Learning an Interactive Segmentation System

. . *
Hannes Nickisch
MPI for Biological Cybernetics
hn@tue.mpg.de

Pushmeet Kohli

Carsten Rother

Microsoft Research Cambridge

carrot@microsoft.com

Christoph Rhemann

Microsoft Research Cambridge Vienna University of Technology

pkohli@microsoft.com

ABSTRACT

Many successful applications of computer vision to image
or video manipulation are interactive by nature. However,
parameters of such systems are often trained neglecting the
user. Traditionally, interactive systems have been treated
in the same manner as their fully automatic counterparts.
Their performance is evaluated by computing the accuracy
of their solutions under some fixed set of user interactions.
This paper proposes a new evaluation and learning method
which brings the user in the loop. It is based on the use
of an active robot user — a simulated model of a human
user. We show how this approach can be used to evaluate
and learn parameters of state-of-the-art interactive segmen-
tation systems. We also show how simulated user models
can be integrated into the popular max-margin method for
parameter learning and propose an algorithm to solve the
resulting optimisation problem.

Keywords

Interactive segmentation, interactive learning, SVMstruct.

1. INTRODUCTION

Problems in computer vision are known to be hard, and
very few fully automatic vision systems exist which have
been shown to be accurate and robust under all sorts of
challenging inputs. These conditions in the past had made
sure that most vision algorithms were confined to the lab-
oratory environment. The last decade, however, has seen
computer vision finally come out of the research lab and
into the real world consumer market. This great sea change
has occurred primarily on the back of the development of
a number of interactive systems which have allowed users
to help the vision algorithm to achieve the correct solution
by giving hints. Some successful examples are systems for
image and video manipulation, and interactive 3D recon-

*Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICVGIP 10, December 12-15, 2010, Chennai, India

Copyright 2010 ACM 978-1-4503-0060-5/10/12 ...$10.00.

rhemann@ims.tuwien.ac.at

struction tasks. Image stitching and interactive image seg-
mentation are two of the most popular applications in this
area. Understandably, interest in interactive vision systems
has grown in the last few years, which has led to a number
of workshops and special sessions in vision, graphics, and
user-interface conferences !.

Interactive image classification without user model is dis-
cussed in the machine learning literature [10] and active in-
ference in random field graphs is already used in the knowl-
edge discovery community [4].

The performance of an interactive system strongly de-
pends on a number of factors, one of the most crucial being
the user. This user dependence makes interactive systems
quite different from their fully automatic counterparts, es-
pecially when it comes to learning and evaluation. Surpris-
ingly, there has been little work in computer vision or ma-
chine learning devoted to learning interactive systems. This
paper tries to bridge this gap.

We choose interactive segmentation to demonstrate the
efficacy of the ideas to inspire other researchers to use it
e.g. in interactive 3D reconstruction. The framework applies
general computer vision problems with an energy function,
an error metric and a way of measuring the interaction effort.

Interactive segmentation aims to separate an object of in-
terest from the rest of an image. It is a classification problem
where each pixel is assigned one of two labels: foreground
(fg) or background (bg). The interaction comes in the form
of sets of pixels marked by the user by help of brushes to be-
long either to fg or bg. We will refer to each user interaction
in this scenario as a brush stroke.

We address two questions: (1) How to evaluate any given
interactive segmentation system? and (2) How to learn the
best interactive segmentation system? Observe that the an-
swer to the first question gives us an answer to the second by
picking the segmentation system with the best evaluation.

We demonstrate the efficacy of our evaluation methods
by learning the parameters of the state-of-the-art system for
interactive image segmentation. We then extend parameter
learning in structured models by including the user effort
in the max-margin method. The contributions of this paper
are: (1) The study of the problems of evaluating and learning
interactive systems. (2) The use of a user model for evalu-
ating and learning interactive systems. (3) A comparison of
state-of-the-art segmentation algorithms under an explicit
user model. (4) A new algorithm for max-margin learning
with user in the loop.

le.g. ICCV 2007, NIPS 2009 and CVPR 2010

Two recent articles [13, 5] already employ our robot user
to learn and compare various different segmentation algo-
rithms, which demonstrates the usefulness of our approach.

Organization of the paper.

In Section 2, we discuss the problem of system evaluation.
In Section 3, we give details of our problem setting, and ex-
plain the user model and segmentation systems. Section 4
explains the naive line-search method for learning segmen-
tation system parameters. In Section 5, we show how the
max-margin framework for structured prediction can be ex-
tended to handle interactions, and show some basic results.
Conclusions are given in Section 6.

2. EVALUATING INTERACTIVE SYSTEMS

Performance evaluation is one of the most important prob-
lems in the development of real world systems. There are
two choices to be made: (1) The data sets on which the sys-
tem will be tested, and (2) the quality measure. Traditional
computer vision and machine learning systems are evaluated
on preselected training and test data sets. For instance, in
automatic object recognition, one minimizes the number of
misclassified pixels on datasets such as PASCAL VOC [9].

