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Abstract

This paper details a new approach for learning a
discriminative model of object classes, incorporating
texture, layout, and context information efficiently.
The learned model is used for automatic visual under-
standing and semantic segmentation of photographs.
Our discriminative model exploits texture-layout fil-
ters, novel features based on textons, which jointly
model patterns of texture and their spatial layout.
Unary classification and feature selection is achieved
using shared boosting to give an efficient classifier
which can be applied to a large number of classes.
Accurate image segmentation is achieved by incorpo-
rating the unary classifier in a conditional random
field, which (i) captures the spatial interactions be-
tween class labels of neighboring pixels, and (ii) im-
proves the segmentation of specific object instances.
Efficient training of the model on large datasets is
achieved by exploiting both random feature selection
and piecewise training methods.

High classification and segmentation accuracy is
∗Now working at at Toshiba Corporate Research & Devel-

opment Center, Kawasaki, Japan.

demonstrated on four varied databases: (i) the
MSRC 21-class database containing photographs of
real objects viewed under general lighting conditions,
poses and viewpoints, (ii) the 7-class Corel subset and
(iii) the 7-class Sowerby database used in [19], and
(iv) a set of video sequences of television shows. The
proposed algorithm gives competitive and visually
pleasing results for objects that are highly textured
(grass, trees, etc.), highly structured (cars, faces, bi-
cycles, airplanes, etc.), and even articulated (body,
cow, etc.).

1 Introduction

This paper investigates the problem of achieving au-
tomatic detection, recognition, and segmentation of
object classes in photographs. Precisely, given an im-
age, the system should automatically partition it into
semantically meaningful regions each labeled with a
specific object class, as illustrated in Figure 1.

The challenge is to model the visual variability of
a large number of both structured and unstructured
object classes, to be invariant to viewpoint and illu-
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Figure 1: Example results of our new simultaneous object class recognition and segmentation
algorithm. Up to 21 object classes (color-coded in the key) are recognized, and the corresponding object
instances segmented in the images. For clarity, textual labels have been superimposed on the resulting
segmentations. Note, for instance, how the airplane has been correctly recognized and separated from the
building, the sky, and the grass lawn. In these experiments only one single learned multi-class model has
been used to segment all the test images. Further results from this system are given in Figure 18.

mination, and to be robust to occlusion. Our focus
is not only the accuracy of segmentation and recog-
nition, but also the efficiency of the algorithm, which
becomes particularly important when dealing with
large image collections or video sequences.

At a local level, the appearance of an image patch
leads to ambiguities in its class label. For example,
a window could be part of a car, a building or an
airplane. To overcome these ambiguities, it is nec-
essary to incorporate longer range information such
as the spatial layout of an object and also contextual
information from the surrounding image. To achieve
this, we construct a discriminative model for labeling
images which exploits all three types of information:
textural appearance, layout, and context. Our tech-
nique can model very long-range contextual relation-
ships extending over half the size of the image.

Additionally, our technique overcomes several

problems typically associated with object recogni-
tion techniques that rely on sparse features (such as
[33, 36]). These problems are mainly related to tex-
tureless or very highly textured image regions. Fig-
ure 2 shows some examples of images with which
those techniques would very likely struggle. In con-
trast, our technique based on dense features is ca-
pable of coping with both textured and untextured
objects, and with multiple objects which inter- or self-
occlude, while retaining high efficiency.

The main contributions in this paper are three-
fold. The most significant is a novel type of feature,
which we call the texture-layout filter. These features
record patterns of textons, and exploit the textural
appearance of the object, its layout, and its textu-
ral context. Our second contribution is a new dis-
criminative model that combines texture-layout fil-
ters with lower-level image features, in order to pro-
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Figure 2: Example images for which sparse fea-
tures are insufficient. Techniques based on sparse
features struggle with textureless and very highly tex-
tured regions, and multiple objects, especially those
that severely inter-occlude.

vide a near pixel-perfect segmentation of the image.
Finally, we demonstrate how to train this model ef-
ficiently on a very large dataset by exploiting both
boosting and piecewise training methods.

To stimulate further research and the development
of new applications, source code has been made pub-
licly available.1 Parts of this paper originally ap-
peared as [43], but note that some terms have been re-
named: ‘shape filters’ are now called ‘texture-layout
filters’, and ‘shape-texture potentials’ are now called
‘texture-layout potentials’. The new names are more
intuitive, and we encourage their use.

The paper is organized as follows. Immediately
below, we discuss related work. In Section 2, we de-
scribe the image databases used in our experiments.
Section 3 introduces the high-level discriminative
model, a conditional random field (CRF). Readers
most interested in the powerful texture-layout filters
may jump to Section 4, where we also discuss their
combination in a boosted classifier. We evaluate and
compare with related work in Section 5, suggest some
novel applications of semantic segmentation in Sec-
tion 6, and conclude in Section 7.

1.1 Related Work

Whilst the fields of object recognition and segmenta-
tion have been extremely active in recent years, many
authors have considered these two tasks separately.
For example, recognition of particular object classes
has been achieved using the constellation models of
Fergus et al. [17], the deformable shape models of

1http://jamie.shotton.org/work/code.html

Berg et al. [6] and the texture models of Winn et
al. [49]. None of these methods leads to a pixel-wise
segmentation of the image. Conversely, other authors
have considered only the segmentation task, for ex-
ample [28, 9]. In [39], image regions are classified
into figure and ground using a conditional random
field model. Our technique goes further, providing a
full image segmentation and recognizing the object
class of each resulting region.

Joint detection and segmentation of a single object
class has been achieved by several authors [50, 27, 31].
Typically, these approaches exploit a global layout
model and are therefore unable to cope with arbi-
trary viewpoints or severe occlusion. Additionally,
only highly structured object classes are addressed.

Several authors such as [16, 45, 30] have considered
recognition for up to 101 object classes, but these
techniques only address image classification and ob-
ject localization in fairly constrained images. In con-
trast, our technique achieves both recognition and
segmentation on natural scenes, and copes accurately
with 21 classes, which to our knowledge is state of the
art for this task.

In [14], a classifier, trained from images associated
with textual class labels, was used to label regions
found by bottom-up segmentation. However, such
segmentations often do not correlate with semantic
objects, and so our proposed solution performs seg-
mentation and recognition in the same unified frame-
work rather than in two separate steps. Such a uni-
fied approach was presented in [46], but only text and
faces were recognized, and at a high computational
cost. Konishi and Yuille [26] labeled images using
only a unary classifier, and hence did not achieve spa-
tially coherent segmentations.

The most similar work to ours by He et al. [19] in-
corporates region and global label features to model
layout and context in a conditional random field.
Their work uses Gibbs sampling for both the pa-
rameter learning and label inference and is there-
fore limited in the size of dataset and number of
classes which can be handled efficiently. Our focus
on the speed of training and inference allows the use
of larger datasets with many more object classes: up
to 21 classes in our evaluation, compared to 7 classes
in [19].
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More recent work by the same group presented a re-
lated technique [20], where images are first segmented
with a bottom-up algorithm to produce ‘super-pixels’
which are then merged together and semantically la-
beled using a combination of several scene-specific
CRF models. Their technique improves the quanti-
tative results from [19], but is not demonstrated on
more than 11 classes. Additionally, their model can-
not recover from mistakes where the inferred super-
pixels cross a semantic object boundary, such as
where a dark object meets its shadow. These prob-
lems, while perhaps infrequent, are side-stepped by
our technique which instead works efficiently at a per-
pixel level.

