
Geodesic Star Convexity for Interactive Image Segmentation

Varun Gulshan†, Carsten Rother‡, Antonio Criminisi‡, Andrew Blake‡ and Andrew Zisserman†

†Dep. of Engineering Science

University of Oxford, UK
{varun,az}@robots.ox.ac.uk

‡Microsoft Research Ltd.

Cambridge, UK
{carrot,antcrim,ablake}@microsoft.com

(a) No Shape Constraint (b) Geodesic Star Convexity Constraint

Figure 1. Shape constraints for Interactive Segmentation. The blue and pink strokes represent foreground(FG) and background (BG)

brushes respectively. The output segmentations are overlaid as a two-colored boundary, with the red boundary towards the FG side and

green towards the BG. The segmentations on the left are obtained using Boykov Jolly energy minimization [3]. The segmentations on the

right are obtained by minimizing the same energy function subject to Geodesic star-convexity constraints. Notice how the star-convexity

constraint helps to remove disconnected FG islands, and also to connect up FG islands into a single component.

Abstract

In this paper we introduce a new shape constraint for

interactive image segmentation. It is an extension of Vek-

sler’s [25] star-convexity prior, in two ways: from a single

star to multiple stars and from Euclidean rays to Geodesic

paths. Global minima of the energy function are ob-

tained subject to these new constraints. We also introduce

Geodesic Forests, which exploit the structure of shortest

paths in implementing the extended constraints. The star-

convexity prior is used here in an interactive setting and this

is demonstrated in a practical system. The system is evalu-

ated by means of a “robot user” to measure the amount of

interaction required in a precise way. We also introduce a

new and harder dataset which augments the existing Grab-

cut dataset [1] with images and ground truth taken from the

PASCAL VOC segmentation challenge [7].

1. Introduction

This paper∗ deals with the problem of interactive image

segmentation – the process of power assisting a human user

in cutting out a desired object from the image. The main

aim of any interactive image segmentation is to improve

user experience and the most crucial aspect of improving

user experience is the amount of effort taken to segment a

desired object. This paper is a step in that direction and also

attempts at quantifying the rather subjective and immeasur-

able quantity of ‘effort’ required.

Figure 1 demonstrates the power of having shape con-

straints in an interactive segmentation system. Having

shape constraints such as connectivity can restrict the space

of possible segmentations to a smaller subset, helping to

eliminate false segmentations. This is the main focus of

this paper: to introduce shape constraints in interactive seg-

mentation, by means of a powerful extension of the star-

convexity prior proposed by Veksler [25].

It is well known that shape is a powerful cue for object

recognition. Shape models have been used for object spe-

cific segmentation [10, 11] and help in making the problem

well posed. In such applications, shapes are represented

as some kind of distance transform from a template, and

such representations are limited and need good initializa-

tions. There has been some work in generic connectiv-

ity constraints for segmentation by Vicente et al. [26] and

Nowozin et al. [15]. They show that obtaining globally

optimal solutions under the connectivity constraint is NP-

hard, and then try to find approximate solutions. Connec-

tivity can also be imposed as a post-processing step as done

in paint-select [13], but that is not principled and cannot

be expressed as an energy function. Our work is closest to

Veksler [25], where a star-convexity constraint is imposed

on the segmentation, and globally optimal solutions are
∗This work was supported in part by Microsoft Research

through the European PhD Scholarship Programme.
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Figure 2. A star-convex object y (in green) wrt star center c. p

is any point in the image domain Ω and Γc,p is the straight line

segment connecting c to p. An object is star-convex wrt center c if

for every point p in the object, all points on the line segment Γc,p

also lie inside the object.

achieved subject to the star convexity constraint. The star

convexity constraint also ensures connectivity to brushes,

and is a stronger assumption than plain connectivity. In this

work, we extend the idea of star-convexity in a way that

gets rid of the limitations of Veksler [25], and yet being

more meaningful than just plain connectivity [26, 15]. We

introduce the idea of Geodesic forests in order to implement

our constraints. Note that we still obtain globally optimal

solutions while breaking free from Veksler’s limitations.