In an interactive system, these choices are much harder
to make due to the user in the loop. Users behave differ-
ently, prefer different interactions, may have different error
tolerances, and may also learn over time. The true objec-
tive function of an interactive system — although intuitive —
is hard to express analytically: The user wants to achieve a
satisfying result easily and quickly. We will now discuss a
number of possible solutions, some of which, are well known
in the literature (see table 1 for an overview). We rely on
the standard assumption that there exists a consistent set
of optimal parameters for a set of images.

Method user user can | inter- | effort | parameter | time price
in loop learn action | model learning
User model yes yes yes yes this paper | fast low
Crowd sourcing yes yes yes yes conceivable | slow a bit
User study yes yes yes yes infeasible | slow | very high
Static learning no no no no used so far | fast | very low

Table 1: Comparison of methods.

2.1 Static Interactions

A fixed set of user-made interactions (brush strokes) asso-
ciated with each image of the dataset is most commonly used
in interactive image segmentation [6, 22, 8]. These strokes
are chosen by the researchers themselves and are encoded
using image trimaps. These are pixel assignments with fore-
ground, background, and unknown labels (see figure 2b).
The system to be evaluated is given these trimaps as input
and their accuracy is measured by computing the Hamming
distance between the obtained result and the ground truth.
This scheme of evaluation does not consider how users may
change their interaction by observing the current segmenta-
tion results. Evaluation and learning methods which work
with a fixed set of interactions will be referred to as static
in the rest of the paper.

Although the static evaluation method is easy to use, it
suffers from a number of problems: (1) The fixed interac-
tions might be very different from the ones made by actual
users of the system. (2) Different systems prefer different

type of user hints (interaction strokes) and thus a fixed set
of hints might not be a good way of comparing two compet-
ing segmentation systems. For instance, geodesic distance
based approaches [2, 12, 22] prefer brush strokes equidis-
tant from the segmentation boundary as opposed to graph
cuts based approaches (7, 20]. (3) The evaluation does not
take into account how the accuracy of the results improves
with more user strokes. For instance, one system might only
need a single user interaction to reach the ground truth re-
sult, while the other might need many interactions to get the
same result. Still, both systems will have equal performance
under this scheme. These problems of static evaluation make
it a poor tool for judging the performance of newly proposed
segmentation system.

2.2 User Studies

A user study involves the system being given to a group of
participants who are required to use it to solve a set of tasks.
The system which is easiest to use and yields the correct
segmentation in the least amount of time is considered the
best. Examples are [16] where a full user study has been
conducted, or [2] where an advanced user has done with
each system the optimal job for a few images. However,
user studies are very impractical to arrange if thousands of
parameters are to be tested.

While overcoming most of the problems of a static eval-
uation, we have introduced new ones: (1) User studies are
expensive and need a large number of participants to be
statistically significant. (2) Participants need time to famil-
iarize themselves with the system. For instance, an average
driver steering a Formula 1 car for the first time, might be
no faster than with a normal car. However, after gaining
experience with the car, one would expect the driver to be
much faster. (3) Each system has to be evaluated indepen-
dently by participants, which makes it infeasible to use this
scheme in a learning scenario where we are trying to find
the optimal parameters of the segmentation system among
thousands or millions of possible ones.

2.3 Evaluation using Crowdsourcing

Crowdsourcing has attracted a lot of interest in the ma-
chine learning and computer vision communities. This is pri-
marily due to the success of a number of incentive schemes
for collecting training data from users on the web. These are
either based on money [23], reputation [28], or community
efforts [21]. Crowdsourcing has the potential to be an excel-
lent platform for evaluating interactive vision systems such
as those for image segmentation. One could ask Mechanical
Turk [1] users to cut out different objects in images with
different systems. The one who needs the least number of
interactions on average might be considered the best. How-
ever, this approach too, suffers from a number of problems
such as fraud prevention. Furthermore, as in user-studies,
it cannot be used for learning in light of thousands or even
millions of systems.

2.4 Evaluation with an Active User Model

In this paper we propose a new evaluation methodology
which overcomes most of the problems described above. In-
stead of using a fixed set of interactions, or an army of hu-
man participants, our method only needs a model of user
interactions. This model is a simple algorithm which —
given the current segmentation, and the ground truth — out-

puts the next user interaction. This user model can use
simple rules, such as “give a brush stroke in the middle of
the largest wrongly labelled region”, or alternatively, can be
learnt from the interaction logs. We will see that a simple
user model exhibits similar behavior as a novice human user.
There are many similarities between the problem of learn-
ing a user model and the learning of an agent policy in re-
inforcement learning. Thus, one may exploit reinforcement
learning methods for this task. Pros and cons of evaluation
schemes are summarized in table 1.

3. SEGMENTATION: PROBLEM SETTING

We use the publicly available GrabCut database of 50 im-
ages with known ground truth segmentations®. In order to
perform large scale testing and comparison, we down-scaled
all images to have a maximum size of 241 x 161, while keep-
ing the original aspect ratio®. For each image, we created
two different static user inputs: (1) A “static trimap” com-
puted by dilating and eroding the ground truth segmenta-
tion by 7 pixels®. (2) A “static brush” consisting of a few
user made brush strokes roughly indicating foreground and
background. We used on average about 4 strokes per image.
(The magenta and cyan strokes in Fig. 2c give an exam-
ple). All this data is visualized in figure 1. Note, in Sec. 3.2
we describe a third “dynamic trimap” called the robot user
simulating the user.

