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This paper presents a new, unified technique to perform gemreige-
sensitive editing operations on n-dimensional images aebg efficiently.
The first contribution of the paper is the introduction of agelized
geodesic distance transform (GGDT), based on soft masks pftvides a
unified framework to address several, edge-aware editing opesatidi-
verse tasks such as de-noising and non-photorealisticeragd are all
dealt with fundamentally the same, fast algorithm. Secamw, geodesic,
symmetric filter (GSF) is presented which imposes consassitive spa-
tial smoothness into segmentation and segmentation-bedigidg tasks
(cutout, object highlighting, colorization, panoramacsting). The effect
of the filter is controlled by two intuitive, geometric pareters. In contrast
to existing techniques, the GSF filter is applied to realtedl pixel likeli-
hoods (soft masks), thanks to GGDTs and it can be used foiiftettactive
and automatic editing. Complex object topologies are dettiteffortlessly.
Finally, the parallelism of GGDTs enables us to exploit nradaulti-core
CPU architectures as well as powerful new GPUs, thus pnagigreat flex-
ibility of implementation and deployment. Our techniqueeies on both
images and videos, and generalizes naturally to n-dimeakdata.

The proposed algorithm is validated via quantitative aralitative com-
parisons with existing, state of the art approaches. Nuuseresults on a
variety of image and video editing tasks further demonsttia¢ effective-
ness of our method.

Categories and Subject Descriptors: |.4S@§mentatio}: Image process-

ing and computer vision; |.4./Restoration]: Image processing and com-
puter vision; 1.3.3 Picture/lmage Generatior]: Image processing and
computer vision

General Terms: Image and video, segmentation, non-pladistie render-
ing, restoration

Additional Key Words and Phrases: Geodesic distance, gdodggmen-
tation, tooning, denoising
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1. INTRODUCTION AND LITERATURE SURVEY

Recent years have seen an explosion of research in Congmatati
Photography, with many exciting new techniques been irckta
aid users accomplish difficult image and video editing taeffesc-
tively. Much attention has been focused on: segmentatiog{8v
and Jolly 2001; Bai and Sapiro 2007; Grady and Sinop 2008; Li
et al. 2004; Rother et al. 2004; Sinop and Grady 2007; Wang et a
2005], bilateral filtering [Chen et al. 2007; Tomasi and Mactd
1998; Weiss 2006] and anisotropic diffusion [Perona andiiMal
1990], non-photorealistic rendering [Bousseau et al. 200ang
et al. 2004; Winnemoller et al. 2006], colorization [Yatzwd
Sapiro 2006; Levin et al. 2004; Luan et al. 2007], image Istitc
ing [Brown et al. 2005; Agarwala et al. 2004] and tone map-
ping [Lischinski et al. 2006]. Despite the many, differetga
rithms, all those tasks are related to one another by the @mm
goal of obtaining spatially-smooth, edge-sensitive otgge.g, a
de-noised image, a segmentation map, a flattened texturgatls
stitching map etc. See fig. 1). Building upon such realizgttbis
paper proposes a new algorithm to addrgkghose applications in
aunifiedmanner. The advantage of such unified approach is that the
core processing engine needs be written and optimized ordyg,o
while maintaining a wide spectrum of applications.
Edge-sensitive and spatially smooth image editing can be
achieved by modeling images as Markov Random Fields [$zelis
et al. 2007]. However, solving an MRF involves time-consugni
energy minimization algorithms such as graph-cut [Kolntogo
and Zabih 2004] or belief propagation [Felzenszwalb andéut
locher 2004] in case of discrete labels, large sparse liggstem
solvers in case of continously valued MRFesg. [Grady 2006;
Szeliski 2006]. Today’s image editing applications areuiesd to
run efficiently on image sizes up to 20 Mpixels, and unfortatya
none of the existing algorithms scale well to such resohstioln
order to address the efficiency problem researchers haweedso
approximate multi-resolution algorithms, with unavoiialmss of
accuracy [Lombaert et al. 2005; Kopf et al. 2007; Liu et aDZ0
When processing video frames, additional efficiency mayaeagl
via dynamic MRFs [Juan and Boykov 2006; Kohli and Torr 2007].
Inspired by the work in [Bai and Sapiro 2007] we impose edge-
sensitive smoothness by means of geodesic distance transfo
(GDT), thus avoiding energy minimization altogether. Imast to
e.g, graph-cut our algorithm’s memory and runtime requireraent
are both linear in the number of pixels. This allows us to wdirk
rectly with the full image resolution and avoid loss of detéhe al-
gorithm proposed here differs from that in [Bai and Sapir@7Zan
five important ways: i) It imposes spatial smoothness vialgsit
filtering, ii) It is not limited to interactive segmentatiaand can
be applied to automatic segmentation tasks. iii) It overesiBai's

L Graph-cut ha®)(N?) memory requirement and a worst case runtime of
O(N3), whereN is the number of pixels.
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Fig. 1. Examples of geodesic image editing. (Top rowdriginal images. (lady’s original photo courtesy of D. VgigBottom row) processed images.
Segmentation, filtering and non photo-realistic effects ahbe achieved very efficiently with the single frameworkgosed in this paper. The algorithm’s
efficiency enables processing high-resolution, n-dimeraiimages at interactive rates.

topology restrictions (details later). iv) It handles ewittasks other tion. Implementations of various image and video editingrap

than segmentation. Finally, v) our algorithm exploits nmodear- tions using these two tools are described in Section 4. Qative

allel computer architectures to achieve greater efficiency validation and comparative experiments are presentedatidBes
When possible, a common technique to increase an algogthm’ for applications based on GSF and in Section 6 for applinatio

execution speed is to implement it on the GPU. For examplsta fa based on GGDT alone.

GPU-based bilateral filtering is described in [Chen et ab720and

GPU-driven abstraction in [Winnemoller et al. 2006]. Howe\the 2. GEODESIC DISTANCE TRANSFORMS AND

choice whether to use the CPU or the GPU is driven not only by THEIR GENERALIZATION

efficiency issues but also by portability ones. In fact, CRsstill ) o ) o

far more prevalent than GPUs.¢, mobile devices and many lap- ~ This section first describes background on geodesic distaans-

tops have CPUs but no GPUs). Also, the large diversity batwee forms and theirimplementation. It then introduces thefnegaliza-

GPUs makes it difficult to robustly deploy GPU-based sofavar ~tion using soft masks. Efficient implementation of GGDTshisrt

to a wide audience. On the other hand, modern GPUs are quickly briefly discussed.

moving towards becoming generic computing devices. Thellehr . . .

algorithm proposed here is based on geodesic distancdararss 2.1 Geodesic distance and its computation

which can be computed efficiently on the GPU [Weber et al. 2008

As described later our algorithm is also extrgmely gﬁici&h’en I(x) : ¥ — R? be an imaged = 3 for a color image), whose

implemented on modern multi-core CPUs. This provides dfeset support? c R2 is assumed to be continuous for the time being.