Building on TextonBoost is a system called ‘Lay-
outCRF’ by Winn & Shotton [51]. This incorpo-
rates an additional constraint to recognize configura-
tions of object parts and hence individual instances
of structured objects whilst allowing for deformation
and occlusion.

2 Image Databases

Our object class models are learned from a set of la-
beled training images. In this paper we consider four
different labeled image databases. The Microsoft Re-
search Cambridge (MSRC) database2 is composed of
591 photographs of the following 21 object classes:
building, grass, tree, cow, sheep, sky, airplane, wa-
ter, face, car, bicycle, flower, sign, bird, book, chair,
road, cat, dog, body, and boat. Examples are shown
in Figure 3. The training images were hand-labeled
by means of a ‘paint’ interface, with the assigned col-
ors acting as indices into the list of object classes.
One could instead use one of the novel ‘user-centric
computation’ methods such as [42] or Peekaboom3.
Note that we consider general lighting conditions,
camera viewpoint, scene geometry, object pose and
articulation. The database is split randomly into
roughly 45% training, 10% validation and 45% test
sets, while ensuring approximately proportional con-
tributions from each class.

2http://research.microsoft.com/vision/cambridge/

recognition/
3http://www.peekaboom.org/

Note that the ground truth labeling of the 21-class
database contains pixels labeled as ‘void’. This label
was used both to cope with pixels that do not belong
to a class in the database, and also to allow for a
rough and quick hand-segmentation which need not
align exactly with the object boundaries. Due to this
semantic ambiguity, it was not sensible to learn a
background class based on these regions, and hence
void pixels are ignored for both training and testing.

For comparison with previous work [19], we also
used the 7-class Corel database subset (where images
are 180×120 pixels) and the 7-class Sowerby database
(96 × 64 pixels). For those two databases, the num-
bers of images in the training and test sets we used
are exactly as for [19], although their precise train-
test split was not known. Neither of these data sets
include the void label.

The final evaluation we present was performed on
a set of nine 20-minute video sequences of television
programs: modern drama, news, golf, soccer, cook-
ing, variety, music, historical drama, and business
news. The set of classes used for this evaluation was
as for the MSRC evaluation, though with sign, book,
and chair removed, and the new classes hand, table,
and headgear added. For speed of evaluation, video
frames were down-sampled to 336x224 pixel resolu-
tion, but were otherwise not preprocessed. A total
of about 120 frames (one every 300 frames) in each
sequence were labeled by hand for training and eval-
uation.

Real scenes contain many more object classes than
the 21 evaluated in this paper. It proved impractical
to hand-label more classes for evaluation, but we be-
lieve TextonBoost could readily be extended to many
more classes without major algorithmic changes. In
our conclusions, we discuss this extensibility in more
depth.

3 A Conditional Random Field
Model of Object Classes

We use a conditional random field (CRF) model [29]
to learn the conditional distribution over the class
labeling given an image. The use of a conditional
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Figure 3: The MSRC labeled image database. (a-d) A selection of images in the 21-class database. (e)
The ground truth annotations corresponding to column (d), where each color maps uniquely to an object
class label. All images are approximately 320× 240 pixels.

random field allows us to incorporate texture, lay-
out, color, location, and edge cues in a single unified
model. We define the conditional probability of the
class labels c given an image x as

logP (c|x,θ) =

∑
i

texture−layout︷ ︸︸ ︷
ψi(ci,x; θψ) +

color︷ ︸︸ ︷
π(ci, xi; θπ) +

location︷ ︸︸ ︷
λ(ci, i; θλ)

+
∑

(i,j)∈E

edge︷ ︸︸ ︷
φ(ci, cj ,gij(x); θφ)− logZ(θ,x) (1)

where E is the set of edges in a 4-connected grid struc-
ture, Z(θ,x) is the partition function which normal-
izes the distribution, θ = {θψ,θπ,θλ,θφ} are the
model parameters, and i and j index pixels in the im-
age, which correspond to sites in the graph. Note that

our model consists of three unary potentials which
depend only on one node i in the graph, and one
pairwise potential depending on pairs of neighboring
nodes in the graph. We next define the form of the
four potential functions and their parameters, before
detailing inference and learning.

Texture-layout potentials: The unary texture-
layout potentials ψ are defined as

ψi(ci,x; θψ) = logP (ci|x, i) , (2)

where P (ci|x, i) is the normalized distribution
given by a boosted classifier. This classifier
models the texture, layout, and textural con-
text of the object classes, by combining novel
discriminative features called texture-layout fil-
ters. These features and the boosted classifier
are detailed in Section 4. As we show in the eval-
uation, the texture-layout potentials ψ prove to
be the most powerful term in the CRF.
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Figure 4: Graphical model of the color poten-
tials. (a) The color models use Gaussian Mixture
Models where the mixture coefficients P (k|c) are con-
ditioned on the class label c. (b) For discriminative
inference, the arrows in the graphical model are re-
versed using Bayes rule.

Color potentials: The unary color potentials ex-
ploit the color distribution of objects in a par-
ticular image. Individual objects tend to have
a relatively compact color distribution, and ex-
ploiting an accurate instance color model can
therefore dramatically improve segmentation re-
sults [8]. Note that the texture-layout potentials
also implicitly use color information, but, in con-
trast, model the much broader color distribution
across the whole class.

Our color models are represented as Gaussian
Mixture Models (GMMs) in CIELab color space
where the mixture coefficients depend on the
class label. As illustrated in the graphical model
of Figure 4, the conditional probability of the
color x of a pixel is given by

P (x|c) =
∑
k

P (x|k)P (k|c) (3)

with color clusters (mixture components)

P (x|k) = N (x |µk,Σk) (4)

where µk and Σk are the mean and variance re-
spectively of color cluster k. Notice that the
clusters are shared between different classes, and
that only the coefficients P (k|c) depend on the
class label, making the model more efficient to
learn than a separate GMM for each class.

tree sky roadgrass face

Figure 5: Example location potentials. Note
how, for example, tree and sky pixels tend to occur in
the upper half of images, while road pixels tends to
occur at the bottom of the image. (White indicates
increased frequency).

For pixel xi, a soft assignment4 to the color clus-
ters P (k|xi) ∝ P (xi|k) is computed using a uni-
form prior P (k), and used in the color potentials,
which we define as

π(ci, xi; θπ) = log
∑
k

θπ(ci, k)P (k|xi) . (5)

Learned parameters θπ(ci, k) represent the dis-
tribution P (ci|k). We discuss learning the color
clusters (4) and parameters θπ in Section 3.2.3.

Location potentials: The unary location poten-
tials capture the (relatively weak) dependence
of the class label on the absolute location of the
pixel in the image. The potential takes the form
of a look-up table with an entry for each class
and pixel location:

λi(ci, i; θλ) = log θλ(ci, î) . (6)

The index î is the normalized version of the pixel
index i, where the normalization allows for im-
ages of different sizes: the image is mapped onto
a canonical square and î indicates the pixel po-
sition within this square. Some learned location
potentials are illustrated in Figure 5.