3.1 The Segmentation Systems

We use 4 different interactive segmentation systems in
the paper: “GrabCut(GC)”?, “GC Simple(GCS)”, “GC Ad-
vanced(GCA)”, and “GeodesicDistance (GEO)”.

GEO is a very simple system. We first learn Gaussian
Mixture Model (GMM) based color models for fg/bg from
user made brush strokes. The shortest path in the likelihood
ratio yields a segmentation [2].

The systems (GC, GCS, GCA) minimize the energy

E(y) = ZEp(yp) + Z Epq(Yps Yq) 1)

peEV (p,a)€€

by graph cuts. Here (V,&) is an undirected graph whose
nodes are pixels p with color z, and segmentation label
yp € {0,1}, where 0/1 correspond to bg/fg, respectively.
We define (V, £) to be an 8-connected graph.

The unary terms are computed from a probabilistic model
for the colors of background (y,=0) and foreground (y, =
1) pixels using two different GMMs Pr(z|0) and Pr(z|1).
E,(yp) is then computed as — log(Pr(zp|yp)) where x, con-
tains the three color channels of pixel p. Importantly, Grab-
Cut [20] updates the color models based on the whole seg-
mentation. In practice we use a few iterations only.

The pairwise term has an Ising and a contrast-dependent
component

_ ‘yq - yp'
dist (p, q)

where w; and w. are weights for the Ising and contrast-
dependent pairwise terms respectively, and (3 is a parameter

Epq(Yp, yq) (wi + we exp [‘ﬁ“mp - xq”QD

http://research.microsoft.com/en-us/um/cambridge/
projects/visionimagevideoediting /segmentation/grabcut.htm
3The quality of the segmentation results is not affected by
this down-scaling.

4This input is used for both comparison and parameter
learning e.g. [6, 22].

(c) Tight trimaps u

Figure 1: We took the 50 GrabCut images (a) with given
ground truth segmentations (coded as black/white) and con-
sidered two kinds of user inputs (coded as red/blue): User
defined strokes (b) and tight trimaps generated by eroding
the groundtruth segmentation (c). The user strokes where
drawn by looking at the ground truth segmentation y* and
ignoring the image x*.

with 3 = 0.5-wg/{||xy — 24||*) where (-) denotes expecta-
tion over an image sample [20]. We can scale 8 with the
parameter wg.

To summarize, the models have two linear free parameters:
w;, we and a single non-linear one: wg. GC minimizes the
energy defined above, and is effectively the original GrabCut
system [20]. GCS is a simplified version, where color models
(and unary terms) are fixed up front; they are learnt from
the initial user brush strokes (see Sec. 3.1) only. GCS will
be used in max-margin learning and to check the active user
model, but it is not considered as a practical system.

Finally, GCA is an advanced GrabCut system performing
considerably better than GC. Inspired by recent work [17],
foreground regions are 4-connected to a user made brush
stroke to avoid deserted foreground islands. Unfortunately,
such a notion of connectivity leads to an NP-hard problem
and various solutions have been suggested [27, 19]. However,
all these are either very slow and operate on super-pixels
[19] or have a very different interaction mechanism [27]. We
remove deserted foreground islands in a postprocessing step.

3.2 The Robot User

We start the robot user from an initial fixed set of brush
strokes (the “static brush trimap”). The robot user puts

(a) Input image

(b) Tight trimap (¢) Robot user

5 ——random
S ——sensit.
[} — A i

> roi size
€ 2 4——Hamming
€15 —center
T2t

5 1‘0 1‘5 B: number of strokes

(d) Performance of different robot users

Figure 2: An image from the database (a), tight trimap (b), robot user (red/blue) started from user scribbles (magenta/cyan)
with segmentation (black) after B=20 strokes with 1.4% error (c) and performance comparison of different robot users (d).

brushes in the form of dots with a maximum fixed size (here
4 pixel radius). At the boundary, the fixed brush size is
scaled down, in order to avoid that the brush straddles the
boundary. Fig. 2c shows an example robot user interac-
tion, where red/blue dots are the robot user interactions
and cyan/meganta are fixed brushes.

Given the ground truth segmentation y* and the current
segmentation solution y, the robot user model is a policy
s (xF y* ubty) — uP'! which specifies which brush
stroke to place next. Here, u®* denotes the user interaction
history of image x* up to time t. We have investigated vari-
ous options for this policy: (1) Brush strokes at random im-
age positions. (2) Brush strokes in the middle of the largest,
wrongly labelled region (center). For the second strategy, we
find the largest connected region of the binary mask, which
is given by the absolute difference between the current seg-
mentation and ground truth. We then mark a brush stroke
at the pixel which is inside this region and furthest away
from the boundary. This is motivated by the observation
that users find it hard to mark pixels at the boundary of an
object because they have to be very precise.