2. Star-convexity

This section reviews the ideas of star-convex sets (Section

2.1) and how this concept is extended to multiple stars (Sec-

tion 2.2) and Geodesic stars (Section 2.3).

2.1. Single starconvexity

Star-convex sets have been defined in the geometry and

math community [24, 21]. Recently Veksler [25] used such

sets as a shape prior in image segmentation. A point p is

said to be visible to c via a set y if the line segment joining

p to c lies in the set y. A set y is star-convex with respect to

center c, if every point p ∈ y is visible to c via y (ref. Fig-

ure 2). Denote by S∗({c}), the set of all shapes which are

star-convex wrt to center c. The star constraint is expressed

as an energy:

E∗(y|c) =

{

0 if y ∈ S∗({c})

∞ if y /∈ S∗({c})
(1)

The set y ⊆ Ω can also be represented as a function y :
Ω → {0, 1}, where Ω is the domain of the image and ∀p ∈
Ω : p ∈ y ⇔ yp = 1. The energy E∗(y|c) can be expressed

with pairwise terms. As shown in Fig. 2, for the line seg-

ment Γc,p joining p to c, the star constraints are written as:

∀q ∈ Γc,p, E∗
pq(yp, yq) =

{

∞ if yp = 1 and yq = 0

0 otherwise

E∗(y|c) =
∑

p∈Ω

∑

q∈Γc,p

E∗
p,q(yp, yq) (2)

Figure 3. Star-convex and objects that are not star-convex. The

object of interest is outlined in red. The top row depicts exam-

ples of star-convex objects, with a plausible star center marked.

The bottom row shows deviations from star-convexity, either in the

fine details or gross deviations due to multiple object instances. A

plausible star center is shown for such objects with the region that

prohibits visibility being encircled.

It is easy to see that such an energy is submodular as the

labeling (yp = 1, yq = 0) has an ∞ energy, and will al-

ways satisfy the submodularity criteria. In practice, the

domain Ω is discrete, points p and q correspond to pix-

els and the paths Γc,p are rasterized versions of continu-

ous lines. As discussed in [25], the constraint need not be

implemented ∀q ∈ Γc,p, but needs to be imposed only be-

tween 8-connected neighboring pixels (p, q), which makes

the constraint efficient to implement. It is also possible to

define the constraint directly in the discrete domain (see sec-

tion 2.3) which avoids rasterizing and other implementation

issues discussed in [25].

The star-convexity constraint is quite flexible in the set

of shapes it allows as opposed to fixed geometries like el-

lipses and boxes [20]. It includes the set of all convex

shapes containing the point c. Figure 3 shows examples

taken from [25] which depict fairly complex objects as be-

ing star-convex. The same figure also shows limitations

of star-convexity, which limits its applications to real im-

ages. The next two sections discuss how to extend the star-

convexity constraint to overcome these limitations.

2.2. Multiple stars

A natural extension of single star-convexity is to use mul-

tiple stars to define a more general class of shapes. This sec-

tion explores two alternative ways of defining multiple star-

convexity and explains why the second way is more practi-

cal than the first. Consider for simplicity star-convexity wrt

to two star centers {c1, c2}. The first definition is an ex-

tension of the visibility argument presented in Section 2.1

– A set y is star-convex wrt {c1, c2} if every point p ∈ y

is visible to at-least one of the star centers via y (ref. Fig-



Figure 4. Multiple star semantics – visibility. y (shaded blue) is

an object which is star convex wrt. centers {c1, c2}, p denotes an

arbitrary point in y and Γc1,p and Γc2,p are the two straight lines

joining p to the star centers. Every point p ∈ y should be visible to

at least one star center for the object to be star-shaped wrt {c1, c2}.