Edge potentials: The pairwise edge potentials φ
have the form of a contrast sensitive Potts model
[10],

φ(ci, cj ,gij(x); θφ) = −θTφgij(x)[ci 6= cj ] , (7)

4A soft color cluster assignment gave a marginal improve-
ment over a hard assignment, at negligible extra cost.
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original image edge potentials

Figure 6: Edge potentials for an example image.
The edge potentials in the CRF explicitly penalize
neighboring nodes in the graph having different class
labels, except where there is a corresponding edge
in the image. Darker pixels in this image represent
stronger edge responses and therefore lower costs.

with [·] the zero-one indicator function. In this
work, the edge feature gij measures the differ-
ence in color between the neighboring pixels, as
suggested by [41],

gij =
[

exp(−β‖xi − xj‖2)
1

]
(8)

where xi and xj are three-dimensional vectors
representing the colors of pixels i and j respec-
tively. Including the unit element allows a bias
to be learned, to remove small, isolated regions.
The quantity β is an image-dependent contrast
term, and is set separately for each image to
(2〈‖xi − xj‖2〉)−1, where 〈·〉 denotes an average
over the image. An example is shown in Figure 6.

We next describe inference in our CRF model, and
then detail in Section 3.2 how the model parameters
are learned.

3.1 Inference in the CRF Model

Given the CRF model and its learned parameters, we
wish to find the most probable labeling c?, i.e. the
labeling that maximizes the conditional probability
of (1). The optimal labeling is found by applying the
alpha-expansion graph-cut algorithm of [10].5

5Our energy is alpha-expansion submodular [25].

The idea of the expansion move algorithm is to
reduce the problem of maximizing a function f(c)
(corresponding to (1)) with multiple labels to a se-
quence of binary maximization problems. These sub-
problems are called ‘alpha-expansions’, and can be
described as follows (see [10] for details). Suppose
that we have a current configuration (set of labels)
c and a fixed label α ∈ {1, . . . , C}, where C is the
number of classes. In the alpha-expansion operation,
each pixel i makes a binary decision: it can either
keep its old label or switch to label α. Therefore, we
introduce a binary vector s ∈ {0, 1}P which defines
the auxiliary configuration c[s] as

ci[s] =

{
ci if si = 0
α if si = 1.

(9)

This auxiliary configuration c[s] transforms the func-
tion f with multiple labels into a function of binary
variables f ′(s) = f(c[s]). Because our edge poten-
tials are attractive, the global maximum of this bi-
nary function can be found exactly using graph cuts.

The expansion move algorithm starts with an ini-
tial configuration c0, given by the mode of the
texture-layout potentials. It then computes optimal
alpha-expansion moves for labels α in some order, ac-
cepting the moves only if they increase the objective
function.6 The algorithm is guaranteed to converge,
and its output is a strong local maximum, character-
ized by the property that no further alpha-expansion
can increase the function f .

3.2 Learning the CRF

Learning the numerous CRF parameters proved dif-
ficult. As described next, MAP training was at first
attempted. Poor results, however, encouraged a more
pragmatic approach based on piecewise training, jus-
tified in Section 3.2.2. The final learning solution is
given in Section 3.2.3.

3.2.1 MAP Training

Ideally, the parameters of the model should be
learned using maximum a-posteriori (MAP) learn-

6The final MAP solution was not in practice sensitive to
the initial configuration or to the order of expansion moves.
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ing [28]. This maximizes the conditional likelihood
of the labels given the training data,

L(θ) =
∑
n

logP (cn|xn,θ) + logP (θ) , (10)

incorporating a prior P (θ) to prevent overfitting.
The maximization of L(θ) with respect to θ can
be achieved using a gradient ascent algorithm, itera-
tively computing the gradient of the conditional like-
lihood with respect to each parameter, ∂

∂θi
L(θ), and

moving up the gradient. This requires the evaluation
of marginal probabilities over the class labels at each
pixel for all training images.

Exact computation of these marginals is sadly in-
feasible, since it would require vast computational
effort to perform the numerous marginalizations of
(1). Instead, we approximated the label marginals by
the mode, the most probable labeling, inferred using
alpha-expansion graph cuts as described above. Al-
ternative, slower but more accurate approximations
such as loopy belief propagation (BP) [37, 52] or vari-
ational methods [3] could also be investigated.

We attempted MAP learning of the several thou-
sand texture-layout potential parameters θψ and the
two edge potential parameters θφ. For the θψ, the
optimization was performed over the a and b param-
eters of the weak learners in (18), initialized at the
values given by boosting.

However, the modal approximation used proved in-
sufficient for estimating such a large number of pa-
rameters. Conjugate gradient ascent did eventually
converge to a solution, but evaluating the learned
parameters against validation data gave poor results
with almost no improvement on unary classification
alone. Additionally, for the learning of the edge po-
tential parameters, the lack of alignment between ob-
ject edges and label boundaries in the roughly labeled
training set forced the learned parameters to tend to-
ward zero.

3.2.2 Piecewise Training

Given these problems with directly maximizing the
conditional likelihood, we turned to a more pragmatic
solution, based on the piecewise training method of

[44]. The terms in the CRF are first trained sep-
arately, and then recombined with powers (weight-
ing functions) that alleviate problems due to over-
counting.

Piecewise training involves dividing the CRF
model into pieces corresponding to the different terms
in (1). Each of these pieces is then trained indepen-
dently, as if it were the only term in the conditional
model. For example, if we apply piecewise training
to the CRF model of Figure 7(a), the parameter vec-
tors θφ, θψ and θπ are learned by maximizing the
conditional likelihood in each of the three models of
Figure 7(b). In each case, only the factors in the
model that contain the relevant parameter vector are
retained.

As discussed in [44], this training method mini-
mizes an upper bound on the log partition function,
as follows: if we define the logarithm of the partition
function z(θ,x) = logZ(θ,x) and index the terms in
the model by r, then

z(θ,x) ≤
∑
r

zr(θr,x) (11)

where θr are the parameters of the rth term and
zr(θr) is the partition function for a model containing
only the rth term. Replacing z(θ,x) with

∑
r zr(θr)

in (1) then gives a lower bound on the conditional
likelihood. It is this bound which is maximized dur-
ing piecewise learning.

Unfortunately, this bound can be loose, especially
if the terms in the model are correlated. In this
case, performing piecewise parameter training leads
to over-counting during inference in the combined
model. To understand this, consider the case where
we duplicate a term of the model ψ(θψ), so that there
is an additional term ψ(θ′ψ) which has the same func-
tional form but new parameters θ′ψ. A model with
duplicated terms is shown in Figure 7(c). As the du-
plicate terms have the same form and are based on
the same features, these terms are perfectly corre-
lated.

Piecewise training will learn that θψ and θ′ψ are
the same and equal to the parameters θold

ψ learned
for this term in the original model. Since the log
potential function logψ is linear in the parameters,
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Figure 7: Piecewise training of the CRF parameters. (a) The factor graph (see e.g. [7]) for a simplified
CRF model. Each black square represents a term in (1) and each circle represents a latent variable. Terms
are connected to all variables that they depend on. (b) When piecewise training is applied to the CRF model
of (a), the parameters θφ, θψ and θπ are learned by maximizing conditional likelihood in the top, middle
and bottom models respectively. In each model, only the terms relating to the parameter being learned are
retained. (c) A model in which the term ψ has been duplicated. In this case, piecewise training will learn
model parameters which are twice those learned in the original non-duplicated model. Hence, piecewise
training will lead to over-counting errors when terms in the model are correlated. See text for more details.

the duplicate model will be equivalent to the origi-
nal model but with θnew

ψ = 2θold
ψ , i.e. twice the cor-

rect value. To offset this over-counting effect and
recover the original parameters, it would be neces-
sary to weight the logarithm of each duplicate term
by a factor of 0.5, or equivalently raise the term to
the power of 0.5.