We also tested user models which took the segmentation
algorithm explicitly into account. This is analogous to users
who have learnt how the segmentation algorithm works and
thus interact with it accordingly. We consider the user model
which marks a circular brush stroke at the pixel (1) with the
lowest min marginal (sensit.), inspired by [3]. (2) which re-
sults in the largest change in labeling (roi size). (3) which
decreases the Hamming error by the biggest amount (Ham-
ming). We consider each pixel as the circle center and choose
the one where the Hamming error decreases most. This is
very expensive, but in some respects is the best solution®.
“Hamming” acts as a very “perfect user”, who knows exactly
which interactions (brush strokes) will reduce the error by
the largest amount. It is questionable that a user is actually
able to find that optimal position.

Fig. 2d shows the performance of 5 different user models
(robot users) over a range of 20 brushes. The Hamming error
is used to measure the error (see sec. 3.3), which is averaged
over all 50 images of our database. Here we used the GCS
system, since it is computationally infeasible to apply the
(sensit.; roi; Hamming) user models on other interaction
systems. GCS allows for efficient computation of solutions
by dynamic graph cuts [15]. In the other systems, this is
not possible, since unaries change with every brush stroke,

5Note, one could do even better by looking at two or more
brushes after each other and then selecting the optimal one.
However, the solution grows exponentially with the number
look-ahead steps.

and hence we have to treat the system as a black box.

As expected, the random user performs badly. Interest-
ingly the robot users minimizing the energy (roi, sensit.)
also perform badly. This is in sharp contrast to [3] where
they use the system uncertainty to guide the user scribbles.
Our conjecture is that reducing the system uncertainty (ac-
tive learning) might be less relevant when a user is in the
loop. To be precise, a scribble at a position which is certain
but wrong might be considerably better than at a position
which is uncertain but wrong. Both “Hamming” and “cen-
ter” are considerably better than the rest. It is interesting
to note that “center” is actually only marginally worse than
“Hamming”. It has to be said that for other systems, e.g.
GEO this conclusion might not hold, since e.g. GEO is sen-
sitive to the location of the brush stroke than a system based
on graph cut, as [22] has shown.

To summarize, “center” is a user strategy which is moti-
vated from the point of view of a “system-unaware user” (or
“novice user”) and is computationally feasible. Indeed, in
sec. 3.4 we will validate that this strategy correlates quite
well with real novice users. We conjecture that the reason
is that humans tend to place their strokes in the center of
wrongly labeled regions. Also, “center” performed for GCS
nearly the same as the optimal strategy “Hamming”. Hence,
for the rest of the paper we always stick to the user “center”
which we call from here onwards our robot user.

3.3 The Error Measure

For a static trimap input there are different ways for ob-
taining an error rate, see [6, 14]. In a static setting, most
papers use the number of misclassified pixels (Hamming dis-
tance) between the ground truth segmentation and the cur-
rent result. We call this measure “ery”, i.e. Hamming error
for brush b. One could do variations, e.g. [14] weight dis-
tances to the boundary differently. Fig. 2d shows how ery
behaves with each interaction.

For learning and evaluation we need an error metric giv-
ing us a single score for the whole interaction. One choice is
the “weighted” Hamming error averaged over a fixed num-
ber of brush strokes B. In particular we choose the error
“Er” as: Er = [y, f(ery)]/B. Note, to ensure a fair com-
parison between systems, B must be the same number for
all systems. A simple choice for the weighting function is
f(e) = e. However, throughout the paper (if not stated
differently) we use a quality metric which may match more
closely with what the user wants. For this, we use a sigmoid
function f: Ry — [0,¢], ¢ =5 of the form

fle)=0,e<15and f(e) =c— 7, e>15. (2)

(e—0.5)

Observe that f encodes two facts: all errors below 1.5 are
considered negligible and large errors do never weigh more
than c. The first reasons of this settings is that visual in-
spection showed that for most images, an error below 1.5%
corresponds to a visually pleasing result. Of course this is
highly subjective, e.g. a missing limb from the segmentation
of a cow might be an error of 0.5% but is visually unpleasing,
or an incorrectly segmented low-contrast area has an error
of 2% but is visually not disturbing. The second reason for
having a maximum weight of ¢ is that users do not discrim-
inate between two systems giving large errors. Thus errors
of 50% and 55% are equally penalized.

Note, ideally we would learn f(e) by a user study.

Due to runtime limitations for parameter learning, we do
want to run the robot user for not too many brushes (e.g.
maximum of 20 brushes). Thus we start by giving an initial
set of brush strokes (cyan/magenta in e.g. fig. 2c¢) which
are used to learn the (initial) colour models. At the same
time, we want that most images reach an hamming error
level of about 1.5%. A run of the robot user for the GCA
system showed that this is possible (i.e. for 68% of images
the error is less than 1.5% and for 98% less than 2.5%). We
also confirmed that the inital static brush trimap does not
affect the learning (see sec. 4) considerably®.

3.4 Validating the Robot User

We conducted a user study to check our assumption that
the robot user is indeed related to a human “novice user”
(details of user study are in [18]). We designed an interface
which exactly corresponds to the robot user interface, i.e.
where the only choice for the human user is to select the
position of the circular brush.

