

This paper focuses on minimizing energies from pair-
wise MRFs with either multiple (> 2) discrete or con-
tinuous labels. The majority of optimization problems
for such MRFs are NP-hard, and thus various approx-
imate algorithms (such as loopy belief propagation [6]
in case of discrete labels, and gradient descent in case
of continuous labels) have been suggested. Graph cuts
have also been applied to discrete multi-label MRFs by
either been reducing them to large binary-label MRFs
[7]–[9], or by applying graph cuts iteratively to binary-
labeled subproblems [10]–[13]. While these approaches
yield competitive results when compared to other ap-

proximate optimization techniques, their computational
demands grow fast with the number of labels.

Here we take a different approach to these problems:
we exploit the fact that a variety of approximate so-
lutions to a particular MRF optimization problem can
be produced by using various approximate (or local)
optimization algorithms, different initializations, param-
eter settings or other factors. The question we ask is
whether different suboptimal solutions can be combined
in a principled manner in order to produce a new, better
labeling with lower energy.

We show that given a pair of suboptimal labelings (or
proposals), the problem of their combination into a better
solution can be expression as a binary-labeled MRF min-
imization problem. This auxiliary binary-labeled MRF
can be optimized efficiently using graph cuts, which
yields a new combined (’fused’) labeling with decreased
(or equal) energy. We call this operation the fusion move
and, after introducing it, suggest several optimization
schemes based on fusion moves for various pairwise
MRFs. We also discuss how the fusion move generalizes
several previous graph cut algorithms for multi-label
discrete MRFs [10], [11]. In general, fusion moves allow
us to apply graph cuts to a wider class of MRFs, includ-
ing those with continuous labels. Moreover, in the case
of discrete labels, fusion moves can be used to accelerate
graph cut minimization dramatically.

Our approach builds on two important components
from the literature: First, we rely on the QPBO-mincut
procedure from [4], introduced to computer vision in
[14]. It can optimize non-submodular binary-labeled
MRFs that are subproblems of our approach, and we
refer to this procedure as non-submodular graph cut.

2

Second, we use the idea of graph cut moves from [10],
[11] and extend it to perform fusions of proposal solu-
tions that themselves are computed by some domain-
specific method.

We demonstrate the versatility and applicability of
fusion moves with four different hybrid optimization
schemes, where fusion moves are used to combine pro-
posal solutions coming from very different processes.
First, we demonstrate how fusion moves can be used
to efficiently parallelize previous graph cut-based algo-
rithms for discrete-label MRFs — the well known alpha-
expansion [10] algorithm — with little parallelization
overhead. In this case, the proposal labelings that are to
be fused are generated by the alpha-expansion algorithm
itself. Next, we suggest a new graph cut algorithm
called LogCut that generates labelings for typical low-
level vision MRFs with a large number of labels much
faster than alpha-expansion. We observe that by fusing
several suboptimal labelings produced by LogCut using
fusion moves, we can find MRF labelings with very low
energy much faster than state-of-the-art algorithms.

After that, we apply fusion moves to a continuous-
valued MRF for optical flow computation, and observe
that fusing proposals obtained with classical continuous
algorithms can yield optical flow fields with state-of-the-
art accuracy, which by far exceeds that of the original
proposals (FusionFlow approach). The LogCut and Fu-
sionFlow approaches were previously introduced in two
conference papers [15], [16]. Here we focus on the aspects
of these approaches that relate to fusion moves.

Finally, we consider a class of non-vision MRFs found
in geo-information systems (GIS) applications that are
concerned with automatic label placements on a map.
Such MRFs have a very different structure from the
ones considered in the previous applications, and the
optimization schemes popular in computer vision, such
as alpha-expansion or message passing do not perform
well. Here, we suggest an optimization scheme that ob-
tains low-energy solution by fusing proposals obtained
with message-passing (belief propagation).

The rest of the paper is organized as follows. In sec-
tion 2 we introduce our notation, then review previous
work on optimization in binary-labeled MRFs, which
is essential to our approach; after that we introduce
the fusion move idea, and finally relate it to other
graph-cut based multi-label MRF optimization methods.
In section 3, we discuss four new hybrid optimization
schemes developed on the basis of fusion moves and
give experimental results. Finally, we conclude with a
discussion in section 4.

2 THE FUSION MOVE

Before introducing the fusion move itself, we first intro-
duce the basic setting. In this paper we consider energies
associated with pairwise MRFs, which take the form:

E(x) =
∑
p∈V

Up(xp) +
∑
p,q∈N

Vpq(xp, xq) , x ∈ LV , (1)

where V is a set of nodes, N is a set of undirected edges
connecting pairs of nodes (in vision problems V often
corresponds to the pixels in the image, while N contains
pairs of adjacent pixels in 4- or 8-connected neighbor-
hoods). The labeling x assigns a label xp from some label
space L to every node p ∈ V . The family of real-valued
functions Up : L → R and Vp,q : L2 → R, called unary
and pairwise potentials respectively, define the energy of
each labeling. The optimization problem then is to find
the labeling with the smallest energy, which amounts to
finding the labeling with the highest posterior probabil-
ity, since energy and probability can be related through
Boltzmann’s law as p(x) = exp{− 1

T E(x)}. Since for the
majority of interesting combinations of L, Up, and Vpq
this minimization problem is NP-complete, approximate
optimization approaches are considered instead.

2.1 Previous work on binary-labeled MRFs
The minimization of (1) in the binary-label case (L =
{0, 1}) has a number of applications in computer vision,
such as image segmentation, image stitching, etc. and
has thus received a lot of attention in the literature
(e.g. [3], [5]). These techniques has long been consid-
ered in the optimization literature as well, where such
minimization problems are known as quadratic pseudo-
boolean programming (QPBO). It is known that certain
QPBO problems can be solved via minimum cut com-
putation in a specially constructed graph [2]. In the
submodular case when all pairwise potentials Vpq obey
Vpq(0, 0) + Vpq(1, 1) ≤ Vpq(0, 1) + Vpq(1, 0) the globally
optimal labeling x̂ can be found exactly [2], [3], [5].

It has been realized, however, relatively recently that
non-submodular QPBO problems can still be reduced to
minimum cut computations [4], [14]. In the general non-
submodular case, the globally optimal labeling x̂ can be
found only partially, however. This means that after the
minimum cut computation, each node can be assigned
the labels 0, 1, or ’?’ (we will refer to the nodes with
labels 0 and 1 as labeled while the nodes with label ’?’
are called unlabeled). It is then known that the globally
optimal labeling coincides with x̂ for all labeled nodes
(partial optimality). Furthermore, it is known that taking
an arbitrary labeling x′ and replacing its labels with
those of x for all nodes that have been labeled in x̂ is
guaranteed to not increase the energy of x′ (persistence
property). In many practical scenarios, the number of
unlabeled nodes may be negligible; in many other cases
some or all of such nodes can be further labeled in
a globally optimal way using certain search heuristics
[17]–[19].

2.2 The fusion move
We now consider a more general case, where the MRF
energy (1) is defined on a non-binary label space L (e.g.
L = {0, 1, ..., N} or L = R2). While the exact minimiza-
tion of (1) is intractable for the absolute majority of cases,
its approximate minimization is still of great use for

3

a broad variety of computational problems. The fusion
move introduced here deals with the problem of opti-
mally combining two (suboptimal) proposal labelings.
As we shall see later, this methodology can be applied
to the approximate minimization of (1) in a variety of
ways.

Let us assume that we are given two labelings x0 ∈ LV

and x1 ∈ LV . We will now consider the set of labelings
obtained by combining x0 and x1. Here, by combination
we understand a labeling where the label of each node
is taken either from x0 or from x1. More formally, a
combination xc is defined by an auxiliary binary vector
y ∈ {0, 1}V , such that:

xc(y) = x0 • (1− y) + x1 • y , (2)

where • denotes the Hadamard (node- or element-wise)
product, i.e. xcp(y) = x0

p if yp = 0 and xcp(y) = x1
p if

yp = 1.
Then the energy (1) of any such combination if defined

as the energy of the auxiliary vector:

Ef (y) = E(xc(y)) =
∑
p∈V

Ufp (yp) +
∑
p,q∈N

V fpq(yp, yq) , (3)

where new auxiliary unary and pairwise potentials are
defined as:

Ufp (i) = Up(xip) , V fpq(i, j) = Vpq(xip, x
j
q) . (4)

Minimizing equation (3) as a function of the binary
labeling y using non-submodular graph cuts yields the
labeling ŷ. If all the nodes of y are labeled, then
this labeling corresponds to the global optimum of the
problem (3) and, therefore, the resulting labeling xc(ŷ)
corresponds to the globally optimal combination of x0

and x1 in the sense of the original problem (1). We call
such a combination a fusion of x0 and x1, and the process
of its computation the fusion move.