It is difficult to assess analytically the degree of
over-counting introduced by dependencies between
the different terms in our CRF model. Instead, we
introduce scalar powers for each term and optimize
these powers discriminatively using holdout valida-
tion. We found that it was only necessary to in-
troduce powers for the location and color potentials.
This use of weights means that unfortunately we are
no longer able to claim the rigorous bound on the par-
tition function given by piecewise training. Nonethe-
less, we introduce them for pragmatic reasons since
they give significant improvement in performance and
consist of only a few additional parameters which can
tractably be chosen by optimizing on holdout data.

3.2.3 Learning the Potentials

Piecewise training with powers is therefore used to
train the parameters of each of the CRF potentials
separately as follows.

Texture-layout potential parameters: The
texture-layout potential parameters are learned
during boosting, described in Section 4.

Color potential parameters: The color poten-
tials are learned at test time for each image inde-
pendently, using the approach of [41]. First, the
color clusters (4) are learned in an unsupervised
manner using K-means. An iterative algorithm,
reminiscent of EM [12], then alternates between
inferring class labeling c? (Section 3.1), and up-
dating the color potential parameters as

θπ(ci, k) =
(∑

i[ci = c?i ]P (k|xi) + απ∑
i P (k|xi) + απ

)wπ

,

(12)
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which counts the class frequencies for each clus-
ter. On the first iteration, inference is performed
without the color potentials. In practice, the
Dirichlet prior parameter απ was set to 0.1, the
power parameter was set as wπ = 3, and fifteen
color components and two iterations gave good
results. Because we are training in pieces, the
color parameters do not need to be learned for
the training set.

Location potential parameters: We train the lo-
cation potential parameters by maximizing the
likelihood of the normalized model containing
just that potential and raising the result to a
fixed power wλ to compensate for over-counting.
This corresponds to

θλ(c, î) =
(
Nc,̂i + αλ

Nî + αλ

)wλ

(13)

where Nc,̂i is the number of pixels of class c at
normalized location î in the training set, Nî is
the total number of pixels at location î and αλ
is a small integer (we use αλ = 1) corresponding
to a weak Dirichlet prior on θλ. The parameter
wλ was changed between the different datasets;
the relevant values are given in Section 5.

Edge potential parameters: The values of the
two contrast-related parameters were manually
selected to minimize the error on the validation
set.

4 Boosted Learning of Texture,
Layout, and Context

The most important term in the CRF energy is the
unary texture-layout potential ψ (2), which is based
on a novel set of features which we call texture-layout
filters. These features are capable of jointly captur-
ing texture, spatial layout, and textural context. In
this section, we describe texture-layout filters and the
boosting process used for automatic feature selection
and learning the texture-layout potentials.

4.1 Textons

Efficiency demands a compact representation for the
range of different appearances of an object. For this
we use textons [34] which have been proven effective
in categorizing materials [47] as well as generic object
classes [49]. The term texton was coined by [23] for
describing human textural perception, and is some-
what analogous to phonemes used in speech recogni-
tion.

The process of textonization is illustrated in Fig-
ure 8, and proceeds as follows. The training images
are convolved with a 17-dimensional filter-bank at
scale κ.7 The 17D responses for all training pixels
are then whitened (to give zero mean and unit covari-
ance), and an unsupervised clustering is performed.
We employ the Euclidean-distance K-means cluster-
ing algorithm, which can be made dramatically faster
by using the techniques of [15]. Finally, each pixel in
each image is assigned to the nearest cluster center,
producing the texton map. We will denote the texton
map as T where pixel i has value Ti ∈ {1, . . . ,K}.
Note that for efficiency one can use the kd-tree al-
gorithm [4] to perform the nearest neighbor search;
without any approximation, textonization using kd-
trees with leaf-node bins containing 30 cluster centers
gave a speed up of about 5 times over simple linear
search.

4.2 Texture-Layout Filters

Each texture-layout filter is a pair (r, t) of an im-
age region, r, and a texton t. Region r is defined
in coordinates relative to the pixel i being classified.
For efficiency, we only investigate rectangular re-
gions, though an arbitrary region could be used. For
simplicity, a set R of candidate rectangles are cho-
sen at random, such that their top-left and bottom-

7The choice of filter-bank is somewhat arbitrary, as long as
it is sufficiently representative. We use the same filter-bank
as [49], which consists of Gaussians at scales κ, 2κ and 4κ, x
and y derivatives of Gaussians at scales 2κ and 4κ, and Lapla-
cians of Gaussians at scales κ, 2κ, 4κ and 8κ. The Gaussians
are applied to all three color channels, while the other filters
are applied only to the luminance. The perceptually uniform
CIELab color space is used. This filter-bank was determined
to have full rank in a singular-value decomposition (see [22]),
and therefore no redundant elements.
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Figure 8: The process of image textonization. An input image is convolved with a filter-bank. The
filter responses for all pixels in training images are clustered. Finally, each pixel is assigned a texton index
corresponding to the nearest cluster center to its filter responses.

right corners lie within a fixed bounding box covering
about half the image area.8 As illustrated in Figure 9,
the feature response at location i is the proportion of
pixels under the offset region r + i that have texton
index t

v[r,t](i) =
1

area(r)

∑
j∈(r+i)

[Tj = t] . (14)

Outside the image boundary there is zero contribu-
tion to the feature response.

The filter responses can be efficiently computed
over a whole image with integral images [48]. Fig-
ure 10 illustrates this process: the texton map is sepa-
rated into K channels (one for each texton) and then,
for each channel, a separate integral image is calcu-
lated. This can be thought of as an integral histogram
[38] with one bin for each texton. The integral im-
ages can later be used to compute the texture-layout
filter responses in constant time: if T̂ (t) is the inte-
gral image of T for texton channel t, then the feature
response is computed as:

v[r,t](i) = T̂ (t)
rbr

− T̂ (t)
rbl

− T̂ (t)
rtr + T̂ (t)

rtl
(15)

where rbr, rbl, rtr and rtl denote the bottom right,
8For the evaluations in this paper, the bounding box was

±100 pixels in x and y. This allows the model to exploit
textural context over a long range, despite the CRF having
connections only to pixel-wise neighbors. The CRF is still
very important however: it allows us additionally to exploit
the edge, color, and location potentials to achieve near pixel-
perfect segmentation.

Figure 10: Separating the texton map into mul-
tiple channels. The texton map of an image, con-
taining K textons, is split into K channels. An in-
tegral image [48] is built for each channel and used
to compute texture-layout filter responses in constant
time.

bottom left, top right and top left corners of rectangle
r.

Texture-layout filters, as pairs of rectangular re-
gions and textons, can be seen as an extension of the
features used in [48]. Our features are sufficiently
general to allow us to automatically learn layout and
context information, in contrast to techniques such as
shape context [5] which utilize a hand-picked descrip-
tor. Similar features were proposed in [13], although
textons were not used, and responses were not aggre-
gated over a spatial region. Figure 9 illustrates how
texture-layout filters are able to model textural con-
text, and a toy example in Figure 11 demonstrates

11



Figure 9: Calculating feature responses and capturing textural context. (a, b) An image and its
corresponding texton map (colors map uniquely to texton indices). (c) Texture-layout filters are defined
relative to the point i being classified (yellow cross). In this first example feature, rectangular region r1
is paired with texton t1 (mapping to the blue color). (d) A second feature where region r2 is paired with
texton t2 (green). To improve readability, (c) and (d) are shown double size compared with (e) and (f). (e)
The response v[r1,t1](i) of the first feature is calculated at three positions in the texton map (magnified). In
this example v[r1,t1](i1) ≈ 0, v[r1,t1](i2) ≈ 1, and v[r1,t1](i3) ≈ 1

2 . (f) For the second feature (r2, t2), where t2
corresponds to ‘grass’, our algorithm can learn that points i (such as i4) belonging to sheep regions tend to
produce large values of v[r2,t2](i), and hence can exploit the contextual information that sheep pixels tend
to be surrounded by grass pixels.