We asked 6 people to segment 10 randomly selected im-
ages from our database, with each of our 3 systems (GCA,
GC, GCS) with reasonable parameters settings (see [18]).
For every new image, a system was randomly chosen. We
also confirmed that users did not train up for a particular
system in the course of the study by asking for multiple
segmentations of the same image.

The final error Er (mean =+ std.) averaged over all images
and 6 human users is 0.88 +0.09 (GCA), 1.20 £ 0.12 (GC),
1.86+0.07 (GCS). It shows a clear correlation with the error
of our robot user: 0.88 (GCA), 1.06 (GC), 1.89 (GCS). Fig.
3 depicts the error f(ersy) wrt interaction time.

human robot (center)
o —GCA
4 4
g —ae
o GCS
H 3 3
£
£
52 2
2
=
=)
o1 1
=

o

20 0 20

10 1 10 1
B: number of strokes B: number of strokes

Figure 3: The error rates f(ery) of 6 humans versus those
produced by the robot user.

4. LEARNING BY LINE-SEARCH

SWe started the learning from no initial brushes and let
it run for 60 brush strokes. The learned parameters were
similar as with starting from 20 brushes.

Systems with few parameters can be trained by simple
line-search. Our systems, GC, GCS, and GCA, have 3 free
parameters: we,w;, wg. Line-search is done by fixing all but
one free parameter wy and simulating the user interaction
process for 30 different discrete values wg,; of the free pa-
rameter wy over a predefined range. The optimal value wy
from the discrete set is chosen to minimize the leave-one-out
(LOO) estimate of the test error’. Not only do we prevent
overfitting but we can also efficiently compute the Jackknife
estimator of the variance [29, ch. 8.5.1] — a measure of how
certain the optimal parameter is. We run this procedure
for all three parameters individually starting from w. = 0.1,
w; = 0, wg = 1. These initial settings are not very different
to the finally learned values, hence we conjecture that initial-
ization is not crucial.® One important thing to notice is that
our dataset was big enough (and our parameter set small
enough) as to not suffer from over-fitting. We see this by
observing that training and test error rates are virtually the
same for all experiments. In addition to the optimal value
we obtain the variance for setting this parameter. In rough
words, this variance tells us, how important it is to have this
particular value. For instance, a high variance means that
parameters different from the selected one, would also per-
form well. Note, since our error function (Eq. 2) is defined
for static and dynamic trimaps, the above procedure can be
performed for all three different types of trimaps: “static
trimap” (e.g. fig. 1(c)), “static brush” (e.g. fig. 1(b)), “dy-
namic brush”.

In the following we only report results for the two best per-
forming systems, GC and GCA. Table 2 summarizes all the
results, and Fig. 4 illustrates some results during training
and test (more plots are in [18]). One can observe that the
three different trimaps suggest different optimal parameters
for each system, and are differently certain about them.

More importantly, we see that the test error is lower when
trained dynamically in contrast to static training. This val-
idates our conjecture that an interactive system has to be
trained in an interactive way.

Let us look closer at some learnt settings. For system
GCA and parameter w. (see table 2a (first row), and Fig.
4a) we observe that the optimal value in a dynamic setting
is lower (0.03) than in any of the static settings. This is sur-
prising, since one would have guessed that the true value of
w, lies somewhere in between the parameters learned with
a loose and very tight trimap. This shows that the pro-
cedure in [22] is not necessarily correct, where parameter
are learned by averaging the performance from two static
trimaps. Furthermore, neither the static brush nor the static
trimap can be used to guess the settings of all parameters
for a dynamic model. For instance, the static “tight trimap”
is a quite useful guidance for setting w., w;, but less use-
ful for wg.® To summarize, conclusions about the optimal
parameter setting of an interactive system should be drawn
by a large set of interaction and cannot be made by looking
solely at a few (here two) static trimaps.

For the sake of completeness, we have the same numbers

"This is number-of-data-point-fold cross validation.

8 However, compared to an exhaustive search over all possi-
ble joint settings of the parameters, we are not guaranteed
to find the global optimum of the objective function.
9Note, the fact that the uncertainty of the “tight trimap”
learning is high, gives an indication that this value can not
be trusted very much.

static brush
—static trimap
—dynamic brush

static brush
—static trimap
—dynamic brush

e
e
WE

0 02 9\;4 06 08 1 0 2 4 6 8 10
c

(b) GCA, wg train

o
o

IS
a~

)

n

|

weighted Hamming error Er
[%)

weighted Hamming error Er

(a) GCA, w, train

static brush
—static trimap
—dynamic brush

static brush
—static trimap
—dynamic brush

o
o

I
~

weighted Hamming error Er
N w

weighted Hamming error Er
n w

0 02 04 06 08 1
Wc

(¢) GC, w, train (d) GC, wg train

Figure 4: Line-search. We compare 3 different training procedures for interactive segmentation: Static learning from a fized
set of user brushes, static learning from a tight trimap and dynamic learning with a robot user starting from a fixed set of user
brushes. Error Er (L stdev.) for two segmentation systems (GC/GCA) as a function of line-search parameters, here w. and
wg. The optimal parameter is shown along with its Jackknife variance estimate (black horizontal bar).