In some cases, solving the problem (3) using minimum
cut may only yield a partial optimal labeling ŷ that
contains some unlabeled nodes. In practice, however, we
have found that for a variety of fusion problems only
very few of the nodes were unlabeled when computing
the fusion move (e.g. just a few pixels in the image,
or 0.1% of nodes — the exact numbers are reported
together with each experiment). Before moving on to the
relationship of the fusion move to previous approaches,
we will discuss an informal intuition why this number
was so insignificant and after that propose a very simple,
yet theoretically sound way of dealing with unlabeled
nodes.

The number of unlabeled nodes in the partially
global optimal labeling for a pairwise MRF with bi-
nary labels is closely related to the number of non-
submodular pairwise terms, which are violating the con-
straint Vpq(0, 0) + Vpq(1, 1) ≤ Vpq(0, 1) + Vpq(1, 0) [20]. In
the fusion move case, this constraint means that tak-
ing the labels of two adjacent nodes from the same
proposal should on average have smaller pairwise cost

than taking them from different proposals. But this
is exactly what typically happens in our optimization
schemes, because both proposals are obtained through
different uncommunicating processes. Thus for each pair
of nodes, the pairwise cost within each proposal label-
ing is small (since the proposal labelings are somehow
“optimized”), while taking their labels from different
proposals may generate a “seam” and, hence, incur a
high pairwise cost. Therefore, the number of strongly
non-submodular terms tends to be small and thus almost
all nodes become labeled. A similar observation with
respect to the number of non-submodular terms during
image stitching was made in [14].

It is desirable to have sound theoretical guarantee
about fusion move performance in case the number of
unlabeled nodes is not negligable. Such guarantees can
be obtained using a very simple strategy for labeling
the unlabeled nodes (as presented in our previous work
[18]). Let us assume without loss of generality that
E(x0) ≤ E(x1). Then we label all unlabeled nodes in
ŷ with 0. We denoted this auxiliary labeling as ỹ. Thus,
ỹp = ŷp if ŷp 6= ’?’, and ỹp = 0 otherwise. The final output
of the fusion move is the labeling xc(ỹ). In other words,
all nodes p for which ŷp = ’?’ receive their labels from
x0 in the fused solution. According to the persistence
property of the QPBO-mincut algorithm [4], [14], the
energy of the auxiliary labeling Ef (ỹ) is not greater than
the energy of the auxiliary labeling Ef (0), which implies:

E(xc(ỹ)) ≤ E(x0) ≤ E(x1) , (5)

i.e. the fusion move is guaranteed not to increase the energy
(1) compared to the smallest of the energies of x0 and x1.
While this simple strategy for labeling the unlabeled
nodes in the auxiliary labeling was sufficient for obtain-
ing nearly global optimal fusions of proposals in all our
experiments, fusion moves in harder optimization prob-
lems may require more sophisticated search strategies
for the unlabeled nodes [17]–[19].

The computational cost of the minimum cut procedure
consists of constructing and computing the maximal
flow in a network graph that contains at most 2|V| non-
terminal vertices and at most 2|N |+2|V| edges. Note that
if the majority of edges correspond to submodular terms
the cost of running maxflow is very close to the runtime
of maxflow for a fully submodular graph construction
involving |V| non-terminal vertices and |N |+ |V| edges,
see details in [14]. Finally, if for some nodes the proposed
labels coincide (x0

p = x1
p), the corresponding vertices and

edges connecting them need not be included in the graph
thus further reducing the computational cost.

In the following, we denote the fusion move with the
symbol ’�’, e.g.:

xc(ỹ) = x1 � x2. (6)

2.3 Relation to previous multi-label approaches
The fusion move is closely related to several previous
and contemporary approaches that have been suggested

4

for the minimization of energies associated with multi-
label MRFs. The first approaches of this kind were
suggested in [10], [11], [21]. There multi-label MRF op-
timization was reduced to a series of binary-label MRF
optimizations (moves) that each were solved using min-
imum cut. The following types of moves were proposed
in [10], [11], [21], and each of them can be regarded as
a particular case of the fusion move discussed in this
paper:

Expansion move [10], [11], [21]. Given a current
labeling x0 and a label α ∈ L, each node p can either
retain its original label x0

p or take the label α during
the move. A repeated application of expansion moves
where α iterates over the set of labels L is the alpha-
expansion algorithm, which is perhaps the most popular
graph cut-based optimization algorithm for multi-label
MRFs in vision. Each expansion move can be regarded
as a fusion move, where the proposals are x0 and the
constant labeling x1, such that for each node p, x1

p = α.
Swap move [10], [11], [21]. Given a current labeling

x0 and a pair of labels α ∈ L and β ∈ L, each node p
with x0

p ∈ {α, β} can either retain its original label or
change it from α to β or vice versa. Nodes with labels
which are different to α and β remain unchanged. The
swap move can be regarded as a fusion move, where the
proposals are the current labeling x0 and the labeling x1,
such that x1

p = β if x0
p = α, x1

p = α if x0
p = β, and x1

p = x0
p

otherwise.
Jump move [11]. The jump move is defined for an

ordered discrete label space L = {0, 1, . . . N}. Given
a current labeling x0 and a number k ∈ {−N,−N +
1, . . . , N−1, N}, each node p during the move can either
retain its original label x0

p or change it from x0
p to x0

p + k
provided that the latter falls into the range of valid labels
L. The jump move can be regarded as a fusion move,
where the proposals are the current labeling x0 and the
labeling x1, such that x1

p = x0
p + k if x0

p + k ∈ L, and
x1
p = x0

p otherwise.
More recently, the use of graph cut moves was inves-

tigated in the context of texture synthesis and image
mosaicing [22], [23] as well as object detection and
segmentation [24]. The types of moves proposed there
are similar to the expansion move and can also be
regarded as a particular instance of the fusion move.
Loosely speaking, these approaches create one fixed pro-
posal solution which has a larger extent than the given
image. Then they introduce an auxiliary label α which
corresponds to the 2d-shift of the proposal solution with
respect to the original image. Iterative alpha-expansion
is then performed to optimize the energy.

We should emphasize here that all these works [10],
[11], [21]–[24] have considered the submodularity of the
binary-label problem as being necessary for a successful
graph cut minimization. For instance, in [23] various
so-called truncation schemas were discussed which en-
sure submodularity. As mentioned earlier, this restriction
can be lifted with the application of non-submodular
graph cut algorithms [4], [14]. Therefore, all the above-

mentioned moves can be applied to more general ener-
gies than it was originally suggested by the authors.

Independently of our work on fusion moves, another
group of researchers [19], [25] have simultaneously in-
vestigated the use of fusion-like graph cut moves for
image-based rendering and stereo. The proposals consid-
ered there are fronto-parallel planes, or piecewise-planar
proposals and smoothed versions of the current proposal
in [19]. This work [19] also goes beyond pairwise MRFs
and considers MRFs with triple-cliques. Each triple-
clique auxiliary MRF with binary labels is then reduced
to a pairwise MRF using the construction developed in
[5], [26].

As we have discussed, particular instantiations of the
fusion move idea have been around at least since [21].
The goal of this paper is therefore to demonstrate the
generality of the fusion move idea as well as to sug-
gest several new applications for vision and non-vision
problems. An important point we advocate here as well
as in our previous work [15], [16], which distinguishes
this from other preceding work, is that the propos-
als employed during the iterative application of fusion
moves do not necessarily have to be primitive, constant
proposals or permutations of the current solution, but
may rather come from powerful and, perhaps problem-
specific, proposal generation processes, and include even
continuous proposals as in [16]. Depending on the way
the fusion move is applied, such flexibility allows to find
solutions faster and/or with lower energy.

3 APPLICATIONS AND ALGORITHMS

After having introduced the fusion move as a general-
ization of previous graph cut approaches, we present
several new optimization schemes for minimizing en-
ergies associated with discrete and continuous-labeled
MRF based on the fusion move. Its flexibility and the
usability are illustrated by the variety of contexts where
it can be applied.