12



Figure 11: Capturing local layout information. This toy example illustrates how our texture-layout
filters capture the layout of textons. (a) Input texton map. (b) Input binary ground truth label map
(foreground=white, background=black). (c) Example texture-layout filters (r1, t1) and (r2, t2). (d) The
feature response image v[r1,t1](i) shows a positive response within the foreground region and zero in the
background. An identical response image is computed for feature (r2, t2). Boosting would pick both these
discriminative features. (e) A test input with textons t1 and t2 in the same relative position as that of
training. (f) Illustration that the two feature responses reinforce each other. (e’) A second test with t1 and
t2 swapped. (f ’) The summed feature responses do not reinforce, giving a weaker signal for classification.
Note that (f) and (f ’) are illustrative only, since boosting actually combines thresholded feature responses,
though the principle still applies.
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how texture-layout filters model layout.

4.3 Variations on Texture-Layout Fil-
ters

We investigated other region shapes r beyond simple
rectangles. In particular we evaluated rectangles ro-
tated by 45◦, and pairs of rectangles with the texton
responses either added (v[r1,t](i) + v[r2,t](i)) or sub-
tracted (v[r1,t](i) − v[r2,t](i)). However, despite con-
siderable extra computational expense (since these
new combinations of features must be tested at each
round of boosting; see below), the more complicated
features did not produce noticeably better results.
We believe this to be due to overfitting.

We also tried modeling appearance using the
learned visual words of [49]. Unsurprisingly, the clas-
sification results were worse than using the raw K-
means clusters, since the learning algorithm in [49]
performs clustering so as to be invariant to the spa-
tial layout of the textons – exactly the opposite of
what is required here.

4.3.1 Texton-Dependent Layout Filters

We propose a further texton-dependent layout filter.
Some classes may have large within-class textural dif-
ferences, but a repeatable layout of texture within
a particular object instance. As a concrete exam-
ple, shirts have many different colors and textures,
but all have roughly the same shape, and a particu-
lar shirt will often have a relatively uniform texture.
The texton-dependent layout filters capture this in-
tuition as follows. A texton-dependent layout filter
acts identically to standard texture-layout filters, ex-
cept that it uses the texton at pixel i being classified,
Ti, rather than a particular learned texton. The fea-
ture response is therefore calculated as v[r,Ti](i) (cf.
(14)). The addition of this texton-dependent layout
filter is evaluated in Section 5.3.

4.3.2 Separable Texture-Layout Filters

For speed critical applications, e.g. processing video
sequences or large images, we suggest a final varia-
tion. As illustrated in Figure 12, separable texture-

layout filters use spans instead of rectangles: horizon-
tal spans count the proportion of textons agreeing in
texton index that lie in a horizontal strip relative to
the y coordinate being classified; vertical spans do
similarly for a vertical strip.

Two boosted classifiers are then trained (see be-
low) to act on the two separate Cartesian axes, using
as target values the set of all classes present in col-
umn x or row y. A horizontal classifier P (cx|x,θx),
representing the class probabilities for each column,
and a vertical classifier P (cy|x,θy), representing the
class probabilities for each row, are combined as the
outer product

P (c|x,θ) ≈ P (cx|x,θx)× P (cy|x,θy) . (16)

This factorized approximation is clearly less power-
ful than learning the full joint classifier, but as shown
in Section 5.4, gives acceptable quantitative perfor-
mance and a considerable speed-up.

4.4 Learning Texture-Layout Filters
using Joint Boost

We employ an adapted version of the Joint Boost al-
gorithm [45], which iteratively selects discriminative
texture-layout filters as ‘weak learners’, and combines
them into a powerful classifier P (c|x, i), used by the
texture-layout potentials ψ (2). Joint Boost shares
each weak learner between a set of classes C, so that
a single weak learner classifies for several classes at
once. This allows for classification with cost sub-
linear in the number of classes, and leads to improved
generalization [45].

The learned ‘strong’ classifier is an additive model
of the formH(c, i) =

∑M
m=1 h

m
i (c), summing the clas-

sification confidence of M weak learners. The confi-
dence value H(c, i) can be reinterpreted as a proba-
bility distribution over c using the soft-max or multi-
class logistic transformation [18] to give the texture-
layout potentials:

P (c|x, i) ∝ expH(c, i) . (17)

Each weak learner is a decision stump based on
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Figure 12: Separable texture-layout filters. For
speed, separable texture-layout filters may be used.
Horizontal spans are defined relative to the y coor-
dinate being classified, and vertical spans relative to
the x coordinate. The response of separable texture-
layout filter (r, t) is computed as the proportion of
pixels within the span r that have texton index t
(cf. Figure 9). The classifiers for the two separate
axes are combined as (16). In this example, separable
texture-layout filter (r1, t1) uses the presence of tex-
ton t1 in span r1 as evidence that sheep is present at
coordinate x. Feature (r2, t2) exploits textural con-
text, looking for regions of grass texton t2 in span r2
above the sheep at coordinate y.

feature response v[r,t](i) of the form

hi(c) =
{
a[v[r,t](i) > θ] + b if c ∈ C
kc otherwise, (18)

with parameters (a, b, {kc}c/∈C , θ, C, r, t). The region r
and texton index t together specify the texture-layout
filter feature, and v[r,t](i) denotes the corresponding
feature response at position i. For those classes that
share this feature (c ∈ C), the weak learner gives
hi(c) ∈ {a + b, b} depending on the comparison of
v[r,t](i) to a threshold θ. For classes not sharing the
feature (c /∈ C), the constant kc ensures that unequal
numbers of training examples of each class do not
adversely affect the learning procedure.

An excellent detailed treatment of the learning al-
gorithm is given in [45], but we briefly describe it
here for completeness. Each training example i (a
pixel in a training image) is paired with a target value
zci ∈ {−1,+1} (+1 if example i has ground truth class

c, −1 otherwise) and assigned a weight wci specifying
its classification accuracy for class c afterm−1 rounds
of boosting. Round m chooses a new weak learner by
minimizing an error function Jwse incorporating the
weights:

Jwse =
∑
c

∑
i

wci (z
c
i − hmi (c))2. (19)

The training examples are then re-weighted

wci := wci e
−zc

ih
m
i (c) (20)

to reflect the new classification accuracy and main-
tain the invariant that wci = e−z

c
iHi(c). This proce-

dure emphasizes poorly classified examples in subse-
quent rounds, and ensures that over many rounds, the
classification for each training example approaches
the target value.

Minimizing the error function Jwse unfortunately
requires an expensive brute-force search over the pos-
sible weak learners hmi to find the optimal combina-
tion of the sharing set N , features (r, t), and thresh-
olds θ. However, given these parameters, a closed
form solution does exist for a, b and {kc}c/∈N :

b =
∑
c∈N

∑
i w

c
i z
c
i [v(i, r, t) ≤ θ]∑

c∈N
∑
i w

c
i [v(i, r, t) ≤ θ]

, (21)

a+ b =
∑
c∈N

∑
i w

c
i z
c
i [v(i, r, t) > θ]∑

c∈N
∑
i w

c
i [v(i, r, t) > θ]

, (22)

kc =
∑
i w

c
i z
c
i∑

i w
c
i

. (23)

We conclude our discussion of the learning algo-
rithm with important and novel insights into efficient
implementation of the Joint Boost algorithm.