Trimap we w; wg Test (Er)
dynamic brush | 0.03+£ 0.03 4.31+ 0.17 2.21+ 3.62 1.00
static trimap | 0.07£ 0.09 4.39+ 4.40 9.73+ 7.92 1.04
static brush 0.22+ 0.52 0.47+ 8.19 3.31+ 2.13 1.19

(a) System GCA.

Trimap We w; wg Test (Er)
dynamic brush | 0.244+ 0.03 4.72+ 1.16 1.70+ 1.11 1.38
static trimap | 0.07£ 0.09 4.39+ 4.40 4.85+ 6.29 1.52
static brush 0.57+ 0.90 5.00£ 0.17 1.10+£ 0.96 1.46

(b) System GC.

Table 2: Optimal parameter values + stdev. for different systems after line-search for each parameter individually.

for the GC system in table 2b. We see the same conclusions
as above. One interesting thing to notice here is that the
pairwise terms (esp. w.) are chosen higher than in GCA.
This is expected, since without post-processing a lot of iso-
lated islands may be present which are far away from the
true boundary. So post-processing automatically removes
these islands. The effect is that in GCA the pairwise terms
can now concentrate on modeling the smoothness on the
boundary correctly. However, in GC the pairwise terms have
to additionally make sure that the isolated regions are re-
moved (by choosing a higher value for the pairwise terms)
in order to compensate for the missing post-processing step.
It is interesting to note that for the error metric f(ery) =
ery, we get slightly different values (full results in [18]). For
instance, we see that w. = 0.07 £ 0.07 for GCA with our
active user. This is not too surprising, since it says that
larger errors are more important (this is what f(ery) = ery
does). Hence, it is better to choose a larger value of w..

©
T

—GCA

L —GC

s 502 GCS|

5 —GEO

[=)

£

£

§ 2r 1

T 150 1
1.2k]

10 15 20
B: number of strokes

o
(&

Figure 5: System comparison: Segmentation performance of
4 different systems: GCA, GC, GCS and GEO using the
robot user. Error er, averaged over all images.

System Comparison.
Fig. 5 shows the comparison of 4 systems using our robot
user. The systems GC, and GCA where trained dynami-

cally. The order of the performances is as expected; GCA is
best, followed by GC, then GCS, and GEO. GEO performs
badly, since it does no regularization (i.e. smoothing) at the
boundary, compared to the other systems. This corresponds
with the findings in [13] on a different dataset.

S. MAX-MARGIN LEARNING

The line-search method used in Section 4 can be used
for learning models with few parameters only. Max-margin
methods deal which models containing large numbers of pa-
rameters and have been used extensively in computer vision.
However, they work with static training data and cannot be
used with an active user model. In this Section, we show
how the traditional max-margin parameter learning algo-
rithm can be extended to incorporate an active user.

5.1 Static SVMstruct

Our exposition builds heavily on [24] and the references
therein. The SVMstruct framework [26] allows to adjust
linear parameters w of the segmentation energy Euw(y,x)
(Eq. 1) from a given training set {xk, yk}k:L_K of K images
x* € R™ and ground truth segmentations'® y € Y := {0, 1}"
by balancing between empirical risk Y, A(y"*, f(x*)) and
regularisation by means of a trade-off parameter C. A (sym-
metric) loss function'> A :) x Y — R; measures the
degree of fit between two segmentations y and y*. The
current segmentation is given by y* = argminy Fw(y, X).
We can write the energy function as an inner product be-
tween feature functions ;(y,x) and our parameter vec-
tor w: Ew(y,x) = w' 9(y,x). With the two shortcuts
61,[1;“, =(x",y) —(x*,y"*) and Ef, = A(y,y"), the margin
rescaled objective [25] reads

1OWe write images of size (n, ny, n.) as vectors for simplicity.
All involved operations respect the 2d grid structure absent
in general n-vectors.

"'We use the Hamming loss Ag(y*,y*) =1T|y* —y

|

: 1 2 CcCqT
S o(w) =5 [w|"+z1¢ 3)

sbt. mingcy g {W oYS — 65} > & Yk

In fact, the convex function o(w) can be rewritten as
a sum of a quadratic regulariser and a maximum over an
exponentially sized set of linear functions each correspond-
ing to a particular segmentation y. Which energy func-
tions fit under the umbrella of SVMstruct? In principle, in
the cutting-planes approach [26] to solve Eq. 3, we only
require efficient and exact computation of arg miny Fw(y)
and argming x Ew(y) — Ay, y*). For the scale of images
ie. n > 10°, submodular energies of the form Ey(y) =
y' Fy +b'y, Fi; > 0,b; € R allow for efficient minimi-
sation by graph cuts. As soon as we include connectivity
constraints as in Eq. 1, we can only approximately train
the SVMstruct. However some theoretical properties seem
to carry over empirically [11].