3.1 Parallelizing alpha-expansion using fusion
moves
We begin with a simple application of fusion moves
to discrete-label MRFs. In particular, we consider the
problem of parallelizing MRF optimization for multiple
CPU cores. More specifically, our optimization scheme
shows how to parallelize alpha-expansion. While rela-
tively little attention is being paid to this problem, the
advances of multi-core CPU architectures make this a
current issue.

To begin, let us consider the case of two threads
running on two CPU cores. The label set L is then split
into two equal size subsets L1 and L2 (L = L1 t L2,∣∣|L1| − |L2|

∣∣ ≤ 1). In our experiments, the exact way
of splitting the label set into two halves did not affect
computational performance much; an even-odd split was
found to be slightly more efficient than a lower-upper
halves split for ordered label sets.

5

(a) Current solution – 1st core,
E = 325 · 104

(b) Current solution – 2nd core,
E = 472 · 104

(c) Auxiliary binary variables
(all nodes labeled)

(d) Fused solution, E = 183 · 104

Fig. 1. Using fusion moves to parallelize alpha-expansion on two CPU cores. The first core sweeps through
label-disparities 0 to 7, while the second core sweeps through label-disparities 8 to 15. Images (a) and (b) show the
current solutions on the first and the second core after one sweep. These solutions are fused and yield a disparity map
potentially containing all disparities and having much lower energy as shown in (d). The auxiliary binary variables for
this fusion move are shown in (c) (0 = black, 1 = white; note that in this case there were no unlabeled nodes). Each
of the cores starts the next sweep with the fused solution as the current one.

As a reminder, during alpha-expansion the optimiza-
tion proceeds by sweeping through the label-space. Dur-
ing each sweep, the algorithm visits each label α ∈ L
once and performs an expansion move for this label from
the current solution xcur: α ∈ L, xcur = xcur�α. The final
labeling will typically slightly differ depending on the
order in which the labels are visited. In all experiments
in this paper we used a randomized label order, as this
typically results in lower-energy labelings.

Similar to alpha-expansion, the parallelized alpha-
expansion also proceeds by sweeps. Unlike alpha-
expansion though, each of the threads maintains its own
current solution xicur throughout the process. During a
sweep, each of the threads then visits its own set of labels
(L1 or L2) and performs expansion moves for each of the
visited labels starting from its own current solution.

Both threads perform their own sweep in parallel,
running on two separate CPU cores. When both threads
have completed their sweeps, the fusion move comes
into action, as the current solution for the first thread is
fused with the current solution for the second thread:
x12 = x1

cur � x2
cur. The current solutions from both

threads are then updated with the fused version. After
that a new sweep may be performed. The pseudocode
for the algorithm is given in Fig. 2. Note that the fusion
may incur non-submodular terms and hence cannot be
handled by a generic graph cut optimization.

An example of the fusion move in context of this
application is shown in Fig. 1 using a standard MRF for
narrow-baseline stereo [21], where the labels correspond
to disparities, unary potentials encode matching costs,
and pairwise potentials (here, 4-connected Potts) ensure
smoothness of the labeling. The fusion move after the
first sweep is shown; for the sake of demonstration
clarity, the labels (disparities) were split into upper and
lower halves.

Parallelizing to multiple threads is similar to the two
thread case. The label space L is subdivided into T equal
parts L1,L2 . . .LT ; during each sweep each of the T
threads sweeps through its own set of labels. After each
sweep the current solutions are fused into a single one.

Algorithm 1 Parallelized alpha-expansion
Require: MRF optimization problem with label space L

1: Split L into L1 and L2

2: Initialize x1
cur and x2

cur to any labelings
3: for several sweeps do
4: for i = 1, 2 in parallel do
5: for α ∈ Li do
6: xicur ← xicur � α
7: end for
8: end for
9: wait for all threads

10: x1
cur ← x1

cur � x2
cur

11: x2
cur ← x1

cur

12: end for
13: return x1

cur

Fig. 2. The pseudocode for the parallelized alpha-
expansion algorithm for the case of 2 CPUs.

These fusion moves are accomplished in a hierarchical
manner in parallel; i.e. for four cores, the two fusions
x12
cur = x1

cur � x2
cur and x34

cur = x3
cur � x4

cur are computed
in parallel first, and the fusion x1234

cur = x12
cur � x34

cur is
done next.

In terms of memory requirements, parallelized alpha-
expansion requires more memory than the conventional
alpha-expansion, as each thread requires O(|V| + |N |)
additional memory to store its current solution and to
maintain the graph for expansions. Still, given an MRF
with a large number of labels, both alpha-expansion and
parallelized alpha-expansion algorithms are quite mem-
ory efficient, as their memory requirements do not grow
with the size of the label space (unlike e.g. message-
passing methods).

Tab. 1 gives results for the parallelized alpha-
expansion for up to five threads and cores for a large-
scale stereo MRF problem based on truncated-linear
pairwise potentials [10] (the “books” dataset from [27]
was used). As can be seen, the parallelization allows a
substantial reduction of the run-time. While the accel-

6

TABLE 1
Time vs. Number of threads for a sample large stereo
MRF problem (1390x1110 nodes, 160 disparity labels).
The experiment was run on a multi-core computer, so
that each thread could be allocated a separate CPU

core. 4 sweeps through the label space were performed.
All runs yielded labelings with a similar energy

(19600± 20), while the parallelized alpha-expansion
achieved this faster than alpha-expansion (1.6 times
faster for 2 threads, 2.49 times faster for 5 threads).

Number of threads 1 2 3 4 5
Time (in seconds) 450 263 219 201 187

Energy 19601 19586 19593 19614 19618

eration is, of course, not linear (due to shared memory
access as well as the presence of fusion move steps), it is
still quite considerable. Quite importantly, the energies of
the labelings obtained with parallelized runs are roughly
equal to the energy obtained with standard single-thread
alpha-expansion (in fact, even slightly lower in case of
T = 2, 3). The number of unlabeled nodes within the
fusion moves was typically zero and never exceeded
0.05% during any of the runs.

3.2 The LogCut algorithm

As we have just seen, parallelized alpha-expansion al-
lows us to accelerate MRF optimization provided mul-
tiple CPU cores are available. Now we will discuss
how fusion moves can be used for a typical computer
vision MRF to speed up MRF optimization on a sin-
gle processor, beyond the current state of the art. The
proposed approach is based on the observation that
alpha-expansion performs a rather excessive number of
graph cut computations during each sweep. Indeed, each
sweep of alpha-expansion involves |L| graph cuts, while
log |L| binary graph cuts are sufficient, in principle, to get
a full MRF labeling using a divide-and-conquer strategy.
Such a divide-and-conquer graph cut algorithm, termed
LogCut, was proposed in our previous work [15].

The LogCut algorithm assumes the availability of
similar MRF problems at training stage, and uses train-
ing to improve the efficiency of the divide-and-conquer
scheme. In this paper, we will discuss this labeling
algorithm briefly and then focus on the use of the fusion
move. We refer the reader to [15] for remaining details.

LogCut assumes an ordered set of labels L =
{0, 1, ...K}1. Then the label xp of each node p can be
represented as a B-bit word [x0

p, x
1
p, ..., x

B−1
p], where

B = dlogKe:

xp =
B−1∑
b=0

xbp 2b. (7)

The minimization problem for the energy from (1) can
then be seen as a binary-label optimization problem with

1. As discussed in [15] the algorithm can also be applied to partially
ordered label-sets such as 2D flow vectors.

|V|·B variables xbp (which effectively is an MRF with
large cliques each of maximum size B). Because such
an optimization problem is intractable for conventional
methods, we aim at retaining the original pairwise clique
structure. We do so by iterating over the bit-array xb =
(xb1, . . . , x

b
p). In short, LogCut starts with finding the most

significant bit b = B − 1, and subsequently sweeping
through the bit-values at each node down to the least
significant bit b = 0. At each level, the decision about the
value of a particular bit b is made jointly for all nodes
via graph cut optimization. Then, instead of requiring
the number of iterations to grow linearly with K, as for
alpha-expansion, only a logarithmic number of graph cut
computations is required to obtain a labeling.

More specifically, LogCut replaces the original opti-
mization problem (1) with a series of binary-labeled MRF
optimization problems, solved subsequently:

Eb(xb) =
∑
p∈V

U bp(xbp) + γ
∑
p,q∈N

V bpq(x
b
p, x

b
q). (8)

The new binary-labeledpotentials U bp and V bpq have to be
derived from the original multi-labeled energy (1). In the
previous examples this transformation has been straight
forward as shown in (3-4). Unfortunately this is nontriv-
ial here since when operating on a particular bit b all the
less significant bits (0, ..., b−1) are unknown. Hence, the
potentials of the original MRF do not uniquely define
the potentials U bp and V bpq . This issue was addressed in
[15].