ure 4). Another way of characterizing such a set is by ex-

pressing it as a finite union of starshaped sets [23] – A set

y is star-convex wrt {c1, c2} if ∃y1,y2 ⊆ Ω s.t. y =
y1 ∪ y2 and y1 ∈ S∗({c1}) and y2 ∈ S∗({c2}). This

definition directly translates to an implementation as:

E∗(y|{c1, c2}) = min
y1,y2

E∗(y1|c1)+E∗(y2|c2)+δy(y1∪y2)

δy(y1 ∪ y2) =

{

0 if y = y1 ∪ y2

∞ otherwise
(3)

where E∗(y1|c1) and E∗(y2|c2) are as defined in (2). It

is certainly possible to express this energy with pairwise

terms and additional variables y1 and y2 but the energy is

not submodular (δy(y1 ∪ y2) causes the submodularity to

break). This is not surprising as these visibility semantics

are closely related to the classical NP-complete “Art Gallery

Problem” – the problem of placing the minimum number of

guards which together can observe the whole gallery [16].

Also it is not obvious how to extend these semantics from a

finite discrete set of star centers to an infinite continuous set

of star centers – e.g a brush stroke.

The first definition of star-convexity for multiple centers,

above, is arguably a natural extension. The second defini-

tion, described next, is both computationally more tractable

and also extends naturally to an infinite set of star centers.

The definition of the line segment joining star center c to p
(denoted Γc,p) is extended to the line segment joining the

set of star centers c to point p (denoted Γc,p ). Observing

that Γc,p is the shortest path between point p and center c,

we define Γc,p as the shortest path between point p and set

c:

c(p) = arg min
c∈c

d(c, p) , Γc,p = Γc(p),p (4)

where d(c, p) is the Euclidean distance between c and p and

c(p) denotes the closest star center to point p. Figure 5

visualizes these shortest paths for the case of discrete and

continuous star centers. This construction is a restriction of

the previous visibility semantics – here each point p ∈ y

should be visible to its nearest star center c(p). The star

energy E∗(y|c) can now be written exactly as in (2) with

the shortest paths now defined as in (4). Note that the star

energy remains submodular which keeps things tractable as

explained in section 4. Also these semantics extend nicely

to a having brush strokes as star centers. To our knowledge,

Figure 5. Alternate multiple star semantics – visibility to nearest

center. c denotes the set of star centers, c = {c1, c2} in the tri-

angle on the left, and c is a line segment in the shape on the right.

For every point p ∈ y, star-convexity is imposed on Γc,p – the

segment joining p to the nearest star center.

such a definition of star-convexity has not yet been proposed

in the literature.

2.3. Geodesic stars

The previous section defined Γc,p as the shortest path

between star centers c and point p. In this section we gener-

alize the notion of shortest path from Euclidean to geodesic,

and also define this directly in the discrete domain. Geodesic

paths can bend and adapt to image data as opposed to straight

Euclidean rays, thus extending visibility and reducing the

number of star centers required. In the case of image seg-

mentation the gradients in the underlying image provide in-

formation to compute such paths (ref. figure 6). To define

the geodesic distance, we first define the length of a discrete

path:

L(Γ) =

n−1
∑

i=1

√

(1−γg)d(Γi,Γi+1)2 + γg‖∇I(Γi))‖2 (5)

where Γ is an arbitrary parametrized discrete path with n
pixels given by {Γ1,Γ2, · · · ,Γn}, d(Γi,Γi+1) is the Eu-

clidean distance between successive pixels, and the quantity

‖∇I(Γi))‖2 is a finite difference approximation of the im-

age gradient between the points (Γi,Γi+1). The parameter

γg weights the Euclidean distance with the geodesic length.