ibility of implementation and deployment. . . Given abinary masR/ (with M (x) € {0, 1}, ¥x € ¥) associated
This paper builds upon the segmentation algorithm in [Qumi {4 5 “geeg” region (or “object” regiorf) = {x € ¥ : M(x) = 0},

isi et al. 2008] and extends it in the following ways: i) it ioges the unsigned geodesic distance transfddpi.; M, VI) assigns to
spatial smoothness while avoiding expensive energy mazaitiun; each pixek its geodesic distance frofa defined as:
ii) it provides a single framework to address many differediting

2.1.1 Geodesic distance from a binary region on an imaget

tasks; iii) it provides quantitative comparisons with catipg state Do(x; M,VI)=  min d(x,x'), with (1)
of the art algorithms. (1M () =0}

The remainder of the paper is organized as follows. Section 2 o(T)
provides background on distance transforms in digital iesatpe- d(a,b) = inf / \/1 + 72 (VI(s) ~1"’(s))2 s, (2)
fore introducing their generalization to soft masks. Thiéciet TePab Jo
implementations of such transforms is also discussed.idde8t whereP, 1, is the set of all possible differentiable pathsdnbe-

describes the geodesic symmetric filter (GSF) that exp@@PDTs tween the pointsa andb andI'(s) : R — R? indicates one
for image segmentation. Please note that both the GGDT and th such path, parametrized by its arclengtte [0, ¢(T")]. The spa-
GSF operator were already presented in [Criminisi et al8p00t tial derivativeI''(s) = OT'(s)/0s is the unit vector tangent to the
in the context of energy minimization for segmentation. éHese direction of the path. The dot-product in (2) ensures maxinin:
repeat the mathematical definitions for clarity and furédeborate fluence for the gradierW I when it is parallel to the direction of the
on the link between GGDT and classic GDT. Furthermore, we ex- pathI'. Thegeodesic factoty weighs the contribution of the image
plore the use of these recently introduced tools in the abofam- gradient versus the spatial distances. Figure 2 showstestrdkion
age editing while negating the need for complex energy nizam of GDT to a binary mask in a given image.
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Fig. 2. Geodesic distanceqa) Original image,l; (b) Input maskM with “object” region2. (c) Euclidean distance fro® (Do (x; M, VI) with v = 0
in (2)); (d) Geodesidlistance front2 (Do (x; M, VI) with v > 0). Note the large jump in the distance in correspondence stiting image edges.

In case of scalar images, the integral in (2) is the Euclidean thatin the latter the input seed mapis more generally aoft, real-

length of the 3D patH thatT' defines on thézx,y,~I) surface:
T'(s) = [['(s);vI(T(s))]. Henced(a, b) is the length of the short-
est path betweea andb on this surface. Also, foy = 0, Eq. 2
reduces to the Euclidean length of p&th

It is worth noting that the term “geodesic distance” is often
used more generally to indicate any weighted distance. & [B
and Sapiro 2007] for instance, gradients of likelihoodsumed as
geodesic weights.

2.1.2 Algorithms to compute GDT<sExcellent surveys of tech-
nigues for computing (non-geodesic) DTs may be found inlpFiab
et al. 2008; Jones et al. 2006]. There, two main kinds of élyois
are describedaster-scarandwave-front propagationRaster-scan
algorithms are based on kernel operations applied segligraver
the image in multiple passes [Borgefors 1986]. Instead gwfeant
algorithms such as Fast Marching Methods (FMM) [Sethiar£].99
are based on the iterative propagation of a front with anapate
velocity field.

Geodesic versions of both kinds of algorithms may be found
in [Toivanen 1996] and [Yatziv et al. 2006], respectivelntB the
Toivanen and Yatziv algorithms produce approximation$edc-
tual distance and both have optimal complexiy N) (with N
the number of pixels). However, this does not mean that they a
equally fast in practice. In FMM front pixels are expandedaad-
ing to a priority function. This requires accessing imageatmns
far from each other in memory. The limited memory access band
width of modern computers limits the speed of execution ahsu
algorithms much more than their modest computational burde
In contrast, Toivanen’s technique (employed here) readsrth
age memory ircontiguousblocks, thus minimizing delays due to
memory access. As demonstrated later this yields greagsuex
tion speed. Multiple-pass raster-scan algorithms candgsbwith
the difficult spiral-like patterns as shown in fig. 2d. We sladdo
see that the Toivanen algorithm is trivially extended togheeral-
ized geodesic transform presented next, as opposed to fashm
ing methods.

2.2 Generalized geodesic distance transform
(GGDT)
This section presents tlgeneralizedsDT introduced in [Criminisi

et al. 2008] and discusses its relationship to GDT. Its appibins
will be discussed in Section 3.

2.2.1 GDT generalized to a soft mask on an imagée key
difference between the GDT and its generalized variantadaht

valued function. Given a map/ (x) € [0, 1] on the image domain
W, the GGDT is defined as follows:

D(x; M,VI) = min (d(x,x') + vM(x)), (3)

x'eW

with d(.) as in (2). Mathematically, this is a small change as com-
pared to (1). However, the fact that (3) uses the befief of a
pixel belonging to the object or region of interest meang tha
latter can be defined probabilistically. The advantageasithsev-
eral automatic or semi-automatic applications, extractid such

a probabilistic mask is achieved more economically tharingav
to compute a binary segmentation, while conveying moremée
tion.

The parameter in (3) establishes the mapping between the be-
liefs M and the spatial distances. Figure 3 further clarifies these
points with an explanatory 2D example. In this example, & sof
mask of the object of interest is obtained based on userezhte
foreground and background brush strokes (as detailed itioBec
4.1). This soft mask is shown in fig. 3b and the corresponding
GGDT in fig. 3c. Notice the abrupt distance changes corredipgn
to the contour of the object of interest (the flower in thiss)aHf the
soft mask includes pixels with no uncertainty (whéd&x) = 0),
it is clear from its definition that the GGDT is equal to zero at
these locations and only them (the minimum in (3) is achideed
x' = x). This is similar to the classic geodesic distance, which
vanishes only within the object associated to the binaryjkmasy
processing based on a decreasing function of the GGDT of soft
maskM will have maximal effect at these locations.

Another formal connection between GDT and GGDT can be
worked out as follows. In case of binary masks, the exprassfo
the GGDT in (3) for pixels outside the object of interedf (x) =
1) boils down to

min{ min d(x,x’), min d(x,x)+v} = min{Do(x; M, VI),v}.
x's.t. x' s.t.
M(x') =0 M) =1

4)
Hence, in this particular case, the GGDT is simply the thoksdd
GDT to binary mask defined by/, with thresholdv, the two dis-
tances coinciding if the threshold is large enough.