For unary potentials U bp , a simple “min” heuristics
that choses U bp(xbp) as the minimum of Up(xp) over
all possible settings of unknown lower bits proved to
work very well. Efficient choice of pairwise potentials
V bpq turned out to be much harder, and in [15], several
strategies for pairwise terms were discussed. The most
successful one was based on training. It uses the training
data to choose the new potentials V bpq , so that the LogCut
procedure finds labelings with the lowest possible origi-
nal energy (1). Importantly, such training procedure does
not require any ground truth labeling, as the training
data is only required to assess the energy values of the
solutions obtained by LogCut under different choices of
pairwise potentials.

In [15], we found such training procedure not to
be prone to over-fitting, at least for common low-level
vision tasks. Thus, when training and test datasets came
from a reasonably similar experimental setup, the energy
of the solution computed with one sweep of LogCut
was typically only slightly higher than the energy of the
solution produced with one sweep of alpha-expansion.
But LogCut only required a logarithmic number of graph
cuts resulting in much shorter run-times for applications
where the number of labels is large, as shown in Tab. 2.
Our test examples cover a variety of settings: First, low-
and high-resolution stereo matching datasets from [27]
(458× 356 and 1390× 1110 pixels). Next, image restora-
tion consisting of image denoising and inpainting of an

7

TABLE 2
Speedup of LogCut sweeps compared to

alpha-expansion sweeps. The speed up is given as the
ratio of computation times (alpha-expansion over

LogCut). Energy differences (LogCut minus
alpha-expansion, thus lower is better) are shown after
one sweep and at convergence of iterated versions of

both algorithms (all energies were defined in a standard
way, so that all individual energy terms Up and Vpq had
minima equal zero). From the results it is clear that the
speed advantage of LogCut increases with the number

of bits used to encode the label-space.

Problem set Number
of labels

Speed up
1st iter.

Energy diff.
1st iter.

Energy diff.
convergence

Low-res. stereo 64 4.9 +2.6% -0.3%
High-res. stereo 256 9 +3.6% -0.2%

Image restoration 256 12.4 +0.5% -2.6%
Optical flow 1024 20.7 +2.5% -2.4%

obscured area using the “penguin” image2 and a set of
images from the Corel dataset. And finally optical flow
estimation for a set of frame pairs from the well-known
Yosemite sequence. For a more detailed description of
the data and the models used, we again refer the reader
to [15].

As a single LogCut sweep results in a slightly higher
energy than an alpha-expansion sweep, a natural ques-
tion is whether the LogCut algorithm can be modified to
produce labelings with lower energies than one sweep
of alpha-expansion, or even whether it can beat multiple
sweeps of alpha-expansion. Next, we demonstrate how
this can be done using the fusion move idea.

Iterated LogCut. The LogCut optimization process
introduced so far makes a series of “hard” decisions:
once the decision on the bit value xbp is made, this bit
value remains fixed. Thus, the precise pattern of the
errors made by the LogCut algorithm depends on the
way in which the bit-coding is applied. Therefore, we
consider an iterated version of the LogCut algorithm,
where different bit-codings are used. During the first it-
eration, the bit-coding is applied to the label x ∈ 1, . . . ,K
as described above, which yields the current solution
xcur.

During subsequent iterations the bit-encoding is ap-
plied to circularly shifted labels (xp + s) mod K rather
than to xp itself. After that, LogCut is run for the new
bit-encoding and the resulting solution is shifted back to
obtain a new proposal. The proposal is then combined
with the current solution using the fusion move (the cur-
rent solution is initialized to the LogCut result without
the shift). An example of such a fusion is shown in Fig. 4.
It can be seen how the fusion move allows to obtain a
lower energy solution by picking different parts from the
different proposals.

The label shift s may be chosen randomly, but a more
efficient strategy is to choose the shift that maximally

2. To ease comparison, the “penguin” image restoration model is
taken from [1], [28].

Original image Solution 1 Solution 2 Fusion
E = 1628 E = 1621 E = 1569

Fig. 4. Iterated LogCut. In this image restoration ex-
ample, the original image is denoised and the black bar
is inpainted. The fusion move can be used to obtain a
lower energy labeling by fusing solutions coming from
LogCut with different bit-encodings (solution 1 - original
encoding, solution 2 - circularly shifted encoding). The
fused solution has substantially lower energy and does
not exhibit the artifacts present in either of the proposals
(marked by arrows).

decorrelates the errors with all previous bit encodings.
Effectively, the MRFs (8) group labels into superlabels, e.g.
the MRF at the highest bit level B−1 operates with two
superlabels of size 2B−1, the next one operates with four
superlabels of the size 2B−2, etc. The bit coding then
defines how the labels are grouped into superlabels on
each of the bit levels. This observation allows optimizing
the choice of the shifts.

For example, it is known in advance that if two shifts
s1 and s2 differ by K/2 then LogCut will give exactly the
same result for both shifts. This is because the grouping
of labels into superlabels will remain the same at all bit
levels (by simply switching the meaning of labels 0 and
1 for the MRF (8) at the highest bit level). In general,
to predict how successful the shifts s1 and s2 will be at
producing proposals with different errors, we define the
regrouping distance between shifts at a certain level b as

rb(s1, s2) =
1
2
−
∣∣∣∣ |s1 − s2| mod 2b

2b
− 1

2

∣∣∣∣ , (9)

which varies between 0 and 1
2 . When rb(s1, s2) = 0, s1

and s2 differ by a multiple of 2b, and the subdivision of
labels at level b into groups for both shifts are identical.
Conversely, the largest possible value rb(s1, s2) = 1

2
implies that the corresponding groups of labels at level
b are offset by half of the group size, giving a maximal
regrouping of labels. The total regrouping distance is
naturally defined as a sum over all bit levels:

r(s1, s2) =
B∑
b=1

rb(s1, s2). (10)

Now, at each iteration of the iterative LogCut procedure,
the shift that is the most distant from all previous shifts
according to (10) is chosen. This encourages a maximal
diversity amongst the solutions to be fused. In our
experiments, we found that this distance predicted very
well which shift gives the greatest reduction in energy
after fusion. In general, fusing results from different

8

0 5 10 15 20 25 57 58
1.5

1.65

1.6

1.7

1.55

time (sec)

en
er

gy

BP
TRW−S
α−Expansion
LogCut

x107

(a) Image restoration – “penguin”

0 20 40 60 80 140
1.9

2

2.1

2.2

time (sec)

m
ea

n
en

er
gy

TRW−S
α−Expansion
LogCut

x106

(b) Low res. stereo (64 labels)

0 500 1000 1500
1.76

1.8

1.84

1.88
x 10

7

time (sec)

m
ea

n
en

er
gy

α−Expansion
LogCut

(c) High res. stereo (256 labels)

Fig. 3. Time vs. energy plots for image restoration and stereo matching with LogCut. The image restoration
example in (a) uses the model from [1], [28], for the sake of comparison. The stereo experiments in (b) and
(c) are carried out at two different resolutions, and we report the mean energy over a test set of 5 examples
in tcase of high resolution (c) and 8 examples in case of low resolution (b). All experiments demonstrate better
computational performance of iterated LogCut as well as its ability to obtain low energy solutions after several
iterations. Iterated LogCut is compared with α-expansion [10] as well as respective authors’ implementations of
efficient belief propagation [28], and TRW-S [29] (where memory feasible). Every tick in each graph corresponds
to one iteration of LogCut, one sweep of alpha-expansion, or one round of message-passing of BP or TRW-S.

Algorithm 2 Iterated LogCut
Require: MRF problem E,

trained MRFs Eb, b = 0, . . . , B − 1.
1: for several iterations do
2: pick s to minimize (10)
3: apply bit-coding to (x + s) mod K
4: for b = B − 1 downto 0 do
5: xb ← arg minEb(xb)
6: end for
7: xcur ← xcur � [x0,x1, ...xB−1]
8: end for
9: return xcur

Fig. 5. The pseudocode for the Iterated LogCut algorithm.

bit encodings proves effective in optimizing the energy
much further than is possible with just a single iteration
of LogCut. The pseudocode for the iterated LogCut
algorithm is given in Fig. 5.