Weak learner optimization: Several optimiza-
tions are possible to speed up the search for
the optimal weak learner hmi . Since the set
of all possible sharing sets is exponentially
large, we employ the quadratic-cost greedy
approximation of [45]. To speed up the min-
imization over features we employ a random
feature selection procedure, described shortly.
Optimization over θ ∈ Θ for a discrete set Θ can
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be made efficient by careful use of histograms
of weighted feature responses: by treating Θ
as an ordered set, histograms of values v[r,t](i),
weighted appropriately by wci z

c
i and wci , are

built over bins corresponding to the thresholds
in Θ; these histogram are accumulated to give
the thresholded sums necessary for the direct
calculation of a and b in (21) and (22) for all
values of θ at once.

Random feature selection: Exhaustive search
over all features (r, t) at each round of boosting
is prohibitive. For efficiency therefore, our
algorithm examines only a randomly chosen
fraction ζ � 1 of the possible features [2]. All
results in this paper use ζ = 0.003 so that,
over several thousand rounds, there is high
probability of testing all features at least once,
and hence good features should eventually get
selected.

To analyze the effect of random feature selec-
tion, we compared the results of boosting on a
toy data set of ten images with |R| = 10 can-
didate regions, and K = 400 textons. The re-
sults in Figure 13 show that random feature se-
lection improves the training time by two orders
of magnitude whilst having only a small impact
on the training error. Additionally, although we
have no formal experiments to prove this, our ex-
perience with randomization has been that de-
creasing ζ occasionally gives an overall gain in
test performance. This perhaps suggests that
randomization is not only speeding up learning,
but also improving generalization by preventing
overfitting to the training data. This effect was
also observed in [53].

Sub-sampling: The considerable memory and pro-
cessing requirements of this procedure make
training with an example at every pixel imprac-
tical. Hence we take training examples i only
at pixels lying on a ∆ss × ∆ss grid (∆ss = 3
for the Corel and Sowerby datasets, which con-
tain smaller images, and ∆ss = 5 for the other
datasets with larger images). The texture-layout
filter responses are still calculated at full resolu-
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Figure 13: Effect of random feature selection on
a toy example. (a) Training error as a function of
the number of rounds (axis scales are unimportant).
(b) Training error as a function of time. Random-
ization makes learning two orders of magnitude faster
here, with very little increase in training error for the
same number of rounds. The initial peak in error is
due to the imbalance in the number of training ex-
amples for each class; on the log scale this appears
quite significant, but in fact affects at most the first
five rounds of boosting.
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tion to allow for per-pixel accurate classification
at test time; we simply train from fewer exam-
ples.

One consequence of this sub-sampling is that a
small degree of shift-invariance is learned. On its
own, this might lead to inaccurate segmentation
at object boundaries. However, when applied
in the context of the CRF, the edge and color
potentials come into effect to locate the object
boundary accurately.

Forests of boosted classifiers: A further possible
efficiency, though not evaluated here, is the use
of a forest of classifiers. In a similar manner to
[1, 32], several texture-layout potential classifiers
can be trained on random subsets of the image
data and combined by averaging:

P (c|x, i) =
1
W

W∑
w=1

P [w](c|x, i) . (24)

This allows infeasibly large datasets to be par-
titioned into smaller, manageable subsets, and
has the potential to improve the generalization
ability of the texture-layout potentials.

5 Results and Comparisons

In this section we investigate the performance of our
system on several challenging datasets, and compare
our results with existing work. We first investigate
the effect of different aspects of the model, and then
give the full quantitative and qualitative results.

5.1 Boosting Accuracy

In Figure 14 we illustrate how boosting gradually se-
lects new texture-layout filters to improve classifica-
tion accuracy. Initially, after 30 rounds of boosting
(i.e. 30 texture-layout filters), a very poor classifica-
tion is given, with low confidence. As more texture-
layout filters are added, the classification accuracy
improves greatly, and after 2000 rounds a very accu-
rate classification is given. Note that this illustrates
only the texture-layout potentials, and not the full
CRF model.

Figure 15(a) illustrates the effect of training
the texture-layout potentials using boosting on the
MSRC dataset. As expected, the training error Jwse

(19) decreases non-linearly as the number of weak
learners increases. Furthermore, Figure 15(b) shows
the accuracy of classification with respect to the val-
idation set, which after about 5000 rounds flattens
out to a value of approximately 73%. The accuracy
against the validation set is measured as the pixel-
wise segmentation accuracy, in other words the per-
centage of pixels that are assigned the correct class
label.
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Figure 15: Training and validation error. (a)
Training error, and (b) accuracy on the validation
set, as functions of the number of weak learners.
While the training error decreases almost to zero, the
validation set accuracy rises to a maximum of about
73%.
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Figure 14: Adding more texture-layout filters improves classification. Top row: Unseen test
images and the corresponding ground truth. Lower three rows: classification output of the texture-layout
potentials trained by boosting, as more texture-layout filters are used. The three rows show the most likely
label maps and the confidence maps with 30, 1000 and 2000 weak learners. Colors represent class labels (see
Figure 18 for color key). White represents low confidence, black high confidence, computed as the entropy
of the inferred class label distribution.

5.2 The Effect of Different Model Po-
tentials

Figure 16 shows results for variations of the CRF
model (1) with different potentials included. The pa-
rameter settings are given below in Section 5.4. It is
evident that imposing spatial coherency (c) as well
as an image dependent color model (d) improves the
results considerably.

The percentage accuracies in Figure 16 (evaluated
over the whole dataset) show that each term in our
model captures essential information. Note that the
improvement given by the full model over just the
texture-layout potentials, while numerically small,

corresponds to a significant increase in perceived ac-
curacy (compare (b) with (d)), since the object con-
tour is more accurately delineated. However, these
results do suggest that, depending on the applica-
tion, the texture-layout potentials may be sufficient
without the full and relatively expensive CRF infer-
ence. One such application could be multi-class ob-
ject tracking, and others are presented in Section 6.

5.3 Texton-Dependent Layout Filters

As described in Section 4.3.1, we proposed texton-
dependent layout filters. An experiment was per-
formed on the Corel dataset with 1000 rounds of
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(a) (b) 69.6% (c) 70.3% (d) 72.2%

Figure 16: Effect of different model potentials. The original input image (a), and the result using only
the texture-layout potentials ψ (b), with no explicit spatial coherency; at the boundary between blue and
green, darker pixels correspond to higher entropy. (c) Results for the CRF model without color modeling,
i.e. ψ + λ+ φ, and (d) for the full CRF model (1). Segmentation accuracy figures are given over the whole
dataset. Observe the marked improvement in perceived segmentation accuracy of the full model over the
texture-layout potentials alone, despite a seemingly small numerical improvement.

boosting, κ = 0.45, and using just the texture-layout
potentials. We compared the performance on the
test set of models trained (i) using just standard
texture-layout filters, and (ii) using both standard
and texton-dependent layout filters. The graph in
Figure 17 plots the resulting pixel-wise segmentation
accuracy of the boosted classifier as a function of K,
the number of textons. As one would expect, the
extra flexibility accorded by the additional texton-
dependent layout filters gave a small but significant
improvement. Also of note is the definite peak in per-
formance as a function of K: with too many textons
the boosting algorithm starts to overfit.

5.4 MSRC 21-Class Database Results

This section presents results of object class recogni-
tion and image segmentation for the full CRF model
on the MSRC 21-class database. Our unoptimized
implementation takes approximately three minutes
to segment each test image. The majority of this
time is spent evaluating the texture-layout potentials
P (c|x, i), involving a few thousand weak-classifier
evaluations. Sub-sampling at test time by evaluat-
ing the texture-layout potentials on a ∆ss ×∆ss grid
(with ∆ss = 5) produces results almost as good in
about twenty-five seconds per test image.