A similar breaking down of the minimization (3) into sepa&rat
minimizations over sets of constant mask values can be coedu
in the general case. Let us dendteC [0, 1] the discrete set of
values actually taken by the functidd on the discrete image grid

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Blication date: Month YYYY.



A. Criminisi et al.

Fig. 3. Generalized geodesic distances. (@n input image.(b) A probabilistic (soft) seed mask{ (darker for foreground); Intermediate grey values
indicate uncertain pixelgc) The estimated Generalized Geodesic Distance (darker faltendistance values). This is shown here only to provid&laa of

what a generalized geodesic distance looks like.

V. Then the GGDT can be rewritten as:

D(x; M,VI) = min min [d(x,x")+vA] = min[Dg(x; My, VI)+vA],
XeA  yig XeA
M) =X
©®)
where the functionV/,, is defined ad\/,(x') = 0 if M(x') = A
and 1 otherwise. Hence the GGDT can be deduced fronhe
GDTs associated to the level sets /af, which is an alternative
way to think about it.
So far we have described the mathematical model of the GGDT.

Next we describe the algorithm for computing it.

2.2.2 Efficient computation of GGDT<LComputation of GDTs
and GGDTs requires the discretization of the image domaioén
the geodesic distancgin (2). Considering an eight-neighborhood
structure on the pixel grid, paths betwesrandb are chains of
neighboring pixel§xo = a,x1, -+ ,X,-1,%, = b). Along such
a chain the integral in (2) can be approximated with the faihgy
sum:

n

S [k — xeea? 72 (x) — 1oxn) 2]

k=1

N

(6)

Based on this discrete definition of the geodesic distantedsm
two neighboring pixels, the GDT for a given binary mask can be
computed by wave-front algorithms that propagate a fraantisg

at the boundary of the mask. Such methods can be exact,gelyin
on the minimum cost path Dijkstra’s algorithm [Dijkstra Bd50r
approximate for lighter computation [Yatziv et al. 2006pwEver,
computation of GGDT defined in (3) requires, for each pixeh
minimization with respect to any possible destination Raster-
scan methods extends naturally to this case, as followsr Axft-
tializing the distance map with scaled seed maBk£ v M), a
first scan is executed from top-left to bottom-right, updatihe
distance map at the current pixelaccording to

D(x) = min {D(x-{-ak) + [lar|* + 72| I(x) — I(x+ak)|2]% ,k=0---4},

@
with ag = (0,0), a; = (—1,—1), a2 = (—1,0), a5 = (—1,+1)
anday = (0, —1). In the second scan the algorithm proceeds from
the bottom-right to the top-left corners using the same tedpide
with opposite displacement vectaiss, to obtain the final map.

2Larger kernels€.g, 5 x 5 ) produce better approximations to the exact dis-
tance, but with a significant reduction in speed. In our @agibns multiple

This algorithm can be implemented efficiently on multi-core
CPU using assembly and SIMD instructions for optimal perfor
mance. Note that four of the five elements in the requinga com-
putation (see eqn. 7), are independent. Therefore we centipese
using data-level parallelism (SSES3 instruction set).

The same algorithm, up to slight modifications, can also be im
plemented on the graphics processor. It amounts to exigridin
soft masks the recent work in [Weber et al. 2008] for appraten
computation of GDTs on the GPU (by exploiting NVidia’s CUDA
new architecture).

3. GSF: GEODESIC SYMMETRIC FILTERING OF
IMAGES

The GGDT introduced above can be used as such for a number
of edge-sensitive image editing and processing tasks, ashelé
demonstrate in Sections 4.2 and 6. It can also serve as thedfas
new morphological operators. In this section we introdbeeGSF
operator as an efficient tool for computing hard and sofaet
segmentations.

As discussed in [Fabbri et al. 2008; Jones et al. 2006] DT-algo
rithms are useful for the efficient implementation of moriolgd
cal operators [Heijmans 1995]. Here we employ geodesiamniist
transforms to implement efficiergeodesic morphologySoille
1999] (see fig. 4), the basis of the GSF filter.

3.1 Geodesic morphology

The definition of the distancP in (3) leads to the followingigned
generalized geodesic distance:

Ds(x; M,VI)=D(x; M,VI)— D(x;1—M,VI). (8)

In the case of a binary mask, is the signed distance from the
objectboundary(cf. fig. 5).

ThresholdingD, at different heights achieves basic morpho-
logical operations. For instance, geodesic dilation isioletd as
My(x) = [Ds(x; M,VI) > 04]; with 6; > 0 indicating the di-
ameter of a disk-shaped structuring element. The indidatue-
tion [.] returnsl if the argument is true an@l otherwise. Similarly,
geodesic erosion is obtained && (x) = [D,(x; M,VI) > —0,]

distance transforms are mixed together in various ways ifliiigates the
effects of inaccuracies in distance computation and letgetiaway with
smaller kernels. Also, note thatx 3 kernels are used effectively in the vast
MREF literature.
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Fig. 4. Geodesic closing(a) Original image.(b) Image gradient. Notice the weak edge on the ché®kOriginal with initial mask superimposed (dark).
(d) After conventionalclosing (e) After geodesic dilationNotice the leakage effect typical of geodesic transformthé presence of weak edgéB. After
geodesic closingNow the leakage is removed and the mask is aligned with tteopis silhouette, more accurately than in (d).

(with 8., > 0). Finally, geodesic closing and opening are achieved
as:

M.(x)
M, (x)

[D(x; My, VI) < 6.],
[D(x; M., VI) > 04],

9)
(10)

respectively; withM; = 1 — M.

Figure 4 shows an example where an initial binary mask is fil-
tered both by conventional closing (fig. 4d) and then by gsiade
closing (fig. 4f). Geodesic filtering encourages the contafuthe
final mask to follow the object boundary. Notice how possiebk-
ages which may arise from dilation (erosion) in correspocdeo
weak edges are removed when the opposite erosion (dilatmmar}
ation is performed.

Redefining known morphological filters in terms of operagion
on real-valued distances allows us to: i) implement thoserap
tors very efficiently, ii) introduce contrast sensitivitffatlessly,
by means of geodesic processing and iii) handle soft mastin
same framework. Next a further modification to conventianat-
phology is introduced, adding symmetry.

3.2 The GSF operator

Closing and opening are asymmetrical operations in theestbias
the final result depends on the order in which the two componen
operations are applied to the input mask (see also fig. SdyeMer,
when filtering a signal one would just wish to define the extdnt
the regions to be removed.@, noise speckles) and apply the filter
without worrying about the sequentiality of operationshivitthe
filter itself 2

This problem is solved by GSF filtering. The key idea can be
summarized as follows: i) Given the noisy “signal’, binary or
not, we run geodesic dilation and erosion in two paralletksa
if) The results are then mixed (by mixing real-valued dis&s) to
produce a distance function which, iii) when thresholdeal/jates
the final, spatially smooth segmentation.