Over several dozen of runs for an image restoration
problem (where the number of non-submodular edges
during each fusion move is typically the largest), the
number of unlabeled nodes never exceeded 0.4% for any
optimization instance.

An important property of the iterated LogCut is that it
spends most of the time on obtaining proposals (lines 3–
6) rather than fusing them. Consequently, the algorithm
may be efficiently parallelized: the solutions for different
shifts s may be computed in parallel on different cores
and fused afterwards. Nevertheless, even being run in
a single thread mode, the iterated LogCut algorithm
performed favourably compared to other state-of-the-
art MRF optimization algorithms (see Fig. 3). As can be
seen, the use of fusion moves within the iterated LogCut
algorithm allows to obtain labelings with much lower

energy compared to a single iteration of LogCut. As
a result, the algorithm is able to compute initial high-
quality solutions faster than other algorithms and in the
end produces labelings with energies that are on a par
with best-performing competitor (TRW-S [29] or alpha-
expansion [10], depending on the application). As can
be seen in Fig. 3(a) and Tab. 2, the fusion of multiple
problem-specific LogCut proposals may even yield solu-
tions with considerably smaller energy compared to the
fusion of multiple constant labelings (alpha-expansion),
since they are different local optimizers. The increase
in performance (lower runtime), however, comes at the
price of having to perform an offline training step to
obtain the new unary and pairwise terms of the auxiliary
random field (8).

3.3 The FusionFlow algorithm

The previous two application examples dealt with MRFs
with discrete labels and demonstrated how fusion moves
can be used to accelerate optimization in that case.
Here, we will consider MRFs with continuous labels.
In particular, we will perform optical flow estimation
as described in our previous work [16]. Given a pair
of frames I0 and I1, the goal is to find a 2D flow vector
xp ∈ R2 for each pixel p in the first image I0, so that pixel
locations p in I0 and p + xp in I1 show corresponding
features.

Apart from the different label space, the optical flow
problem is actually quite similar to stereo-matching,
where graph cut optimization has been applied with
great success. We formulate the optical flow estima-
tion problem as a spatially-discrete, continuous-valued
MRF. The corresponding energy takes the form (1), but
with the crucial difference to the previous cases that
the values (labels) at each pixel are continuous and
moreover two-dimensional (i.e., L = R2). As in stereo

9

0 200 400 600 800
2000

3000

4000

5000

6000

7000

Number of fusions

E
ne

rg
y

ICM−fusion
QPBO−fusion

(a) Final solution, E = 2041 (b) After fusion, E = 2435 (c) After ICM-fusion, E = 3782 (d) Energy plots

(e) Solution 1, E = 7264 (f) Solution 2, E = 44859 (g) Auxiliary variables (h) Fused solution, E = 6022

Fig. 6. Optical flow estimation using the fusion move. Flow estimation for the Army sequence from [30] (see Fig. 7).
The top row shows the solution after the final continuous optimization (a), the solution after the fusion stage (b), and
the solution after the suboptimal ICM-based fusion stage (c). The energy as a function of the number of fusions for
the fusion using QPBO and for the ICM-based fusion are plotted in (d). The bottom row shows the first iteration of the
algorithm: A randomly chosen initial solution (e) (computed with Horn-Schunck) is fused with another randomly chosen
proposal solution (f) (computed with Lucas-Kanade). The fusion move allows to compute the optimal combination (h)
resulting in a much lower energy, which is passed on to the next iteration. The auxiliary variables are shown on (g). In
this example 99.998% of the nodes were labeled.

the unary potentials are used to encode the observation
model while the pairwise potentials are used to impose
smoothness of the flow field. More specifically, the data
term Up(xp) encodes the match between the RGB value
at pixel p of the first image and pixel p+xp of the second
image. To be more robust to illumination changes and
shadows, we first high-pass filter3 the input images I0

and I1 by subtracting Gaussian-smoothed versions G∗Ii.
Hence we aim to match I1−G∗I1 with I0−G∗I0. Color
and brightness changes are penalized using the Geman-
McClure robust penalty

ρU (d) = d2

d2+µ2

to account for occlusions and specularities (d here is
the Euclidean RGB distance between the corresponding
pixels; we manually set the constant µ = 16). The pair-
wise term Vpq(xp, xq) penalizes the difference between
horizontal and vertical components of the flow between
neighboring pixels p and q using the non-convex robust
penalty

ρV (d) = log
(
1 + 1

2ν2 d
2
)
,

which is derived as the log of the Student-t distribution
and motivated by the studies of the natural statistics of
optical flow [31]. Here, d is the difference between either
horizontal or vertical components of the flow vectors at
the two adjacent pixels; the parameter ν was set to 0.2.

3. Note that while high-pass filtering improves performance in areas
of large-scale brightness changes, it may deteriorate performance in
other (e.g., noisy) areas. However, in practice we found that the
advantages outweigh the problems and we obtained substantially
improved results overall. Nonetheless, it should be noted that the
FusionFlow approach is independent of this preprocessing step.

Fig. 7. The Army sequence from [30]: one of two input
images and the ground truth flow (black = unknown,hue =
motion direction, saturation = motion magnitude).

The proposed MRF energy is more difficult to optimize
than the energies used in recent popular optical flow
methods based on continuous optimization such as [32],
since both data and spatial terms in our formulation are
robust, thus non-convex. Also, the data term works with
the high frequency content of images, which only adds to
its non-linearity. Therefore, traditional continuous opti-
mization schemes based on coarse-to-fine estimation and
gradient descent often end up in poor local minima.

On the other hand, the proposed energy is also harder
to optimize than many energies used in stereo matching,
since the value at each pixel spans a potentially un-
bounded 2D domain rather than a bounded 1D domain,
making it infeasible for purely discrete techniques to
sample it densely enough. Our FusionFlow approach
addresses this using a new, powerful discrete-continuous
optimization scheme based on fusion moves that com-
bines the merits of discrete and continuous-valued opti-
mization approaches.

The minimization proceeds in two stages. During the
first stage, a number of proposals are generated and

10

combined using fusion moves4. It is important to note
that the proposal solutions need not to be of high
quality across the whole image in order to be “useful”.
Instead, each solution may only contribute to a partic-
ular region of the final solution as long as it contains
a reasonable flow estimate for that region, no matter
how poor it is in other parts. This suggests the use
of different flow computation methods with different
strengths and weaknesses for computing the proposals.
Therefore, we decided to use proposals computed with
the two classic flow estimation algorithms, namely the
Lucas-Kanade [34] (LK) and the Horn-Schunck [35] (HS)
methods. Indeed, Lucas-Kanade solutions often yield
good results in textured regions, but are virtually useless
in textureless regions, while the Horn-Schunck method
often gives good estimates in regions with smooth mo-
tion even when lacking image texture, but severely
oversmoothes motion discontinuities.

To obtain a rich and varying set of proposal solutions,
we use the LK and HS methods with various parameter
settings. For HS we vary the strength of the regulariza-
tion (λ ∈ {1, 3, 100}). Since both methods should be ap-
plied within a coarse-to-fine warping framework to over-
come the limitations of the linearized data term (of the
proposals, not of our energy), we also vary the number
of levels in the coarse-to-fine hierarchy (l ∈ {1, . . . , 5}).
Finally, for all LK solutions and a few HS solutions we
produce shifted copies (a flow field is shifted by both
±2l−1 and ±2l pixels along each image axis). For the LK
method, this corresponds to the use of a family of non-
centralized windows and, hence, gives better chances of
providing correct flow values near flow discontinuities,
and as we found reduces the energy of the solution.
These variations result in about 200 proposals (most of
them, however, are shifted copies and do not take much
time to compute).

The fusion of the proposals is accomplished in a
sequential manner, where the initial labeling corresponds
to one of the proposals, randomly chosen. After that, the
remaining LK and HS proposals are visited in random
order, and each of them is fused with the current so-
lution. An example of such a fusion (during the first
iteration of the process) for a sample problem is shown
in Fig. 6 in the bottom row.

After all LK and HS solutions are visited once, we
add new proposals based on the current solution. In
particular, the motion vectors of the obtained fused
solution are clustered into 64 clusters using the k-means
algorithm. The centers of the clusters ci ∈ R2 are used
to produce constant proposal flow fields xip = ci. Note
that more sophisticated proposals that are dependent on
the current solution may be computed (see e.g. [36]) and
our constant solutions are just one step in this direction.
The constant proposals are then added to the pool of LK

4. Interestingly, it was demonstrated very recently in [33] that the
fusion of flow fields may also be accomplished using continuous opti-
mization, with the possibility of introducing higher-order smoothness
terms.

and HS proposals and the fusion process continues until
each proposal is visited two more times. At this point
the procedure typically converges, i.e. the obtained fused
solution can no longer be changed by fusion with any
of the proposals. The number of unlabeled nodes during
each fusion was always negligible (we never observed it
exceeding 0.1% of the nodes).