Training the model took about 42 hours for 5000
rounds of boosting on the 21-class training set of 276
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Figure 17: Performance of texton-dependent
layout filters. Performance against a test set in
terms of pixel-wise segmentation accuracy is plotted
against the number of textons, K. See text for ex-
planation.
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images on a 2.1 GHz machine with 2GB memory.9

Without random feature selection, the training time
would have been around 14000 hours.

Example results of simultaneous recognition and
segmentation are shown in Figures 1 and 18. These
show both the original photographs and the color-
coded output labeling. Note the quality of both
recognition and segmentation. For instance, despite
large occlusions, bicycles are recognized and seg-
mented correctly, and large variations in the appear-
ance of grass and road are correctly modeled.

We present in Figure 19 some results where per-
formance is poor, and highlight a few of examples in
order to better understand the behavior of our algo-
rithm. In (a) and (c), high segmentation accuracy
is achieved due to the strong color model π in the
CRF, but the semantic class labels are incorrect. In
(b) a large wooden boat was incorrectly classified as
tree, although the segmentation is not bad. In (d) the
dog’s shadow has been classified as building. Perhaps
an explicit treatment of shadow would improve prob-
lems such as this. Finally, in (g) the model infers a
bird on water. Examining the training data we ob-
serve several examples of white birds on water, but
no white boats, suggesting that textural context has
been overfit.

5.4.1 Quantitative Evaluation

Figure 20 shows the confusion matrix obtained by
applying our algorithm to the test set. Accuracy
values in the table are computed as the percentage
of image pixels assigned to the correct class label,
ignoring pixels labeled as void in the ground truth.
The overall classification accuracy is 72.2%; random
chance would give 1/21 = 4.76%, and thus our re-
sults are about 15 times better than chance. For
comparison, the boosted classifier alone gives an over-
all accuracy of 69.6%, thus the color, edge and loca-
tion potentials increase the accuracy by 2.6%. This
seemingly small numerical improvement corresponds

9Simple optimizations subsequent to these experiments
have reduced test time to under 1 second per image for the
texture-layout potentials, and 5 seconds per image for the CRF
inference. Training time was also reduced drastically to about
1 hour.

to a large perceptual improvement (cf. Figure 16).
The parameter settings, learned against the valida-
tion set, were M = 5000 rounds, K = 400 textons,
|R| = 100 candidate regions, edge potential param-
eters θφ = [45, 10]T , filter-bank scale κ = 1.0, and
location potential power wλ = 0.1.

The greatest accuracies are for classes which have
low visual variability and many training examples
(such as grass, book, tree, road, sky and bicycle)
whilst the lowest accuracies are for classes with high
visual variability and fewer training examples (for ex-
ample boat, chair, bird, dog). We expect more train-
ing data and the use of features with better lighting
invariance properties to improve the recognition ac-
curacy for these difficult classes considerably.

Let us now focus on some of the largest mistakes
in the confusion matrix, to gather some intuition on
how the algorithm may be improved. Structured ob-
jects such as airplanes, chairs, signs, and boats are
sometimes incorrectly classified as buildings. This
kind of problem may be ameliorated using a parts-
based modeling approach, such as [51]. For exam-
ple, detecting windows and roofs should resolve many
such ambiguities. Furthermore, objects such as cows,
sheep, and chairs, which in training are always seen
standing on grass, can be confused with grass. This
latter effect is partially attributable to inaccuracies
in the manual ground truth labeling, where pixels
are often mislabeled near object boundaries.

5.4.2 Separable Texture-Layout Filters

We suggested the use of separable texture-layout po-
tentials in Section 4.3.2. We compare against the
joint model, where we recall that 69.6% pixel-wise
segmentation accuracy was achieved. Using the sep-
arable model, we obtain the remarkably accurate
64.9%. Part of the success is due to the separable
potentials performing well in larger regions of classes
such as sky and grass. Using the separable potentials,
there is a very noticeable speed-up of over 5 times for
both training and test time. With optimizations, this
speed improvement could be increased dramatically
since the critical path of the algorithm has been re-
duced from O(NM) to O(N + M) for an N × M
image. Separable texture-layout potentials also re-
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Figure 18: Example results on the MSRC 21-class database. Above, test images with inferred color-
coded output object-class maps. Below, color-coding legend for the 21 object classes. For clarity, textual
labels have also been superimposed on the resulting segmentations. Note that all images were processed
using the same learned model. Further results from this system are given in Figure 1.
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Figure 19: Examples where recognition works less well. Input test images with corresponding color-
coded output object-class maps. Even when recognition fails, segmentation may still be quite accurate.

quires considerably less memory during training, and
so more training data could be employed if available.

5.4.3 The Influence of Color and Luminance

We performed an experiment on a subset of the
MSRC 21-class test set to investigate the importance
of color and luminance. Three boosted classifiers
with M = 1000 rounds were learned using images
textonized using different filter-banks: (i) the orig-
inal filter-bank that combines color and luminance
information, (ii) the subset of the filter-bank that is
applied only to the luminance channel, and (iii) the
subset of the filter-bank that is applied only to the
a and b color channels. All other parameters were
kept the same. The pixel-wise segmentation accu-
racies obtained are as follows: 70.1% using the full
filter-bank (both color and luminance), 61.4% using
only color, and 50.9% using only luminance. These

results suggest that, in this dataset, textural informa-
tion from the color channels plays a more important
role than from the luminance channel in accurately
segmenting the images. However, information from
the luminance channel gives additional strong clues
to further improve results.

5.5 Comparison with Winn et al.

To assess how much the layout and context modeling
help with recognition we compared the accuracy of
our system against the framework of [49], i.e. given
a manually selected region, assign a single class label
to it and then measure classification accuracy. On
the 21-class database, our algorithm achieves 70.5%
region-based recognition accuracy, beating [49] which
achieves 67.6% using 5000 textons and their Gaussian
class models. Moreover, the significant advantages
of our proposed algorithm are that: (i) no regions
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Figure 20: Accuracy of segmentation for the 21-class database. Confusion matrix with percentages
row-normalized. The overall pixel-wise accuracy is 72.2%.

need to be specified manually, and (ii) a pixel-wise
semantic segmentation of the image is obtained.

5.6 Comparison with He et al.

We also compared against [19] on their Corel and
Sowerby databases, and give results in Table 1 and
Figure 21. For both models we show the results of
the unary classifier alone as well as results for the
full model. For the Sowerby database the parameters
were set as M = 6500, K = 250, κ = 0.7, θφ =
[10, 2]T , and wλ = 2. For the Corel database, all
images were first automatically color and intensity
normalized, and the training set was augmented by
applying random affine intensity changes to give the
classifier improved invariance to illumination. The
parameters were set as M = 5000, K = 400, κ = 0.7,
θφ = [20, 2]T , and wλ = 4.

Our method gives comparable or better (with only
unary classification) results than [19]. However,

the careful choice of efficient features and learning
techniques, and the avoidance of inefficient Gibbs
sampling, enables our algorithm to scale much bet-
ter with the number of training images and object
classes. Incorporating semantic context information
as in [19] is likely to further improve our performance.

In the Corel database, the ground truth labeling
between the ground and vegetation classes was often
quite ambiguous to human observers. The confusion
matrix of our results also bore this out, and merg-
ing these two classes results in significantly improved
performance: 75.9% with just the texture-layout po-
tentials, and 82.5% with the full CRF model.