5.2 Dynamic SVMstruct with “Cheating”

The SVMstruct does not capture the user interaction part.
Therefore, we add a third term to the objective that mea-
sures the amount of user interaction ¢ where u* € {0,1}"
is a binary image indicating whether the user provided the
label of the corresponding pixel or not. One can think of u®
as a partial solution fed into the system by the user brush
strokes. In a sense u* implements a mechanism for the SVM-
struct to cheat, because only the unlabeled pixels have to be
segmented by our argminy Ey procedure, whereas the la-
beled pixels stay clamped. In the optimisation problem, we
also have to modify the constraints such that the only seg-
mentations y compatible with the interaction u” are taken
into account. Our modified objective is given by:

1
min - o(w.U) = g w* + C1Ten (1)
sb.t. min {WT&/J’; — Z’;,} > —€p, L > a' u® V.

YEVI k\yF

For simplicity, we choose the amount of user interaction
or cheating ¢ to be the maximal a-reweighted number of
labeled pixels ¢ = maxy 3, as|uf|, with uniform weights a =
a-1. Other formulations based on the average rather than on
the mazimal amount of interaction proved feasible but less
convenient. We denote the set of all user interactions for all
K images x* by U = [u',..,u’]. The compatible label set
V]t = {0,1}™ is given by {§ € V|uf =1 = §; = yF'} where
y* is the ground truth labeling. Note that o(w, U) is convex
in w for all values of U and efficiently minimisable by the
cutting-planes algorithm. However the dependence on u” is
horribly difficult — we have to find the smallest set of brush
strokes leading to a correct segmentation. Geometrically,
setting one u¥ = 1 halves the number of possible labellings
and therefore removes half of the label constraints. The
problem (Eq. 5) can be re-interpreted in different ways:

A modified energy Ewv(y) = Ew(y) + > ey ub i (yi, y¥)
with cheating potentials ¢:(yi,yF) := oo for y; # y¥ and 0
otherwise allows to treat the SVMstruct with cheating as an
ordinary SVMstruct with modified energy function Ew v (y)
and extended weight vector w = [w; u’;..; u”].

A second (but closely related) interpretation starts from the
fact that the true label y* can be regarded as a feature vector

of the image x*12. Therefore, it is feature selection in a very
particular feature space. There is a direct link to multiple
kernel learning — a special kind of feature selection.

5.3 Optimisation with strategies

We explored two approaches to minimise o(w, U). Based
on the discrete derivative g—l‘}, we tried coordinate descent.
Due to the strong coupling of the variables, only very short
steps were possible '3. Conceptually, the optimisation is de-
coupled from the user interaction, where removal of already
known labels from the cheating does not make sense. At
every stage of interaction, a user acts according to a strat-
egy s : (x*, y* uPFt y, w) — uP*!. The notion of strategy
or policy is also at the core of a robot user. In order to
capture the sequential nature of the human interaction and
assuming a fixed strategy s, we relax Eq. 4 to

i o(w,T) = lwl? + €17E (5)
sbt. mingey) ok {wlopy —t5} > —& Yk

c>alubT uh T = sT(xk,yk,w) vk

where we denote repeated application of the strategy s by
sT(x*, y*, w) = O s(x*, y*, u™*, w) and by O the func-
tion concatenation operator. Note that we still cannot prop-
erly optimise Eq. 5. However, as a proxy, we develop Eq.
5 forward by starting at ¢t = 0 with u*°. In every step t,
we interleave the optimisation of the convex o(w*,t) and the
inclusion of a new user stroke yielding w” as final estimate.

5.4 Experiments

We ran our algorithm on K = 200 artificial images of size
40 x 40 pixels generated by sampling the fg/bg HSV com-
ponents from independent Gaussian processes with length
scales ¢ = 3.5 pixels. They were combined by a smooth
a-map and then squashed through a sigmoid transfer func-
tion (see figure 6¢). We use a restricted GCS system with
three parameters (w;, we, wy,), where w, is the weight for the
unary term'*. Given the ground truth segmentation we fit
a Gaussian mixture model for fore- and background which
is not updated during the segmentation process. We used
two pairwise potentials (Ising w; and contrast w.), a weight
on unaries (w,) and the random robot user with B = 50
strokes to train SVMstruct (C'=100, 4-neighborhood) on 50
images, keeping 150 test images. Fig. 6b shows, how the
weights of the linear parameters varies over time. Edge-
blind smoothing (w;) is switched off, whereas edge-aware
smoothing becomes stronger (w.). The Hamming error on
the test set decreases more with dynamically learnt weights.

6. CONCLUSION

This paper showed how robot users can be used to train
and evaluate interactive systems. Line-search is used to find
good parameters for different interactive segmentation sys-
tems under a user interaction model. We also compared the

121t is the most informative feature with corresponding pre-
dictor given by the identity.

1311 the end, we can only safely flip a single pixel u* at a
time to guarantee descent.

“We did not fix w, to 1, as before, to give the system the
freedom to set it to 0.

b) GCS: weights

a) GCS: Hamming error ery, —w,

4 ‘ | | | | oal

ol | 0.