The GSF filter is defined mathematically as follows:

Measr(x; M,VI) = [D3(x; M,VI) > 0] (11)
where the symmetric, signed distanbé is defined as:
D3(x; M, VI) = D(x; M., VI)—D(x; My, VI)+0,—0., (12)

3Closing-opening filters such as the one used in [Boussedu28Q¥] may
be interpreted as approximations to our symmetrical filter.

with M. and M, defined earlier. The additional terfiy — 6. en-
forces the usefuidlempotencgroperty, i.e., it keeps unaltered the
remaining signal structure.

Figure 5 illustrates the effect of our GSF filter both on bynar
masks in 1D and 2D. Notice how isolated peaks and valleys are
removed from the original signal while maintaining unatekithe
remaining signal structure. The geometric parameles(6, 0. )
establish the maximum size of noise regions to be removeglefh
fect of varyingd may be observed also in the 2D example. Alterna-
tive, sequential filters such as “erode-dilate-erode” @eto-close”
produce less good and (in general) different results fragir gym-
metrical counterparts.

3.3 Parallelism of GSF

The most expensive operation in the GSF filter in (11) is byHer
geodesic distance transform. However, note that the fatance
transforms necessary to computé; s haturally form two pairs
of transforms. In each pair the operations are independezdah
other. Thus, the transforms in each pair may be computed-aiiph
on a dual-core processor, as in our implementationidfthe unit
time required for each unsigned GGDT, then the total tifrtaken
to run a GSF filtering operation i = 2t¢.

Furthermore, as mentionned in Section 2.2.2, each GGDTe&an b
computed approximately but efficiently on the GPU [Weberlet a
2008] (on the latest NVidia devices). The rest of the GSF atpans
(distance mixing and thresholding) may also be computeityeas
modern graphics processors.

To summarize, the GSF operator: i) Generalizes existing mor
phological operations by adding symmetry and contrassiteity
i) It can be applied to soft masks; ii) It is efficient due te @on-
tiguous memory access and parallelism; iii) It can be imgetad
on the GPU; iv) Its controlling parameters are geometnycitu-
itive and easy to set.

Next, we show how to perform many common image and video
editing tasks using either GSF operations or using just émeigl-
ized GDTs.

4. EFFICIENT EDGE-AWARE EDITING

Most image and video editing operations share the goal of pro
ducing a spatially smooth, contrast-sensitive output. &am-
ple, image de-noising algorithms tend to smooth out an image

4An operatorf is idempotent ifff (f(z)) = f(z).
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Fig. 5. Explaining the GSF filter. (Left panel) An illustrative example in 1D with binary magle) Input binary signal(b) The signed distanc®;. (c) The
two further unsigned distances in (12), for selected vatigs= (6,4, 0.). (d) The final signed distancP?. (e) The output, filtered masklgsr (z; M). The
narrower peaks and valleys 8f () have been removed while maintaining the integrity of theaing signal(Right panel) A 2D example(a) The original
noisy binary image(b) Our filtering results for large enough values of the paramség 6.. (c) The effect of varying ;. For fixedé., more foreground noise
is removed ag, increases; and vice-vers@l) Existing filters such as “erodedilate—~erode”, or “open-close” tend to produce worse results while being
affected by the asymmetry problem (see text). For claritgxgflanation, no image gradient was used here.

while preserving strong edges. Similarly, image segmimtaéch-
niques produce piece-wise flat label maps, with edge-adidraan-
sitions. All these tasks can be efficiently accomplisheddiggiour
GGDTs or our GSF operator.

4.1 Image segmentation via Geodesic Symmetric

Filtering

Given an imagd we wish to select the foreground regidrgf and
separate it from the backgrounBgj) as quickly and accurately as
possible. The input data is represented as an array of iniegjs p,
indexed by the pixel positior asz(x). The corresponding binary,
per-pixel segmentation labeling is denoted

In segmentation algorithms the usual starting point is to
define the pixel-wise foreground and background likelirod
p(z(x)|a(x) = Bg) andp(z(x)|a(x) = Fg). These likelihoods
may be obtained interactively or automatically from a vigrief
sourcese.g, from user strokes [Bai and Sapiro 2007; Boykov and
Jolly 2001; Rother et al. 2004; Li et al. 200%]from stereo cor-
respondence [Kolmogorov et al. 2005], from comparison ith
background model [Criminisi et al. 2006], from object cléisa-
tion [Shotton et al. 2007], etc.

Inferring the segmentation then proceeds by finding thetisolu
«a which: i) “obeys” the likelihood, ii) is spatially smoothnd iii)
is aligned with strong edges. A popular way to achieve thisisis
in defining and minimizing a global energy function over tivesiy
label field [Boykov and Jolly 2001]. This function is compdsaf
pixel-wise likelihoods, and pair-wise terms for contrastisitive
regularization. A modern view of this prototypical apprbds to
associate the energy function to the posterior distrilouticthe hid-
den label field, which is turned this way into a conditionab(iov)

5Bai's technique has been designed solelyifiteractivesegmentation.

random filed, or CRF. The global optimum of the energy is tten t
maximum a posteriori estimate (MAP) of the hidden field.

In [Criminisi et al. 2008] the GSF filter was used within such a
CRF energy minimization framework. However, [Criminisiadt
2008] showed that the output echGSF operation is itself spa-
tially smooth (for large values @f). Thus, in a graphics application
we can assume that the user has interactively set the geomeatr
rameters® © and the output segmentation is that achieved directly as
the output of the GSF filter. This approach, proposed henegves
the need for energy minimization altogether with consitlkerae-
duction of computation times.

In this paper, we show that efficient segmentation, and &ssoc
ated tasks, can be simply achieved by applying the GSF to the

R - — p(z(x)|o(x)=Bg) i
real-valuedlog-odds mapM (x) = o (ln p(z(x)‘a(x)ﬂg)), with

o(.) the sigmoid transformatios (¢t) = 1/(1 + exp(—t/u)). In
all experiments in this paper we have fixed= 5. The output seg-
mentation mask/qsr is simply obtained by selecting a value of
0 (e.g, based on the observed spatial extent of noise speckles) and
applying the GSF filter in (11) to the input mask (cf. fig. 5).