5.7 Television Sequences

A separate model was trained for each of the nine
television video sequences. In each sequence, 120
frames spaced equally in time were selected, and di-
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Accuracy Speed (Train/Test)
Sowerby Corel Sowerby Corel

TextonBoost – full CRF model 88.6% 74.6% 20 m / 1.1 s 30 m / 2.5 s
TextonBoost – texture-layout potentials only 85.6% 68.4%
He et al. – mCRF model 89.5% 80.0% 24 h / 30 s 24 h / 30 s
He et al. – unary classifier only 82.4% 66.9%

Table 1: Comparison of segmentation/recognition accuracy and efficiency. Timings for [19] are
from correspondence with authors. Training times are for the whole training set, test times are per image.

Figure 21: Example results on the Corel and Sowerby databases. A different set of object class
labels and thus different color-coding is used here. Textual labels are superimposed for clarity.

vided randomly in half for training and testing.10

The training data was combined with the MSRC
training data, and the texture-layout potentials were
learned by boosting. Only the texture-layout po-
tentials, as the most significant part of the model,
were used for evaluation. For more polished and vi-
sually pleasing results, the full CRF inference could
be run, although as illustrated in Figure 16 only a
small quantitative improvement would be seen. The
parameters were set as M = 700, K = 400, and
κ = 0.7.

Example results together with the overall segmen-
tation accuracies are given in Figure 22. The numbers
show considerable accuracy across very varied sets of

10Given the large time spacing (approximately 10 seconds
between frames), we believe training and testing frames to be
reasonably independent. With more hand-labeled data, using
perhaps different episodes of the same television shows, an
improved experiment on the generalization performance could
be attempted.

images, with on average two-thirds of all pixels be-
ing correctly classified into one of 21 classes, indicat-
ing significant potential for the application of Tex-
tonBoost to automatic analysis of video sequences.
As can be seen from the images, the technique works
well across very varied sequences. One slight limita-
tion is that the system tends to get the larger objects
in the scene classified correctly, but smaller objects
such as hands can get missed off. This is at least par-
tially due to the filter-bank used during the textoniza-
tion: the width of the Gaussian blur tends to over-
smooth small objects. The particularly strong result
on the soccer sequence is perhaps slightly skewed by
the large amount of grass present in the images.

6 Applications

The TextonBoost system has been applied in several
exciting new areas.
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Figure 22: Example results on the television sequences. (a) Test images (blurred out for copyright
reasons). (b) The hand-labeled ground truth. (c) The most likely labels inferred by the texture-layout
potentials. (d) The entropy of the inferred class label distributions: white is high entropy, black low
entropy. Class color key is given right, and pixel-wise segmentation accuracies for each dataset are shown.
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AutoCollage: The work of [40] takes a collection of
images and automatically blends them together
to create a visually pleasing collage; by choos-
ing image regions of particular interest (such as
faces), detected through semantic segmentation,
a more interesting collage could be generated.
Additionally, images could be placed in suitable
regions of the collage, so that for example, im-
ages with sky might be placed towards the top
of the image.

Semantic Photo Synthesis: In [21], the user
draws onto a canvas both particular objects (the
Taj Mahal, for example) and regions assigned
a particular semantic label (sky, water, car,
etc.). The system then automatically queries
a database containing images labeled by Tex-
tonBoost, to find relevant images that match
the user-drawn query. Finally, it creates novel
photo-realistic images by stitching together the
image fragments that matched the individual
parts of the query.

Interactive Semantic Segmentation: An opti-
mized implementation of our system could be
used as a complete interactive semantic seg-
mentation tool, as demonstrated in Figure 23.
With only one user click on the incorrectly
labeled part of the building, a correct and
accurate segmentation was achieved. Internally,
the unary potential of pixels within a small
radius of the clicked pixel is set to infinity for
its initial label, tree. The result of the graph
cut optimization for this new CRF energy is
the correct labeling. A further speed-up can
potentially be achieved by re-using the flow of
the previous solution [10, 24].

Interactive Image Editing: We suggest one final
exciting application: interactive image editing.
Imagine that TextonBoost produces a perfect se-
mantic segmentation of an image. It is then pos-
sible to tailor image editing tools presented to
the user according to the semantic type: for ex-
ample, tools for editing the sky could allow the
user to tint it more blue or increase the contrast;
for foreground objects, such as the person in Fig-

Figure 23: Interactive object labeling. Left: in-
put test image. Middle: for this example, the auto-
matic recognition failed to classify the building cor-
rectly. The user then clicks the mouse at the blue
cross, indicating that this part of the image is cur-
rently misclassified. Right: inference is performed
again with the additional user constraints. The build-
ing is now correctly classified and the segmentation
is improved.

ure 24, options could be given to automatically
erase the object from the image (using image
in-painting, e.g. [11]), change the focus of back-
ground, fix red eye, or adjust the color balance
just for that object.

7 Conclusions

This paper has presented a novel discriminative
model for efficient and effective recognition and se-
mantic segmentation of objects in images. We have:
(i) introduced new features, texture-layout filters,
which simultaneously capture texture, layout, and
context information, and shown that they outperform
other existing techniques for this problem; (ii) trained
our model efficiently by exploiting both randomized
boosting and piecewise training techniques; and (iii)
achieved efficient labeling by a combination of inte-
gral image processing and feature sharing. The re-
sult is an algorithm which accurately recognizes and
segments a large number of object classes in pho-
tographs much faster than existing systems. We have
performed a thorough evaluation of the system on
several varied image databases and have achieved ac-
curate and competitive results.

Our comparison of the different terms in the CRF
model suggests that the texture-layout potentials,
based on the boosted combination of texture-layout
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before after

Figure 24: Semantic-aware interactive image
editing. Left: the semantic segmentation given by
TextonBoost is used to drive a semantic-aware user
interface. Here the user has selected the person, and a
context sensitive menu presents editing options spe-
cific for the ‘person’ class. Right: after the user
clicks ‘Erase...’, an automatic system [11] removes the
person from the image by filling in over the top of her.

filters, are by far the most significant contribution
to accurate semantic segmentation of images. The
CRF model does, however, significantly improve the
perceived accuracy of results.

The evaluation was limited to 21 classes by the
prohibitive cost of hand-labeling images, and the ad-
ditional time and memory requirements for training.
However, in principle, we believe TextonBoost could
be applied to many more classes. The primary lim-
itation is the performance of the texture-layout po-
tentials learned by boosting. The use of Joint Boost-
ing means that classification cost grows sub-linearly
with the number of classes [45], although training
time increases quadratically. The algorithm is highly
parallelizable, which is becoming an important con-
sideration as processors move towards multi-core ar-
chitectures. One limitation when moving to more
classes is the simple ontological model used, where
each pixel is assigned only one class label. This can
lead to semantic confusions, such as Figure 19(b). For
datasets with more classes, improvements to the on-
tological model will start to have profound effects on
accuracy. Already, new work [35] is showing promise
in this direction.

In the future we hope to integrate explicit semantic
context information such as in [19] to improve fur-
ther the classification accuracy. We are interested in
improving the detection of objects at smaller scales,

which are sometimes poorly detected with the current
system. We would like to investigate other forms of
textonization: clustered SIFT [33] descriptors might
provide more invariance to, for example, changes in
lighting conditions than the filter-bank used in this
work; in a similar vein, a soft assignment of pixels to
textons might produce better results. Furthermore
the features could be extended to incorporate motion-
based cues to improve the technique when applied to
video sequences.
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