It is also possible to use gradients in the likelihood image

to get rid of texture edges as done in [2]. Using the above

definition, one can define the geodesic distance as in [4]:

dg(a, b) = min
Γ∈Pa,b

L(Γ) , Γa,b = arg min
Γ∈Pa,b

L(Γ) (6)

where Pa,b denotes the set of all discrete paths between

two grid points a and b. Note that unlike [2], we are inter-

ested in the geodesic path Γa,b rather than geodesic distance

dg(a, b). The above definition of geodesic distance between

two points also extends to distance between a set of points c

and a point p exactly as in (4). Notice that everything is now

defined in the discrete domain, including the shortest paths

Γa,b. Thus there is no need of any rasterization step while

setting up the star energy, this saves computation time. If

one were to connect up every point p ∈ Ω to the star center



(a) Euclidean rays (b) Geodesic paths

Figure 6. Geodesic stars improve visibility. (a) Shows how the

object outlined can be seen by multiple Euclidean star centers (b)

Shows how most of the object (except the head) can be seen by

just one geodesic star center. Notice how the forest bends around

image gradients.

c using the shortest paths Γc,p, the structure obtained would

be a collection of trees rooted at c, and we call this structure

a Geodesic Forest. Geodesics are efficiently computed us-

ing shortest path algorithms (O(n log n), with n being the

number of pixels). Also note that the star energy E∗(y|c)
now needs to be written as E∗(y|x, c) as it now depends on

the underlying image. This energy can be again expressed

as in (2) with the shortest paths being given by (6).

It is important to emphasize the role of the parameter

γg , as it controls the weighing between geodesic and Eu-

clidean. Indeed setting γg = 0 results in a Euclidean shape

(albeit in discrete domain), and γg = 1 relies purely on im-

age gradients. We also rescale the gradients such that the

average gradient is the same as the average Euclidean dis-

tance between neighboring pixels – this is necessary to give

γg a sensible meaning. This parameter is discussed in de-

tail later in section 6. We use the shorthand GSC (Geodesic

Star-Convexity) to refer to this shape constraint for γg > 0
and the shorthand ESC (Euclidean Star-Convexity) to refer

to the case γg = 0 .

3. Visibility experiments

In order to capture the extent of the visibility of an object

from a star center, we define Y ∗(y, c), the c-star of set y.

It is the set of all points in y which are visible to c via

y [24]. Denoting the ground truth object as ygt, the extent

of its visibility Y ∗(ygt, c) can be computed as the following

optimization:

min
y

∆(y,ygt) ⇔ min
y

∆(y,ygt) + E∗(y|x, c) (7)

s.t y ∈ S∗(c) s.t y ⊆ ygt

y ⊆ ygt

where ∆(y,ygt) measures the Hamming distance between

y and ygt:

∆(y,ygt) =
∑

i∈Ω

(yi 6= ygt
i ) (8)

Note the constraint y ⊆ ygt is equivalent to the hard con-

straint ∀i : i /∈ ygt, yi = 0 and essentially means that

(a) Ground truth (b) ESC c-star (c) GSC c-star

Figure 7. c-stars for Euclidean and geodesic star-convexity. (a)

The ground truth object outlined. (b) The Euclidean c-star of the

ground truth. (c) The corresponding geodesic c-star with the same

star center.

Percentage Occlusion Rates

Full dataset Complex Shapes

Method 1 star 2 stars 1 star 2 stars

ESC 4.50±0.58 2.85±0.39 10.95±1.26 6.88±0.89

GSC 4.16±0.54 2.22±0.30 9.48±1.15 4.79±0.66
Table 1. Visibility experiment. The occlusion rates denote the per-

centage of pixels of the object not visible to the star center. Left

two columns report performance on the whole dataset and the right

two columns on a subset of complex shapes in the dataset. Observ-

ing along the rows, GSC has much lower error rates than ESC,

suggesting that geodesic improves the visibility of the star cen-

ters. We also see that 2 star centers have better visibility than just

one. Also note the error rates are higher for complex shapes as one

would have expected.

one cannot see through the background pixels. The cost

function in (7) can be optimized globally with graph cuts,

as all the terms are sub-modular. The c-stars for a single

star center c are visualized for the case of Euclidean and

geodesic star-convexity in Figure 7. A similar cost func-

tion (but without the star constraint), was minimized for the

purpose of parameter learning in Szummer et al. [22].