Spatial smoothness and robustness to ndtggure 6 illustrates
the behaviour of the GSF filter in the presence of weak unéiries

6e.g, typically hered, = 83 = 10pix, but depends on image resolution.
7 Avoiding the definition and the minimization of a global CRieegy func-
tion might appear as conceptually less appealing. Note vemtbat there
is arguably no fundamental or practical superiority to thergy-based ap-
proach when the energy is designed in an ad-hoc fashionjssften the
case. In fact, we shall see in sec.5.1.2 that good segmantaitiine struc-
tures can be obtained with our segmentation approach wiémagyy mini-
mization. Finally, recent studies showed that there arescatiere segmen-
tation based on geodesic distances can in fact be relatbe tglabal min-
imization of new energy functions [Sinop and Grady 2007; @@et al.
2009].

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Blication date: Month YYYY.



e

Geodesic Image and Video Editing . 7
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Fig. 6. Spatial smoothness and robustness to nois@) Input soft mask (i.e. pixel-wise likelihoods, green far and red foBg). Notice the large amount
of noise and the large uncertain region (in greh). Magnitude of gradient of input image. This is used in the cofafon of geodesic distance transforms.
(c-f) Computed segmentation boundary (white curve) for increpsalues of; = 0.. Larger values ob yield smoother segmentation boundaries in the
presence of weak edges and/or weak likelihoods; and thmsger robustness to noise. In contrast, strong gradient&™the segmentation in place.

weak input likelihoods) and weak gradients, in a toy exampk
spite the lack of a Markov Random Field energy model our GSF
operator achieves spatially smooth segmentation. Theskieythe
geometric paramete. As illustrated also in fig. 5, larger values

of 6 tend to produce smoother segmentations (less broken up and

smoother contours) despite the fact that the GDT itself isolaust
to noise. Robustness of the GSF filter comes from combinifig di
ferent distance transforms together. Robustness to bigediects
is also illustrated in fig. 4.
Note also that the symmetric signed distafz¥., M, VI) does

For each mask\/; we then compute the corresponding GGDT,
D, (x) = D(x; M;, VI), as in (3). For each pixet and each layer
i, a weight measuring the contribution of the intengityat pixelx

in the final image is computed as

_ DZ(x)
WZ(X) =e ¢ (14)
where¢ > 0 is a parameter (a valug = 100 is used here). The
flattened luma at pixek is finally obtained as a weighted average
of cluster intensities:

not need to be thresholded and can often be used as a soft seg-

mentation map. An example of such use for re-colorizatidtuis-

trated in section 5.3.3. Segmentation results and congreriare
presented in Section 5. Next, we describe application oftreer-
alized geodesic distance to other non-linear image filgeoipera-
tions.

4.2 Edge-sensitive smoothing via Generalized
Geodesic Distances

In this section we propose a method to turn an input image into
a piece-wise smooth image, while mantaining sharp tramsitat
object boundaries. Such edge-preserving image flattesingaful

for a number of applications such as denoising, texturesfiatg

and cartooning.

Edge-aware flattening can be achieved for example by
anisotropic diffusion [Perona and Malik 1990], or bilatéfitter-
ing [Tomasi and Manduchi 1998]. Here instead we follow the ap
proach used in gray-scale morphology, where binary moguyol
filters are run on each intensity level and the results coetbinto
the final output. In order to achieve edge sensitivity weaeplcon-
ventional morphology filtering with ougeodesictransforms ap-
plied to small number o$oftly quantized image layers. The pro-
cessed components are then recombined to produce the dlhtten
output.

In detail, given a color imagé and its luma channél” taking
values inthe rangg0, - - - , 7—1}, all pixel intensities are quantized
into k bins, e.g, using conventional K-means clustering. Each bin
or cluster is associated with a mean luma valyeand standard
deviationo;.

At this point, k£ soft masks\/; (x) are computed as a function of
the probability of each pixel belonging to ti¢ cluster as follows:

1Y (0)-p; )2
M(x) =1 — e 3 (57) (13)

k
Y'(x) = _Z 1iWi(x) / (15)

i=1

Combining the flattened lum#’ with the unprocessed chromatic-
ity channels yields the output flattened color image. Nog th

this work we have chosen to process only the luma channel for
speed. Alternatives where all three RGB colour channelpare
cessed independently may also be considered.

Since the different image levels are processed indepegdent
from one another the algorithm is intrinsically parallebazan be
easily implemented to run on multiple cores. Furthermatreng
guantization of the input level$.€., k¥ < 7) can produce artefact-
free results at great speedd.(fig. 20).

5. APPLICATION OF GSF-BASED
SEGMENTATION AND COMPARISONS

This section demonstrates the use of the geodesic symnfigtric
ter as an efficient and precise segmentation tool. Its pedoce is
assessed through a number of quantitative and qualitadivepar-
isons with state of the art. Note that all experiments preeskem
this section, unless specified differently, were run on seCobuo
desktop machine with 4GB RAM.

5.1 Interactive segmentation of high-resolution

images

In all the examples in this section the pixel likelihobx) is com-
puted from user-entered brush strokes as follows. Thegirghe
strokes are accumulated into t8@ x 32 x 32 RGB histograms,
one for theFg and one for th&g strokes. TherL(x) is estimated
as the log of the ratio of those histograms, evaluated at iezafe
pixel x. This simple, non-parametric model avoids inefficient Ex-
pectation Maximization (as used in GrabCut [Rother et a0430
while providing good accuracy.
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Fig. 7. Examples of interactive image segmentatian(a) Original photo of a swan300 x 2400 pix. Area= 7.3Mpix). (b) The user-entered background
strokes (dark, superimpose@}) The segmented foreground obtained-irt3ms.(d) Photo of a derelict castlel§00 x 4627 pix. Area= 20.3Mpix). (e) The
two Fg andBg brush strokeg(f) The segmented foreground obtainechin 20ms.

— Bai etal. (dens.est. +segment.)
== Bai etal. (segmentation only)
= Our algo. (histograms + segm.)

Run times (ms)

0 g " Image size (Mpixels) g 7

Fig. 8. Comparisons with Bai et al. (Left panel) Run time comparisorfer Bai's segmentation algorithm (red curves) and ourseblGrey lines indicate
linear fit to the curves. For Bai's algorithm we have used tiretrmes reported in Table 1 of [Bai and Sapiro 2008]. Alvag were obtained on similar spec.
machines (2GB RAM, 2GHz CPU). As predicted by their theoggtefficiency, a roughly linear behaviour is shown by the-tiomes of both algorithms; but
the slope of ours is much lower, indicating greater efficjeRight panel) Robustness to complex topolo¢g) Original. (b) User strokes(c) Segmentation
results from Bai et ald) Segmentation results from our algorithm. Identical stsodue used in both cases. In Bai et al. the implicit connegtmiior produces
erroneous connected regions which can be removed only writhefr interaction. Both graph-cut and our algorithm byrecon the pixel likelihoods overcome

such problem.