After the fusion of solutions is accomplished, a low-
energy solution that is much closer to ground truth and
has much smaller energy than any of the proposals is
obtained (Fig. 6a). We have also compared QPBO-based
fusion against a simpler and faster fusion technique.
Thus, we have used the ICM algorithm [37] to solve ap-
proximately each fusion problem (3), otherwise leaving
the whole fusion framework unchanged. During each
fusion step, this fusion procedure tries to change the
flow vector at a pixel from the current solution to the
flow vector for this pixel in the proposed solution. The
pixels are visited subsequently and until convergence;
the changes are accepted only if they decrease the energy.
Fig. 6c clearly demonstrate that using ICM rather than
QPBO for the fusion operation results in the inferior
solution. Fig. 6d also demonstrate how the energy is
decreased with each fusion, when the optimal (QPBO)
and the suboptimal (ICM) fusion algorithms are used.
The QPBO-fusion decreases the energy much faster (a
steeper curve), bypassing the final ICM-fusion energy in
just 13 fusions. One may conclude that it is the power
of the QPBO algorithm and not only the diversity of the
proposals that is required to compute a good solution as
the result of the fusion.

During a subsequent second stage of the optimization,
we perform a continuous optimization step that helps
“cleaning up” areas where the proposal solutions were
not diverse enough, which for example may happen
in relatively smooth areas (visually, the difference is
typically very small as can be seen from Fig. 6 (b)-(c)).
This is done using a standard conjugate gradient method
[38]. The pseudocode for the FusionFlow algorithm is
given in Fig. 8.

Since the discrete optimization step avoids many of
the poor local optima that are problematic for purely
continuous optimization methods, the combination of
discrete and continuous optimization leads to local
minima with a substantially lower energy in most of
our experiments [16]. In particular, the evaluation of
our method on 8 benchmarking sequences [30] demon-
strated that the proposed discrete-continuous optimiza-
tion based on fusion moves was superior to baseline
continuous optimization (conjugate gradients applied in
a coarse-to-fine manner). Moreover, even the first stage
of our approach (fusion of < 300 proposals) considerably
outperformed alpha-expansion optimization with more
than 1000 labels (discrete baseline method in Table 3.3)
that were uniformly spaced in an admissible range of
motion (which was determined from the FusionFlow
solution).

11

TABLE 3
Comparison of different optimization techniques: Our full discrete-continuous, our discrete (i.e. fusion of

proposals without continuous improvement), baseline continuous, and baseline discrete algorithms. Shown are the
flow accuracy (average angular error) and the energy achieved. On the 8 test datasets [30], our optimization scheme

consistently outperforms the two baseline algorithms.

Optimization Army
AAE E(f)

Mequon
AAE E(f)

Schefflera
AAE E(f)

Wooden
AAE E(f)

Grove
AAE E(f)

Urban
AAE E(f)

Yosemite
AAE E(f)

Teddy
AAE E(f)

Fusion + continuous 4.43 2041 2.47 3330 3.70 5778 3.68 1632 4.06 17580 6.30 5514 4.55 1266 7.12 9315
Fusion only 4.97 2435 4.83 4375 5.14 7483 5.24 2180 4.00 21289 6.27 6568 4.03 1423 6.68 10450

Baseline continuous 7.97 4125 52.3 21417 36.1 24853 16.8 7172 64.0 78122 46.1 26517 23.2 4470 63.9 31289
Baseline discrete 5.61 3038 5.19 6209 5.36 8894 4.94 2782 9.03 44450 18.7 17770 5.67 1995 9.13 15283

Algorithm 3 FusionFlow
Require: Optical flow MRF problem E.

1: Generate a set X of proposal solutions
2: Initialize xcur to a random solution from X
3: for sweep = 1, 2, 3 do
4: for x ∈ X do
5: xcur ← xcur � x
6: end for
7: if sweep = 1 then
8: Cluster the set of 2D vectors {xcurp }
9: Add constant solutions for cluster centers to X

10: end if
11: end for
12: for several iterations do
13: xcur ← xcur + δ(xcur) \\ Continuous optimization
14: end for
15: return xcur

Fig. 8. The pseudocode for the FusionFlow algorithm.

(a) Prop.1, E = 933 (b) Prop.2, E = 2003 (a) Fused, E = 855

Fig. 9. The fusion move for cartographic label place-
ment (parts of a larger map are shown). The proposal
solutions are obtained using belief propagation (first and
second iteration). The fusion move combines these two
labelings into a better one. The auxiliary variables are
visualized using the following color coding: blue text – first
proposal (yp = 0), green text – second proposal (yp = 1),
black text – both proposals have the same MRF labels. All
nodes were labeled by graph cut during this fusion move.

3.4 Cartographic label placement

As our final example for how fusion moves can be
used, we consider a class of MRF energies that arise in
the so-called cartographic label placement problem (also
known as map labeling). These MRFs have a very different
structure from those found in computer vision and there-
fore, not surprisingly, optimization methods popular for

vision MRFs often fail for this problem. Yet, below we
demonstrate that the fusion move idea still proves useful
for this type of problem, and present a general algorithm
based on the fusion of belief propagation proposals.

Cartographic label placement is the problem of arrang-
ing geographic features along with their text annotations
on a map. Here we consider a point-label placement
problem in particular, where we are given a rectangular
map region, a set of populated places, where each popu-
lated place is described by a single pair of geographic
coordinates, its name, and its population (or other im-
portance measure). Fig. 9 shows an example of a cropped
map in where the size of the dot corresponds to size of
population. The task is then to create a map of the region
that contains the maximal number of populated places
along with their annotations, while still being legible and
visually pleasant. This is an important and well-studied
problem and the interested reader is referred to [39] for
a comprehensive bibliography on the subject.

We cast this problem as a multi-label MRF problem
as follows. Each populated place is represented using
a node p. If a populated place is added to the map, it
should be annotated, and the text label can be placed
using one of various predefined ways. The set of labels L
is therefore discrete and in our implementation consists
of 9 labels: xp ∈ {0,←,→, ↑, ↓,↗,↘,↙,↖}. The label 0
means that the populated place is not added to the map
(this is required since the list may contain an excessive
number of places), while the other labels imply that the
place is shown on the map in form of a dot centered at its
respective coordinates. The remaining labels correspond
to relative locations of the text label with respect to
the dot, e.g. xp =↑ means that the annotation is placed
above the dot. We then define the unary potential as
Up(xp) = λ · population2 if xp = 0 and Up(xp) = 0
otherwise, which penalizes the absence of a place by
the square of its population, while making all ways of
annotating equally acceptable.

We associate two rectangles TRp(xp) and LRp(xp)
with each node p and annotation label xp. For xp 6= 0, the
tight rectangle TRp(xp) is defined as a bounding rectangle
that includes the dot and the annotation text placed in
position xp, while the loose rectangle LRp(xp) is defined as
the tight rectangle TRp(xp) expanded in each of the four
directions by a fixed offset ∆. For xp = 0 both rectangles
are defined as being empty. The pairwise potentials Vpq

12

are then defined as:

Vpq(xp, xq) =

{
+∞ , if TRp(xp) ∩ TRq(xq) 6= ∅ ,
|LRp(xp) ∩ LRq(xq)| , otherwise.

(11)
We, thus, prohibit any overlap of the tight rectangles
and penalize the overlap of the loose rectangles pro-
portionally to the area of the overlap. The edge set N
includes all pairs of nodes p and q, such that their loose
rectangles may overlap for at least one choice of labels
(∃xp, xq : Vpq(xp, xq) 6= 0).

Minimizing the energy of the resulting MRF (1) allows
finding the trade-off between the amount of information
and the legibility, under the hard constraint of non-
overlap of the annotations. This MRF is quite different
from the pixel grid-based MRFs that we considered in
the previous examples: It has a varying topology, is typi-
cally highly-connected, and the pairwise potentials have
very different form compared to smoothness-ensuring
potentials used in the other examples. Not surprisingly,
the relative performance of MRF optimization algo-
rithms proved to be quite different in our experiments
from the performance reported on vision MRFs.