In our quantitative evaluation, we find the c-stars for the

case of 1 and 2 star centers on a dataset of images intro-

duced later in section 5.2. The question here is how to

choose the star centers c. In our experiments, the star cen-

ters were chosen manually to be favorable to the Euclidean

case, so as to maximize the visibility of the star center with

Euclidean rays. It would also be possible to find the globally

optimal location of star centers using Branch-and-mincut

[12] by optimizing (7) wrt c (in addition to y). The occlu-

sion rates for this Visibility Experiment are reported in Ta-

ble 1. We make the following three observations from this

table: (i) It is beneficial to have multiple stars as that im-

proves the visibility of the star centers. (ii) Geodesic stars

have better visibility than Euclidean stars, and thus lower

occlusion rates. (iii) Geodesics improve visibility more for

more complex shapes.

One must remember that lower occlusion rates in Table

(1) do not automatically mean the shape constraint works

better in a practical system. Indeed, having no shape con-



User
Edit

User
Edit

GT Initial Segmentation

(c) Edit - Non sequential system (d) Edit - Sequential system

(a) Ground Truth (b) Initial Interaction

Figure 8. Sequential system. (a) Ground truth shape is outlined.

(b) User places initial brush strokes, blue for FG and pink for BG.

The output segmentation is shown outlined, with the underlying

geodesic forest (note that γg = 0 here, so that the forest is actu-

ally Euclidean). (c) User makes an edit and the shape constraint

changes non-intuitively. The bottom of the T-shape which was vis-

ible to the star center on the top now is closer to the newly added

star center and not visible to it. (d) The sequential system ensures

that visibility is incremental, that things which were visible before

do not lose visibility. The geodesic forest is not permitted to enter

the previous segmentation, so it bends/terminates around it.

straint, or just a simple connectivity constraint, would give

an occlusion rate of zero in this experiment. In practice the

shape constraint must be combined with other considera-

tions, as discussed in the next section.

4. Star-convexity in a segmentation system

The star-convexity constraints introduced above are com-

bined with the Boykov Jolly [3] energy formulation as done

by Veksler [25]. We first describe the energy minimization

of Boykov Jolly:

E(y|x) =
∑

i∈Ω

U(yi|x) + λ
∑

(i,j)∈N

V (yi,yj |x) (9)

ȳ = arg min
y∈Y

E(y|x)

where x denotes the image, Ω is the set of all pixels, λ is

a weighting on the pairwise terms and N represents the

set of neighboring pixel-pairs. The data term U(yi|x) is

computed using the negative log likelihood of color models

learned from the user provided brush strokes, and the pair-

wise terms are the usual contrast dependent terms V (yi, yj |x) =
exp(−β‖xi−xj‖

2) [18]. The color models use GMMs with

5 components each for FG/BG. Also as the brush strokes are

sparse, the GMMs are mixed with uniform color models as

suggested in [5]. In the final system, the energy in (9) is

minimized subject to y being star-convex:

miny E(y|x)
s.t y ∈ S∗(c)

⇔ min
y

E(y|x) + E∗(y|x, c) (10)

It is possible to obtain global minima of (10) efficiently

as both E(y|x) and E∗(y|x, c) are submodular. The star-

convexity constraint above restricts the space of shapes. For

an n × n pixel image, the cardinality of the unconstrained

output space is 2n∗n, whereas with a single Euclidean star,

the output space is reduced significantly to O(nn). A good

regularizer would allow the ground truth object while re-

stricting the output space as much as possible.