A first example of interactive segmentation on a high-retsmiu
image is shown in fig. 1. The flower image-s 20Mpiz in size
and the segmentation is updated on our machine inilymsfor
changes t@ and810 msfor changes to the user strokes. This is
to be compared with a graph-cut segmentation time 18.3s? As
in [Rother et al. 2004] the color models are updated iteghtiftyp-
ically 2 iterations suffice) to achieve accurate segmesatiith
economical interaction. Further results on relativelyfgerimages
are shgown in fig. 7. More results are in fig. 9 and the accompanyi
video:

5.1.1 Comparison with Bai et al.Our technique takes inspi-
ration from [Bai and Sapiro 2007] and extends that work in ynan

ways. In this section we compare the two approaches in tefms o

both efficiency and accuracy.

5.1.1.1 Computational efficiencyFigure 8(Left) com-
pares the run times achieved by the recent FMM method in fivatz
et al. 2006] (employed in [Bai and Sapiro 2007]) with those
achieved by our technique, as a function of the image 3ize
The task is that of image segmentation and it was run on gimila
spec. machines. As discussed earlier, despite both dlgwibeing
O(N) in complexity, our technique achieves lower run-times in
practice, thanks to its contiguous memory access.

5.1.1.2 Topological differencesin Bai's work GDTs are
computed from binary, user-entered strokes. This impliase¢ach

output, segmented region needs to be connected to at least on

8With our own implementation of graph-cut, optimized for utsy grids
and thus about 1/3 faster than publicly available C implemté@ns.

such stroké? This effect is due to the algorithm’s implicit “con-
nectivity prior”, which can often turn out to be useful in ptiae.
In contrast, our GSF operator is applied to real-valuedlpike-
lihoods. This removes any topological restrictions aneeas the
applicability of our algorithm to automatic segmentatiasks. Fig-
ure 8(Right) illustrates those points by comparing segatent re-
sults on a standard test image. Another example of robustoes
complex topology is shown in fig. 7f. Next we compare our resul
with those obtained by graph-cut based techniques.

5.1.2 Comparison with min-cutFigure 9 presents a compar-
ison with min-cut [Boykov and Jolly 2001], obtained on stardl
test images. Our algorithm achieves similar segmentatimnsin-
cut, but about two orders of magnitude faster. Furthermohéle
our algorithm'’s runtimes are linear with the image arefafig. 8,
blue curve), for min-cut we have observed a slightly sujpezdr
behaviour. Fig. 10 presents another comparison with miniou
dicating similar (if not better) segmentation quality atraction of
the computational cost. Here, the unaries were fixed and dhe p
rameters optimized (manually) individually for each algon. In
this specific example our algorithm seems to be more robuketo
“shrinking bias” problem.

5.1.3 Comparison with multi-resolution techniquek order
to run on high resolution images both graph-cut [Boykov auityJ
2001] and random walker [Sinop and Grady 2007] require aimult
resolution approach. The unavoidable loss of details is illustrated

10¢,g.segmenting the image of a chess board would require atdeast=
64 user strokes.
1 n random walker the time-consuming step is the inversioana¥ x N

9http://research.microsoft.com/apps/pubs/default .aspx?id=81528 matrix, whereN is the number of pixels.
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min-cut (@) (@]
|5 |2
Y o =
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I [8|%e |5
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min-cut § 3 = %
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=3 =5 =
sponge | 0.22 | 0.21 0.18
. person | 0.23 | 0.51 | 0.44
min-cut
flower | 0.71 | 0.54 | 0.37
-
J ﬁ llama 0.87 | 0.62 | 0.32
e

Fig. 9. Comparison with min-cut. (a) Input images. The input imagesdthe associated input user strokes come from the standaliC@raataset which
was used for comparisons in [Szeliski et al. 20@6). Our segmentation result&) Min-cut results.(d) Segmentation errors, measured as the percentage of
differently classified pixels. The segmentation resulesextremely similar, with our technique being much fastée $egmentation of the “llama” test image

is shown in the accompanying video.
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Fig. 10. Further comparisons with min-cut. (a) Original image 2048 x 1536 pix). (b) The likelihood signal used for all segmentation resultsidar
Fg). (c) Simply thresholding the unaries is very fast but producgsificant segmentation artefacts. This is due to the laclpafial smoothness prioréc’)
Zooming in on those artefact@d, d’) The segmentation produced by min-cut, at full resolutiod126 ms Isolated pixels have disappeared at the price of
high computational cosfe, e’) The segmentation produced by our geodesic algorith86ims The segmentations in (d) and (e) are similar in qualityhBot
encourage connected regions separated by strong image éal¢fes example, our algorithm is more théhtimes faster than graph-cut.

for graph-cut in fig. 11b. The more recent work in [Grady antbi given two registered, overlapping images of a scene, wetwifshd
2008] achieves run-times of the order of seconds on smafiéna the cut through the stitching map such that the two outpubnsgy
which is much slower than our approach. are smooth and their interface aligned with strong imagesdg

In this case we define the log-likelihood mdp as L €
5.2 Segmenting n-dimensional data {—0,0, 00} with L = 0 in the overlapping region. Then, our GSF

operator encourages the separating cut to lie in the oveelgipn
Geodesic distances are easily defined in an n-dimensioagesp  and follow strong image edges. Figure 13 shows stitchingjtsesn
with n > 2. Hence, our algorithm is not restricted to 2D image data two 1650 x 1500 pre-registered photos of Rome’s Piazza Navona.
and can easily be extended to n-D data such as videos or rhedicaThe parameter8 and~ where set interactively. High quality stitch-

image datasets (typically 3D or even 4D). In fig. 12 we show an ing results are achieved with our algorithm in oaly10ms on 2
example of bilayer video segmentation where the whole valde cores andv- 4ms on 4 cores.

(709 x 540 x 120 voxels) is segmented at once as opposed to frame-
by-frame. Batch video processing of this kind minimzes terap

instability. 5.3.2 Applications in Computer Aided Diagnosi#&s illus-
trated in fig. 14 our technique may be used to segment anatomi-
5.3 Other segmentation-based applications cal structures within 3D medical images. In the figure théepdis

skull has been segmented in 3D from the noisy input CT slices
5.3.1 Panoramic image stitchingAs a further application of with a few brush strokes. More strokes are then used to sedhesn
our technique we present results on panoramic image stgchi  teeth which were then highlighted with a different coloud apac-
This task can be interpreted as a version of segmentatidactn ity. Figure 15 shows another example, where the patienttadas
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—.:'t—

Fig. 11. Retaining fine details. (a)A 13Mpix image of an aeroplangb) Min-cut segmentation(c) Segmentation obtained by our algorithm. The multi-
resolution approach necessary for min-cut misses the thiotares of the aeroplane. This is in contrast to our allgoriwhich runs on the original resolution.