We performed a set of experiments with a list of the
910 largest populated places in the UK. We report the
results here for a particular choice of the map size, font
and constants ∆ and λ. However, a similar relative per-
formance of the various algorithms was observed over a
large range of the parameter space. The edge setN in the
experiments below contained 52490 edges overall. Thus
each node was connected to 115 other nodes on average,
although the graph density varied quite considerably
being much higher in central England.

We evaluated and compared the following MRF
optimization algorithms: alpha-expansion (using non-
submodular graph cuts), TRW-S [20], min-sum belief
propagation, iterated conditional modes (ICM) [37], and
a new algorithm proposed below that is based on belief
propagation and the fusion move. We also tried sim-
ulated annealing, but empirically it was very difficult
to choose an appropriate cooling schedule due to the
presence of both infinite and finite values in pairwise
potentials. We note, however, that other mathematical
formulations of the label placement problem may be
much better suited for simulated annealing optimization
(see [40]).

The performance of the various algorithms is sum-
marized in Table 4. It can be seen that conventional
algorithms that typically perform best on vision MRFs
(alpha-expansion and TRW-S) perform much worse than
belief propagation (BP), which is able to find solutions
with much lower energy. However, BP did not converge
for all the label placements MRFs we have tried. Non-
convergence of belief propagation is a common problem,
and, at a first glance, the best solution may be to just
keep the best labeling found at any of the iterations. We
observed, however, that the labelings found in subse-
quent iterations were quite different from each other, and

TABLE 4
Performance of various MRF optimization algorithms

on an instance of the cartographic label placement
problem. We give two numbers for those algorithms that

do not decrease the energy monotonically (min-sum
belief propagation and TRW-S): the lowest energy

observed during any of the iterations and the energy at
the final iteration. The iterated conditional modes (ICM)
algorithm was run from 100 random starting-points and

with a random order for visiting nodes.

Algorithm Energy ·103

ICM (best among 100 runs) 3561
Alpha-expansion (convergence) 1220

TRW-S (1000 iterations) 2773/2832
Belief propagation (100 iterations) 908/59193

BP-fusion (10 iterations) 833
BP-fusion (100 iterations) 829

TABLE 5
Energies of belief propagation and BP-fusion
solutions after each of the first 10 iterations.
Iteration # BP BP-fusion Iteration # BP BP-fusion

1 933 933 6 60053 838
2 2002 855 7 1324 836
3 1185 851 8 2106 833
4 2315 849 9 59196 833
5 938 847 10 2139 833

although most of them had significantly higher energy
compared to the best found labeling, they still contained
parts with good arrangements of text labels.

The idea put forward here is thus to combine sev-
eral belief propagation labelings using fusion moves.
The algorithm maintains a current solution and fuses
it with the belief propagation solution after each itera-
tion (message-passing round). This algorithm, called BP-
fusion, is summarized in Fig. 10.

As can be seen from Tables 4 and 5, the suggested al-
gorithm efficiently combines non-convergent belief prop-
agation solutions and is able to obtain a considerably
lower energy labeling than any of the belief propagation
iterations. An example of the fusion move within the
BP-fusion algorithm is shown in Fig. 9. We did not
observe unlabeled nodes for fusion moves using our
experimental settings, but under extreme variation of the

Algorithm 4 BP-fusion
Require: MRF problem E

1: Initialize current solution xcur

2: Initialize belief propagation messages
3: for several iterations do
4: Update beliefs with a round of messages
5: xBP ←Minimal solution from beliefs
6: xcur ← xcur � xBP

7: end for
8: return xcur

Fig. 10. The pseudocode for the BP-fusion algorithm.

13

parameters unlabeled nodes may appear.

4 DISCUSSION AND FUTURE WORK

Summary. In this paper, we have proposed the fusion
move as an efficient technique for the minimization of
energies associated with pairwise Markov random fields
with a certain focus on low-level vision applications.
We showed that the fusion move can be regarded as a
generalization of a variety of previous graph cut moves
that have been suggested in the literature. We presented
a number of hybrid algorithms in which fusion moves
are used to combine proposal solutions. These algorithm
examples show that the fusion move is a flexible tech-
nique that applies to a variety of settings and often yields
algorithmic improvements. To summarize, let us review
the source of the proposal solutions and the role played
by the fusion move for each of the proposed algorithms:
• Parallelized alpha-expansion algorithm: proposals
from multiple threads / CPU cores. By splitting the
label space between threads running on separate CPU
cores we showed that graph-cut based MRF optimiza-
tion can be efficiently parallelized. Here fusion moves
are used to combine and coordinate the optimization
processes performed within different threads.
• Iterated LogCut algorithm: proposals from fast

divide-and-conquer algorithms. The proposals are
generated with a very fast, yet suboptimal algorithm
that relies on hard decisions (LogCut). By varying the
decision splits (label grouping) and combining the
resulting labelings using fusion moves, low energy
MRF labelings are obtained very quickly.
• FusionFlow algorithm: proposals from continuous-

valued algorithms. In this case the proposals come
from different algorithms that work in a continu-
ous label space and furthermore have complimen-
tary strengths and weaknesses (Lukas-Kanade and
Horn-Schunck flow estimators). By combining such
proposals using fusion moves, low energy solutions
are obtained for MRFs with continuous unbounded
label spaces that are not easily amenable for dense
discretization.
• BP-fusion algorithm: proposals from non-

convergent message passing. Here, the proposals
come from different iterations of min-sum belief
propagation, which on itself does not converge. By
combining such proposals with fusion moves, low
energy labelings for a hard, highly-connected MRF
are obtained within a few iterations.
These algorithm examples not only show that the

fusion move extends the applicability of graph cuts to
domains where they are either hard to apply (optical
flow estimation), or lead to poor solutions (label place-
ment). But moreover, they show that the ability to fuse
problem specific proposals helps to obtain solutions with
lower energy than competing methods such as alpha
expansion. Finally, the application examples showed
that fusion moves can facilitate runtime performance

TABLE 6
The table summarizes the average degree of a node,

number of non-submodular pairwise terms, and number
of nodes unlabeled by QPBO-graph cut in a fusion move.
The latter was very small throughout all our experiments.

Experiment av. deg. node non-submod. terms unlab. nodes
Parallelized α-exp. 4 < 0.1% < 0.05%

Iterated LogCut 4 < 2% < 0.4%
FusionFlow 8 < 20% < 0.1%

Label placement 115 < 0.7% 0

increases and allow the parallelization of the popular
expansion move techniques into several threads to take
advantage of modern multi-core architectures.

In summary, the inherent flexibility of fusion moves
allowed us to combine problem-specific proposal solu-
tions, which makes the fusion approach suitable for a
large variety of optimization problems associated with
pairwise MRFs.

QPBO performance within the Fusion Move is sum-
marized in table Tab. 6. It has been observed [18] that
the crucial factors for the performance of QPBO are
(i) connectivity of the graph, (ii) percentage of non-
submodular terms, and (iii) strength of the unary terms.
For each application we list the first two factors in the
table. We observe that even for higher connected graphs
(label placement) and a considerable percentage of non-
submodular terms, QPBO performs very well in all of
our experiments. Hence there is no need to consider
more advanced solvers. On the other hand, the fusion
is an NP hard problem and QPBO may not always be
sufficient. For instance in [19] it has been demonstrated
that for particular MRFs with triple cliques, QPBO-based
fusion produces a considerable number of unlabeled
nodes. In such a case, additional post-processing heuris-
tics or other solvers may be need to improve the labeling,
such as suggested in e.g. [17]–[19].

Proposal generation. In the end, we would like to
discuss the general aspects of applying the fusion move
idea to new problems. In this paper, we demonstrate
various different ways of creating problem-specific propos-
als. Is there a generic recipe for the choice of proposals?
Qualitatively, there are two aspects of the proposal set
that is relevant to the success of the fusion approach:
quality of individual proposals and diversity among dif-
ferent proposals. The quality of individual proposals en-
sures that the convergence to a good solution is faster (cf.
the LogCut algorithm where fusing problem-optimized
proposals yields faster convergence then fusing constant
proposals within alpha-expansion). The quality of indi-
vidual proposals also serves as a safety net, as the energy
of the fused result cannot be higher than the energy of
the best solution. The diversity between the proposals
determines how much can be added by the fusion move
on top of the best solution. Note that this quality-diversity
issue is a direct analogy with the ensemble classifier
creation methods in machine learning such as bagging.