Finally we consider the choice of star centers c. In an in-

teractive system, the FG brush strokes are a natural choice

for star centers, since that avoids the need for any separate

interaction to select the centers. In that way, unlike [25],

the set of allowed shapes changes as the user adds brush

strokes, and this can sometimes cause shape constraints to

change un-intuitively – see Fig. 8. To resolve this issue, a

sequential system is developed which ensures that the shape

constraints change progressively as the user interacts. This

is done by enforcing two properties at every edit: (i) The

current segmentation should always be valid under the new

star-convexity constraint obtained after the user edit and (ii)

the shape constraint should only change locally, around the

newly placed brush stroke. (i) can be implemented by en-

suring that no paths are allowed to enter the FG segmen-

tation, in the geodesic forest computed after the edit. This

can be enforced by adding an ∞ cost on edges going from

BG to FG in the geodesic computation. (ii) is implemented

by only incrementally computing geodesics from the newly

placed brush strokes.

5. Quantitative evaluation

We evaluate interactive segmentation systems quantita-

tively by means of a “robot user” [14]. Existing evaluation

of interactive segmentation is either qualitative [2, 9] or is

restricted to a fixed set of user interactions with seed points

obtained by eroding and dilating the ground truth segmen-

tation [1, 6]. The robot user generates a flexible sequence

of user interactions, according to well-defined rules, that

model the way in which residual error in segmentation is

progressively reduced in an interactive system.

An ideal evaluation system would measure the amount

of effort required to segment an image, in a user study.

Alternatively, the robot user simulates user interaction by

placing brushes automatically. It starts with an initial set

of brush-strokes (chosen manually with one stroke for FG

and 3 strokes for BG) and computes a segmentation. It then

places a circular brush stroke (diameter 17 pixels) in the

largest connected component of the segmentation error area,

placed at a point farthest from the boundary of the compo-

nent. The process is repeated up to 20 times, generating a

sequence of 20 simulated user strokes. In this way a custom

sequence of brush strokes is generated for each algorithm.

Refer to the video at http://www.robots.ox.ac.uk/

~vgg/research/iseg/ for a demonstration of the robot
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Figure 9. Plotting overlap score vs. no. of strokes, in order to mea-

sure interaction effort. The area above the curve is a measure of

the average number of strokes required for user interaction. Since

we are interested in the degree of interaction required to achieve

high segmentation accuracy, the average is restricted to the band

[Alow, Ahigh], as illustrated (shaded in blue).

Figure 10. Dataset. 6 out of 151 images are shown. The top row

shows images with complex shapes; the bottom row has images

with relatively simple shapes that can be modeled with just one

Euclidean star center.

and [14] for further details.

5.1. Evaluation of interactive segmentation quality

Interactive system quality is evaluated as the average num-

ber of strokes required to achieve segmentation quality within

a certain band. This is illustrated in figure 9. The graph of

overlap score v. no. of brush strokes captures how the ac-

curacy of the segmentation varies with successive user in-

teractions, and the average no of strokes summarizes that

in a single score. Here overlap score, the measure used

to evaluate segmentation quality in the VOC segmentation

challenge [7], is given by 100 ·
y∩ygt

y∪ygt
(with y denoting out-

put segmentation and ygt denoting ground truth). The aver-

age is computed over a certain range of scores, and we take

Alow = 85, Ahigh = 98.

5.2. Dataset

The dataset (see Figure 10) consists of the GrabCut dataset

(49 images) [1] augmented with images from the PASCAL

VOC’09 segmentation challenge (99 images) [7] and 3 im-

ages from the alpha-matting dataset [17]. The VOC images

come with ground truth labeling of object classes, and are

cleaned up for the task of figure-ground segmentation. Im-
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Figure 11. Optimal γg as a function of shape and likelihood diffi-

culty. The above histograms visualize how often a particular γg is

chosen as a function of likelihood and shape difficulty. Shapes are

classified as easy or hard by sorting the per image occlusion rates

in the visibility experiment and splitting at the median. The like-

lihood difficulty sorting is done using performances of a segmen-

tation system that uses only likelihoods (i.e λ = 0 in (9)). With

easy shapes and hard likelihoods (bottom right), γg = 0 is the ma-

jority choice and with hard shapes and easy likelihoods (top left),

γg = 0.9 is the clear choice. For hard shapes+hard likelihoods

and easy shapes+easy likelihoods, it’s a trade off between shape

and likelihood difficulty and neither is the clear winner.

ages from the GrabCut dataset contain complex shapes but

the foreground and background tend to have disjoint color

distributions. The VOC dataset on the other hand has sim-

pler shapes (car, bus) but more complex appearances, in

which the color distributions of foreground and background

overlap.