Fig. 13. Panoramic image stitching. (a,b)Two registeredl650 x 1500 images from a rotating camera with people moving betweetsstmd) The
seamless stitched panorama obtained by our algorithm jn-erll0ms. (c) ...with separating cut superimposed in red.

d
Fig. 123 Batch segm_entatlon of video (a) A few frames from a time Fig. 14. Segmentation of anatomical structures in 3D medical images
lapse video of a growing flowetb,c,d) 3D snapshots from the segmented . . L
. . . - . (a) Input noisy Computed Tomography images of a patient’s h@gnd.d,)
video. Segmentation was performed directly in the 3D spiace-volume. . - .
- Segmented and colorized 3D rendered views. The teeth regidithe rest
Only two user brush strokes were sufficient. . . e ) .
of the skull are assigned different colours and opacitiegdanedical diag-
nosis.

been accurately segmented and highlighted. Notice thevéisisels

connecting the main artery to the vertebrae. ) ] )
cutout with transparency (matting) or color and tone adjiestts.

5.3.3 Colorization via soft segmentatiorSoft segmentation of To this end, specific techniques such as border matting ERoth
an object is also useful for a number of image editing tasksh 8s et al. 2004] or geodesic matting [Bai and Sapiro 2007] canhe a
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Fig. 15. Segmentation of anatomical structures in 3D medical images
(a) Input noisy Computed Tomography images of a patient’s thghac,d,)
Segmented and colorized 3D rendered views. The aorta hasbgmented
and highlighted. The opacity of all remaining organs hasnbesluced
though not set to zero (to provide visual context). Notice tiin vessels
connecting the aorta to the spine.

plied. Alternatively, the symmetric signed distanbé(., M, VI)
to a soft or binary masi®/ can also be used, with no threshold-
ing, as a soft segmentation map. Figure 16 illustrates ampbea

where: 1) the user has drawn a couple of foreground and back-

ground brushes (not shown), 2) foreground and backgrouxel-pi
wise likelihoods have been estimated, 3) the soft segmentatap

Geodesic Image and Video Editing .

Fig. 16. Foreground colorization. (a) Original image; (b) Colorized out-
put. Only a couple of user brush strokes were sufficient tangbathe
colours of all flowers.

6. APPLICATIONS OF GGDT-BASED FLATTENING
WITH COMPARISONS

We show in this section how denoising, flattening and cartoon
ing/abstraction applications can be effectively addrésseng the
same edge-preserving smoothing engine based on Gendralize
GDT. Different tasks are characterized by small variatiorterms

of the parameters used and the additional presence of bgunda
strokes in the case of image tooning.

6.1 Image denoising

D: has been computed (see eq. 12) and 4) used to weight theAccurate and efficient denoising algorithms find wide aglan

amount of per-pixel colorization where the target colousligw

in this case) has been manually selected. Notice that thivey
different task than the one in [Levin et al. 2004]. Here résudng

is achieved as a soft segmentation task. Also, in contrdStataiv
and Sapiro 2006] here the user did not need to touch everyipeta
order to get a convincing colorization. These results ahéezied
with only 4 GGDT computations. Finally the fact that the GSF fi
ter imposes spatial smoothness helps avoid colour bleefiegts
(cf. section 4.1. Larger values & produce larger robustness to
noise).

5.4 Limitations

Like all segmentation algorithms the quality of the resdkpends
on how diverse the foreground and background appearani® sta
tics are. When the two layers look similar, like in the caseah-
ouflage, more user interaction is required to obtain a gogmhee-
tation (e.g, see the challenging “llama” image in the accompanying
video). As shown in fig. 6, unlike [Bai and Sapiro 2007] ourtec
nigue does encourage smoothness. At this stage, howeigenat
clear whether imposing smoothness via GSF filtering is saffic

in general, and when/if a full MRF energy model is more approp
ate.

for example when dealing with camera-phone videos, oldovide
footage, ultrasound scans and astronomical imaging.

Image denoising is implemented here via the edge-sensitive
smoothing algorithm described in Section 4.2. Figure 17Awsho
guantitative comparison with respect to the following stat the
art algorithms: i) “Non-local Means™'r{(1m) [Buades et al. 2005],
i) “Fields of Experts” oe) [Roth and Black 2005], and iii) the
“Basis Rotation Algorithm” brfoe) [Weiss and Freeman 2007].
The figure shows PSNR curves computed for all algorithmsiegpl
to the standard test “peppers” image in fig. 1, for varyinglswof
added Gaussian noise. Thém, foe andbrfoe results were ob-
tained by using publicly available matlab implementatifrosn the
original authors. The parameters of each algorithm werieniged
for each algorithm to achieve the highest possible PSNR{lzed
kept fixed for all test images.

Our algorithm’s PSNR curve extensively overlaps the best pe
forming technique f1m) and is better than the fields of experts-
based algorithms. Furthermore, avoiding the patch seagcksa
sary innlm ensures lower running times (in the order of hundreds
of ms). Extensive tests have been run on seven other staresdrd
images €.g, “Lena”, “House”, “Boats” etc.) with similar results. In
this casek = 7 and¢ = 10 were used. At this point we would like
to remind the reader that in a parallel implementation eatgnsity
level may be processed by a separate thread/core. In a nreagitin
k cores denoising an image will take the time of flattening glsin
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[Jour algorithm
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[brfoe

I noisy input

—

L
60 70

%0 30 .. 70 50 .
o, standard deviation of Gaussian noise

Fig. 17. Image de-noising comparisons Signal-to-noise curves as a
function of noise level for four different algorithms. Theoposed algorithm
(in green) achieves accuracy similar to the best perforpstage-of-the-art
technique (non-local means); and in some cases it achietesr FPSNR.
See text for details.

intensity level. A more thorough analysis of denoising @mies
goes beyond the scope of this paper.

6.2 Texture flattening

Detail-preserving texture flattening is achieved with dyathe
same algorithm as the one used for denoising, but with tilgica
larger values o in (14) (e.g, ¢ = 100) to allow a larger basin of
influence of each pixel and thus a longer range “diffusiorfié&tf
For this kind of abstraction results a small numbeg( & = 16)
of intensity clusters suffices. An example is shown in fig. atide
how fine details in the lady’s face are preserved(the ear rings),
while the skin texture is effectively smoothed. The effectisu-
ally related to that of bilateral filtering [Chen et al. 200/Gmasi
and Manduchi 1998], but is achieved in real-time on largegiesa
with our CPU-based, parallel algorithm. Also, we have obser
that the quality of the final output seems slightly bettet tha one
obtained by bilateral filtering. As an example fig. 18 shows-c
parison between the flattening results obtained with ourcgmh
and those obtained via bilateral filterifgyWith bilateral filtering
it is often difficult to select a value of the range variamgewhich
simultaneously produces enough flattening while avoidinging
of important details.