To illustrate these concepts, consider the alpha-

14

expansion algorithm, that works with different constant
proposals. Such solutions are quite diverse, but they
are not of high-quality in terms of energy. As a result,
alpha-expansion typically produces a low-energy solu-
tion which is much better than any of the proposals,
but requires an excessive number of proposals (hence
being relatively slow). Furthermore, we have shown that
extending the diversity of proposals beyond constant
labelings allows to obtain even lower energy solutions
than those obtained with alpha-expansion. (The iterated
LogCut algorithm provides an example of choosing a
diverse set of solutions. Here, picking the next proposal
so that the distance (10) between its shift s and previous
shifts is maximized is aimed at increasing the diversity
of the solutions.)

Some generic approaches for generating the diverse
set of proposals include taking multiple local minima of
the MRF energy obtained either via gradient descent or
a greedy algorithms such as iterated conditional modes
initialized with different starting points (this avenue is
investigated in [41]). Finally, another idea for future
research is to generate the proposals by sampling directly
from the MRF, e.g. using Monte-Carlo or Gibbs sam-
pling. This strategy, which we tested only briefly, how-
ever, faces two problems: firstly, obtaining the diverse
set of solutions requires running the sampling process
for a very long time, and, secondly, samples from the
MRF probability may not be closely related to the MAP
solution that is sought.

Another potentially useful idea that is not investigated
in the paper, is to generate proposals on-the-fly by taking
into account the current solution and its “problematic”
parts (similar to boosting, where next weak classifier is
picked by observing where the current strong classifier
fails to make good prediction). The open questions are,
how to define the meaning of a “problematic” part, and
how to ensuring that there is enough diversity in the
proposals.

REFERENCES

[1] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov,
A. Agarwala, M. Tappen, and C. Rother, “A comparative study
of energy minimization methods for Markov random fields with
smoothness-based priors,” TPAMI, vol. 30, no. 6, 2008.

[2] P. L. Hammer, “Some network flow problems solved with pseudo-
boolean programming,” Operations Research, vol. 13, 1965.

[3] D. Greig, B. Porteous, and A. Seheult, “Exact MAP estimation
for binary images,” Journal of the Royal Statictical Society, Series B,
vol. 51, no. 2, pp. 271–279, 1989.

[4] E. Boros and P. L. Hammer, “Pseudo-boolean optimization,”
Discrete Applied Mathematics, vol. 123, no. 1-3, pp. 155–225, 2002.

[5] V. Kolmogorov and R. Zabih, “What energy functions can be
minimized via graph cuts?” TPAMI, vol. 24, no. 2, 2004.

[6] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Understanding
belief propagation and its generalizations,” in Exploring Artificial
Intelligence in the New Millennium, G. Lakemeyer and B. Nebel,
Eds. Morgan Kaufmann Pub., 2003, ch. 8, pp. 239–236.

[7] H. Ishikawa, “Exact optimization for Markov random fields with
convex priors,” TPAMI, vol. 25, no. 10, pp. 1333–1336, 2003.

[8] D. Schlesinger and B. Flach, “Transforming an arbitrary minsum
problem into a binary one,” Tech. Rep. TUD-FI06-01, 2006.

[9] P. Kohli, A. Shekhovtsov, C. Rother, V. Kolmogorov, and P. Torr,
“On partial optimality in multilabel MRFs,” in ICML, 2008.

[10] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy
minimization via graph cuts,” TPAMI, vol. 23, no. 11, 2001.

[11] O. Veksler, “Efficient graph-based energy minimization methods
in computer vision,” Ph.D. dissertation, Cornell University, 1999.

[12] N. Komodakis, G. Tziritas, and N. Paragios, “Fast, approximately
optimal solutions for single and dynamic MRFs,” in CVPR, 2007.

[13] O. Veksler, “Graph cut based optimization for MRFs with trun-
cated convex priors,” in CVPR, 2007.

[14] V. Kolmogorov and C. Rother, “Minimizing non-submodular
functions with graph cuts — A review,” TPAMI, vol. 29, no. 7,
pp. 1274–1279, 2006.

[15] V. Lempitsky, C. Rother, and A. Blake, “LogCut - Efficient graph
cut optimization for Markov random fields,” in ICCV, 2007.

[16] V. Lempitsky, S. Roth, and C. Rother, “FusionFlow: Discrete-
continuous optimization for optical flow estimation,” in CVPR,
2008.

[17] E. Boros, P. L. Hammer, and G. Tavares, “Preprocessing of un-
constrained quadratic binary optimization,” Tech. Rep. RUTCOR
RRR 10-2006.

[18] C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer, “Op-
timizing binary MRFs via extended roof duality.” in CVPR, 2007.

[19] O. J. Woodford, P. H. S. Torr, I. D. Reid, and A. W. Fitzgibbon,
“Global stereo reconstruction under second order smoothness
priors,” in CVPR, 2008.

[20] V. Kolmogorov and M. J. Wainwright, “On the optimality of tree-
reweighted max-product message-passing,” in UAI, 2005.

[21] Y. Boykov, O. Veksler, and R. Zabih, “Markov random fields with
efficient approximations,” in CVPR, 1998, pp. 648–655.

[22] V. Kwatra, A. Schödl, I. A. Essa, G. Turk, and A. F. Bobick,
“Graphcut textures: Image and video synthesis using graph cuts,”
ACM Trans. Graph., vol. 22, no. 3, pp. 277–286, 2003.

[23] C. Rother, S. Kumar, V. Kolmogorov, and A. Blake, “Digital
tapestry,” in CVPR (1), 2005, pp. 589–596.

[24] J. M. Winn and J. Shotton, “The layout consistent random field for
recognizing and segmenting partially occluded objects,” in CVPR
(1), 2006, pp. 37–44.

[25] O. J. Woodford, I. D. Reid, P. H. S. Torr, and A. W. Fitzgibbon,
“On new view synthesis using multiview stereo,” in BMVC, 2007.

[26] A. Billionnet and M. Minoux, “Maximizing a supermodular
pseudo-boolean function: A polynomial algorithm for supermod-
ular cubic functions,” Discrete Applied Mathematics, vol. 12, no. 1,
pp. 1–11, 1985.

[27] D. Scharstein and C. Pal, “Learning conditional random fields for
stereo,” in CVPR, 2007.

[28] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient belief prop-
agation for early vision,” in CVPR, vol. 1, 2004, pp. 261–268.

[29] V. Kolmogorov, “Convergent tree-reweighted message passing for
energy minimization,” TPAMI, vol. 28, no. 10, pp. 1568–1583, 2006.

[30] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black, and R. Szeliski,
“A database and evaluation methodology for optical flow,” in
ICCV, 2007.

[31] S. Roth and M. J. Black, “On the spatial statistics of optical flow,”
IJCV, vol. 74, no. 1, pp. 33–50, 2007.

[32] N. Papenberg, A. Bruhn, T. Brox, S. Didas, and J. Weickert,
“Highly accurate optic flow computation with theoretically justi-
fied warping,” IJCV, vol. 67, no. 2, pp. 141–158, Apr. 2006.

[33] W. Trobin, T. Pock, D. Cremers, and H. Bischof, “Continuous
energy minimization via repeated binary fusion,” in ECCV, 2008.

[34] B. D. Lucas and T. Kanade, “An iterative image registration
technique with an application to stereo vision,” in IJCAI, 1981,
pp. 674–679.

[35] B. K. P. Horn and B. G. Schunck, “Determining optical flow,”
Artificial Intelligence, vol. 17, no. 1–3, pp. 185–203, Aug. 1981.

[36] S. Birchfield, B. Natarjan, and C. Tomasi, “Correspondence as
energy-based segmentation.” vol. 25, no. 8, pp. 1329–1340, 2007.

[37] J. Besag, “On the statistical analysis of dirty pictures,” vol. B-48,
no. 3, pp. 259–302, 1986.

[38] C. E. Rasmussen, “minimize.m,” http://www.kyb.tuebingen.
mpg.de/bs/people/carl/code/minimize/, Sep. 2006.

[39] A. Wolff, “The map-labeling bibliography.” http://i11www.iti.uni-
karlsruhe.de/%7Eawolff/map-labeling/bibliography/.

[40] J. Christensen, J. Marks, and S. Shieber, “An empirical study of
algorithms for point-feature label placement.” ACM Transactions
on Graphics, vol. 14, no. 3, pp. 203–232, 1995.

[41] H. Y. Jung, K. M. Lee, and S. U. Lee, “Toward global minimum
through combined local minima,” in ECCV, 2008.