5.3. Parameter cross validation

To set free parameters such as γg in (5) and λ in (9),

the image set is split into validation and test sets, and line

search for the best parameters is performed on the validation

set. Parameters are selected to minimize the area above the

accuracy overlap vs. brush strokes curve. This is repeated

for 10 splits, to estimate the stability of parameters.

6. Results

This section analyzes results obtained using the simu-

lated user interaction on the introduced dataset. We first

compare our different shape constraints with the Boykov

Jolly energy function, and later compare our best system

with existing methods [2, 9].

The first set of results compares: (i) BJ – Boykov Jolly

with no shape constraint [3] (ii) PP – Post-Processing out-

put of BJ to remove disconnected foreground islands [13].

(iii) ESC – Boykov Jolly with multiple star Euclidean Star-

Convexity, implemented using geodesic forests with γg =
0. (iv) GSC – Boykov Jolly with Geodesic Star-Convexity



(a) Absolute performances (b) Absolute performances (Zoom) (c) Relative performances

BJ

Method
Avg.

Effort

BJ 12.35

PP 10.66

ESC 10.57

GSC 10.23

ESCseq 10.23

GSCseq 9.63

GSCseq(opt) 8.97

Figure 12. Overlap score vs. No. of strokes plots. (a) Overlap scores for various methods are plotted as a function of no. of strokes with

error bars for each stroke. (b) Zoom in of the region [Alow = 85, Ahigh = 98] in the plot, error bars removed for clarity. (c) Overlap score

measure relative to PP. The table next to the plots shows our measure – the interaction effort required to reach an accuracy of 98, in units

of brush strokes. GSCseq(opt) is noted separately in the table as it involves additional effort in choosing γg .
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Method
Avg.

Effort

SP-IG 17.78

SP-SIG 15.77

SP-LIG 15.14

BJ 12.35

RW 12.31

GSCseq 9.63

Figure 13. Comparison with other methods. The plot compare

GSCseq with existing methods. The performance differences are

more remarkable here compared to Fig. 12 because this plot com-

pares algorithms with different cost functions, whereas Fig. 12

compares algorithms with same cost function subject to different

constraints. GSCseq defines the state of the art on this dataset.

implemented with geodesic forests computed on the likeli-

hood image. The parameter γg is set by validation as de-

scribed in section 5.3. (v) ESCseq – Sequential system (as

described in sec. 4) on top of ESC (vi) GSCseq – Sequen-

tial system on top of GSC and (vii) GSCseq(opt) – Same as

GSCseq, but with γg being set optimally for each image.

Before moving on to the discussion of these results, the

system GSCseq(opt) needs further explanation. In our ex-

periments, we observed that the optimal choice of the pa-

rameter γg can be image dependent. This is because of the

varying difficulty of likelihoods and shapes in our dataset.

We know from the visibility experiment (section 3) that for

complex shaped objects, it is better to have a high γg – i.e

be close to geodesic. However, that experiment is purely

theoretical – in a real system the cost function also includes

the likelihoods. The images in our dataset have complex ap-

pearances, and that can lead to noisy likelihoods. Such like-

lihoods can be a problem with high γg , as the geodesic con-

straint then connects up all the noisy likelihoods resulting

in poor segmentations. In such cases, Euclidean (γg = 0),

can behave better by ensuring that the shape does not bend

arbitrarily and stays reasonable. Thus the choice of an op-

timal γg depends on the quality of the likelihoods and the

complexity of the object shape. Our quantitative experiment

(ref. fig. 11) confirms that – for complex shapes geodesic

is preferred, and for complex likelihoods Euclidean . Thus,

one could potentially let the user choose γg and this is what

happens in GSCseq(opt) – the simulated user varies and

chooses the γg that minimizes effort. Choosing γg requires

additional effort, which means GSCseq(opt) should not be

compared with other systems. However, GSCseq(opt) still

provides a useful benchmark as it lower bounds the effort

required by any system that sets γg automatically.