1t 10.2
0.5¢ 1

0.1
— static

0.1 — dynamic 0

0 10 20 30 40 50 0 10
B: number of strokes

B: number of strokes

30 40 50

Figure 6: Maz-margin stat/dyn: a) Segmentation performance using GCS when parameters are either statically or dynamically
learnt. b) Evolution of weights w = (wu, ws, w.) (GMM unary, Ising, contrast) during the optimisation. Static parameters
refer to the case where B = 0, and dynamically learned parameters are for B = 50. c¢) Sample of the data set used.

performance of the static and dynamic user interaction mod-
els. With more parameters, line-search becomes infeasible,
leading naturally to the max margin framework.

We introduced an extension to SVMstruct incorporating
user interaction models, and showed how to solve the cor-
responding optimisation. We obtained promising results on
a small simulated dataset. The main limitation of the max
margin framework is that crucial parts of state-of-the-art
segmentation systems (e.g. GCA) cannot be handled. These
parts include (1) non-linear parameters, (2) higher-order po-
tentials (e.g. enforcing connectivity) and (3) iterative up-
dates of the unary potentials.

7. REFERENCES

[1] amazon.com. Amazon mechanical turk.
https://www.mturk.com, 2010.

[2] X. Bai and G. Sapiro. A geodesic framework for fast
interactive image and video segmentation and
matting. In ICCV, 2007.

[3] D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen.
iCoseg: Interactive co-segmentation with intelligent
scribble guidance. In CVPR, 2010.

[4] M. Bilgic and L. Getoor. Reflect and correct: A
misclassification prediction approach to active
inference. ACM TKDD, 3(4), 2009.

A. Blake, P. Kohli, and C. Rother. Markov Random

Fields for Vision and Image Processing. MIT Press,

2011.

A. Blake, C. Rother, M. Brown, P. Perez, and P. Tor.

Interactive image segmentation using an adaptive

GMMRF model. In ECCV, 2004.

[7] Y. Boykov and M. Jolly. Interactive graph cuts for

optimal boundary and region segmentation of objects
in N-D images. In ICCV, 2001.

[8] O. Duchenne, J.-Y. Audibert, R. Keriven, J. Ponce,

and F. Ségonne. Segmentation by transduction. In

CVPR, 2008.

M. Everingham, L. V. Gool, C. K. I. Williams,

J. Winn, and A. Zisserman.

http://www.pascal-network.org/challenges/VOC,

20009.

[10] J. A. Fails and J. Dan R. Olsen. Interactive machine
learning. In International Conference on Intelligent
User Interfaces, 2003.

[11] T. Finley and T. Joachims. Training structural SVMs
when exact inference is intractable. In ICML, 2008.

5

[6

9

[12] L. Grady. Random walks for image segmentation.
PAMI, 28:1-17, 2006.

[13] V. Gulshan, C. Rother, A. Criminisi, A. Blake, and
A. Zisserman. Geodesic star convexity for interactive
image segmentation. In CVPR, 2010.

[14] P. Kohli, L. Ladicky, and P. Torr. Robust higher order
potentials for enforcing label consistency. In CVPR,
2008.

[15] P. Kohli and P. Torr. Efficiently solving dynamic
MRFs using graph cuts. In ICCV, 2005.

[16] Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum. Lazy
snapping. SIGGRAPH, 23, 2004.

[17] J. Liu, J. Sun, and H.-Y. Shum. Paint selection. In
SIGGRAPH, 2009.

[18] H. Nickisch, P. Kohli, and C. Rother. Learning an
interactive segmentation system. Technical report,
http://arxiv.org/abs/0912.2492, 2009.

[19] S. Nowozin and C. H. Lampert. Global connectivity
potentials for random field models. In CVPR, 2009.

[20] C. Rother, V. Kolmogorov, and A. Blake. Grabcut -
interactive foreground extraction using iterated graph
cuts. SIGGRAPH, 23(3):309-314, 2004.

[21] B. C. Russell, A. Torralba, K. P. Murphy, and W. T.
Freeman. Labelme: a database and web-based tool for
image annotation. IJCV, 77:157-173, 2008.

[22] D. Singaraju, L. Grady, and R. Vidal. P-brush:
Continuous valued MRFs with normed pairwise
distributions for image segmentation. In CVPR, 2009.

[23] A. Sorokin and D. Forsyth. Utility data annotation
with amazon mechanical turk. In Internet Vision
Workshop at CVPR, 2008.

[24] M. Szummer, P. Kohli, and D. Hoiem. Learning CRFs
using graph cuts. In ECCYV, 2008.

[25] B. Taskar, V. Chatalbashev, and D. Koller. Learning
associative markov networks. In ICML, 2004.

[26] I. Tsochantaridis, T. Hofmann, T. Joachims, and
Y. Altun. Support vector learning for interdependent
and structured output spaces. In ICML, 2004.

[27] S. Vicente, V. Kolmogorov, and C. Rother. Graph cut
based image segmentation with connectivity priors. In
CVPR, 2008.

[28] L. von Ahn and L. Dabbish. Labeling images with a
computer game. In SIGCHI, pages 319-326, 2004.

[29] L. Wasserman. All of Statistics. Springer, 2004.