6.3

To apply a cartoon effect to an image, we first perform edge-
preserving texture flattening. We then overlay ink stroksingi a
mask computed as the contrast-enhanced gradient magoitttz
flattened image, similar to [Winnemoller et al. 2006]. Cottipy!

the gradient map on the flattened image rather than the atigie
ensures longer, visually pleasing strokes. Example taprésults
are shown in fig. 19.

The video tooning work in [Wang et al. 2004] used a mean-shift
based approach to segment the video into flat regions. Howeve
such hard segmentation technique is likely to produce lnggo-
ral instability visible as disturbing flicker. Expensivepdipation of
mean-shift to spatio-temporal volumes reduces this effaaton-
trast, our technique avoids hard commitment and retain®griyo
varying gradients where necessary, thus reducing temfimicdr.
However, large amounts of input noise will still introduciker
artefacts. This is a problem for old videotape footage asd fer

Image and video tooning

12\We used the implementation of [Chen et al. 2007] publicallgilable at
http://people.csail.mit.edu/sparis/bf/

Fig. 18. Comparing our geodesic-based texture flattening with bilat
eral filter. Figure best viewed on screef@) Original image.(b) Geodesic
flattening results. Strong flattening of the skin is achiewgtiout blurring
facial details such as the eye regigc) Bilateral filter results, withrs = 5
ando, = 0.1. The flattening effect is similar to the one in (b) on parts of
the image but much less noticeable on other parts, such daddef the
mum.(d) Increasing the variance of the bilateral filter in the rangmdin

(to o = 0.2) to try and flatten the skin texture results in over-smogahin
important facial details.

modern digital cameras. This problem could be correctednby i
creasing the number of intensity levels but at the cost o&logf-
ficiency. The accompanying video demonstrates the qudlibuo
video tooning results.

6.4 Further discussion of GGDT-based flattening

6.4.1 Robustness to quantizatiorigure 20 demonstrates the
robustness of our flattening algorithm to quantization &f itiput
image levels. Strong quantization ratios (sniglt) can effectively
increase computational efficiency without affecting theuail qual-
ity significantly. In fact, in the algorithm described in ea 4.2
the use of “soft” intensity quantization and weighted restounc-
tion (15) allows us to minimize banding artefacts, typidaimpler
guantization techniques. A value bfbetweenk = 8 andk = 32
(tested on many images with diverse colour palettes) reptesa
good operating setting for most images.

6.4.2 More on computational efficiencyOn our test machine,
the time taken to run a single GGDT on a VGA-sized image
(640X480) ist = 0.9ms. Then the whole smoothing algorithm
takesT' =~ tk/N. ms for a gray image (or a single, luma chan-
nel); with k£ the number of image levels arid. the number of CPU
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Fig. 19. Examples of image and video tooning(Left panel) Image tooning(a) Original photo.(b) Tooned results(c) Enlarged version of (b), to show
details.(Right panel) Video tooning.From the movie “Dust to Glory”(d,e,f) Different frames from the cartooned video. Please see thmisied video to
appreciate temporal consistency.

domain. The best performance that they report is 38ms on a-VGA
5 sized image. While avoiding spatial subsampling, whichripar-
tant for preserving thin structures (see fig. 11), we cangs®@n
b image of the same size in 28ms on a single core CPU (Witk= 1
andk = 32) and much quicker if more cores are available. We have
also implemented the core GGDT on the GPU following [Weber
g et al. 2008]. In this case the same texture flattening operadikes
less than 4ms. Hence, relying on our generic geodesic maghin
(which has been demonstrated on many other tasks) we perform
— - - - texture flattening faster than in [Paris and Durand 2009]abidin
(a) Hum. input levels results which tend to better preserve fine details (see fig. 18
' : The best-performing algorithms for median and bilateregfiihg

have complexityO(N logr) [Weiss 2006], withr the radius of
the spatial filter. The complexity of our algorithm is lindarthe
number of pixels anéhdependenof the spatial extent of the filter.

The intensity clustering employed in this work is relatedlian-
nel smoothing [Felsberg et al. 2006]. In [Felsberg et al.&2@be
authors employ quadratic B-Splines for the smoothing ofindée
vidual channels. The authors also compare their technimuern-
linear diffusion, bilateral filtering and mean-shift. Inrteast, here
we achieve channel smoothing by means of efficient geodesis-t
forms.

RMS error

(b) k=32levels k=T=256 levels

Fig. 20. Robustness to quantization of input image levels(a) Twenty
different test photographs have been flattened for varyalges ofk €

{8,16,32,64, 128, 256}. The difference with respect to the= 256 im- 6.5 Limitations

ages have been computed as RMS errors and plotted in diffteght) Exploiting the full potential of our flattening algorithmequires
colors. The mean RMS curve is plotted in red. As expectecetavglues some experience in parallel programming. For instancé, thmead
of k& produce lower errors but at a computational c@s}. Two flattened may be assigned the task of flattening a single channel. Fhitit-
version of a test image obtained for different valuesoThere is no per- tle more involved than writing a single-threaded prograrnvith

ceivable visual difference between the two images, thidtenarue even great efficiency benefits. Finally, reducing the number vélek
for smaller values ok. Achieving good flattening with such hard intensity {50 much €.9, k = 4) may result in unsatisfactory results.
quantization yields great advantages in terms of speed.

corest® The following table shows the tim€ as a function oft 7. CONCLUSION

with N. = 4 cores: The main contribution of this paper is in having presenteihgls,
k 8 16 32 64 128 256 efficient algorithm for handling a variety of image and videit-
T(ms)[[18 36 72 144 288 576 ing tasks: n-dimensional segmentation, edge-aware dagasd
To our knowledge ours is the fastest flattening algorithmelvhi  flattening, cartooning, soft selection and panoramictsitit.
does not necessitate resolution reduction, while avoitigding At the core is the fast generalized geodesic distance (GGDT)
artefacts. and the geodesic and symmetric operator (GSF) which is built

upon it. The algorithm’s contiguous memory access and |gdisath
account for its high efficiency. In turn, this enables verghhi
resolution images to be processed at interactive rateseofCiU
or on the GPU without the need for spatial subsampling.
Quantitative and qualitative experiments on high resofutm-

ages and videos, and comparisons with state of the art tigwi
130ur algorithm benefits straight away from architecturegiavt. >> 2 have demonstrated the validity of the proposed frameworkbé/
cores. lieve our technique can be extended to address further sasis

6.4.3 Comparison with state of the arfThe work in [Durand
and Dorsey 2002; Paris and Durand 2009] has addressed viry we
the issue of accelerating the bilateral filter. This is aehikin [Paris
and Durand 2009] by subsamplibgthin the spatial and intensity
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as tone mapping and compression, and can have a high impact orKoHLi, P. AND TORR, P. H. S. 2007. Dynamic graph cuts for efficient

future image and video editing applications.
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