Figure 12 visualizes results for these systems. We make

the following observations: (i) The best system on the whole

dataset is GSCseq – taking 9.63 brush strokes to reach an

accuracy of 98%. (ii) All of our shape constraints perform

better than simple post-processing. (iii) The geodesic sys-

tem (GSC) improves over Euclidean (ESC) as demonstrated

by the reduction in effort from 10.57 strokes to 10.23. (iv)

The sequential system GSCseq has a definite advantage over

the non-sequential system GSC, reducing effort from 10.23

strokes to 9.63 strokes. On a closer examination of Fig. 12,

one would say that all methods except for GSCseq(opt) and

BJ are perhaps too close and std-errs too large to draw def-

inite conclusions. The Std-errs are an indication that our

dataset is still very small and has a large variability on a per

image basis. However, the performance order matches our

intuition and theory, which is encouraging.

Our system is also compared with other algorithms. GSC-

seq is chosen as our system and compared with Bai and

Sapiro [2] and Random Walker [9]. In [2], geodesics are

computed on the likelihood image and each point assigned

the label of its nearest stroke. In addition to that we also

try variations of this method with geodesics computed on

RGB gradients of raw and smoothed images. We use the

following shorthands: (i) SP-LIG - geodesics computed on

Likelihood Image Gradients, (ii) SP-IG - geodesics com-

puted on raw image gradients. (iii) SP-SIG - geodesics com-

puted on smoothed image gradients and (iv) RW - Random

walker. The results are plotted in Figure 13. This evalua-

tion really brings out a significant difference in performance

across these methods. Shortest paths methods (SP-LIG,SP-

IG,SP-SIG) take around 15 brush strokes and fail due to lack

of any boundary regularization and sensitivity to brush lo-



Additional Interaction

Figure 14. Comparison with DijkstraGC [26]. Both GSC(left) and

DijkstraGC(right) are run with exactly the same energy function

and user interaction. To connect the engine of the train to the rest,

DijskstraGC needs further interaction as shown above. However,

it only finds a very narrow path connecting the two sections of the

train

cation [19]. RW only performs as well as BJ (≈12 brush

strokes). Though RW is based on only pairwise terms, there

is an extension which incorporates color models [8]. That

extension however is a relaxation of BJ into the continuous

domain, and is expected to have similar shortcomings to BJ.

We also show a qualitative comparison with DijkstraGC

[26] in Fig. 14. This example clearly demonstrates the

benefit of having more than just a simple connectivity con-

straint. DijkstraGC only connects up the segments with a

narrow path, but GSC imposes a more sensible constraint

and generates a better segmentation.

7. Conclusions and Further work

We summarize our contributions as follows. We extended

the notion of star-convexity from single to multiple centers

in a tractable way, and further generalized this notion from

Euclidean to geodesic. To our knowledge, such definitions

of star-convexity do not exist in the literature and we are the

first to define them and apply them in a real system. We

demonstrate using a rigorous evaluation system, how such

extensions reduce interaction effort, defining the state-of-

the-art system on a newly introduced dataset.

As future work, we would like to exploit star-convexity

constraints to represent shapes. Indeed, we saw in this work

that the shape constraint can model arbitrarily complex shapes

and could be extended to object specific constraints as op-

posed to interactive constraints. These shape constraints can

also be exploited in other ways suggested in [25] – such as

reducing the shrinking bias using negative edge weights, ra-

tio optimization and area constrained segmentation.

The datasets and code used in the quantitative evaluation

can be found at: http://www.robots.ox.ac.uk/~vgg/

research/iseg/
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