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Abstract

This paper presents a method for joint stereo matching
and object segmentation. In our approach a 3D scene is
represented as a collection of visually distinct and spatially
coherent objects. Each object is characterized by three dif-
ferent aspects: a color model, a 3D plane that approximates
the object’s disparity distribution, and a novel 3D connec-
tivity property. Inspired by Markov Random Field models
of image segmentation, we employ object-level color mod-
els as a soft constraint, which can aid depth estimation in
powerful ways. In particular, our method is able to recover
the depth of regions that are fully occluded in one input
view, which to our knowledge is new for stereo matching.
Our model is formulated as an energy function that is op-
timized via fusion moves. We show high-quality disparity
and object segmentation results on challenging image pairs
as well as standard benchmarks. We believe our work not
only demonstrates a novel synergy between the areas of im-
age segmentation and stereo matching, but may also inspire
new work in the domain of automatic and interactive object-
level scene manipulation.

1. Introduction
In the last two decades much high-quality research has

been conducted in the areas of image segmentation and
stereo matching. There is some overlap in these efforts,
as many stereo methods—in fact, nearly all of the top-
ranked methods in the Middlebury benchmark [20]—use
image segmentation in some way. However, existing stereo
methods typically use low-level segmentation methods to
over-segment the image into superpixels. In contrast, in
this work we push the idea of combining segmentation and
stereo matching to the next level—the object-level.

To achieve this, we extend recent ideas of object-level
segmentation in 2D images to 3D scenes. In particular we
build upon the body of work that uses higher-order Markov
Random Field models for image segmentation, which origi-
nates from the seminal work of graph cut-based, interactive
image segmentation [19, 5].

We model a 3D scene as a collection of 3D objects. We
assume that (1) each object is compact in 3D, (2) each ob-
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Figure 1. Our approach for joint segmentation and stereo match-
ing. (a) The Cones input stereo pair [20]. (b) Extracted objects.
Pixels of the same color belong to the same object. (c) Computed
disparity map. Note that our method can recover surfaces with
complex geometry, and assign disconnected surface patches to the
same object. For Cones, our method achieves the first rank in the
Middlebury ranking [20].

ject is connected in 3D, and (3) all visible parts of an object
share a similar appearance. In addition, we (4) favor scene
interpretations with a few large objects over those with
many small objects. Finally, we assume standard stereo
photo consistency, which means we expect matching ob-
jects to have similar colors across the two input views. Fig-
ure 1 shows a sample result (object grouping and dispari-
ties) produced by our method.

Before we formally define our scene model, let us em-
phasize the key advantages of the above prior assumptions
in the context of stereo matching.

The first prior, compactness, is used in virtually all work
on 2D image segmentation and stereo matching. Here we
encode it in several ways: we assume that (1) objects are
coherent, i.e., most pairs of neighboring pixels in one view
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belong to the same object; (2) depth variations within an
object are smooth; and (3) objects have a bias towards being
planar in 3D. Note that the idea of a planar bias is different
from the assumption that all objects are planar, which many
previous approaches have made.

The second prior, 3D connectivity of objects, has not, to
the best of our knowledge, been used in the context of stereo
matching. It states that disconnected 2D regions in an im-
age may belong to the same object only if they are separated
by an occluding object with smaller depth (i.e., closer to the
camera). Recent work on 2D interactive segmentation em-
ploys similar constraints with impressive results [24]. In the
2D setting, however, user input is needed to confirm that an
object is indeed 2D connected. In contrast to this, 3D con-
nectivity is virtually always true, hence we can utilize it in
a fully automatic system. The success of our technique in
the presence of difficult occlusions can be observed in the
upper right region of Figure 1b, where the background sur-
face visible through the holes in the wooden lattice is accu-
rately detected as a single object despite being disconnected
in 2D. At the same time, the two green cones in the front of
the scene cannot be grouped into a single object as there is
no occluding object in front of them.

The third prior, similar appearance, is the standard self-
similarity term used in image segmentation [19]. It is in-
spired by the fact that each object in a scene has a compact
distribution of colors. In this work we use color as the only
appearance cue, but other features such as texture could be
used as well. The fourth prior, encouraging scene interpre-
tations with few objects, prevents single pixels from being
explained as individual objects and has been successfully
used in object segmentation [8, 14].

The above assumptions translate into two important
properties of our method. The first and obvious one is that
our color models introduce a color segmentation into the
stereo matching process. Untextured regions with homo-
geneous colors are well described by a single color model
and get hence assigned to the same object. Together with
the planar bias, this property allows our algorithm to extend
disparities into untextured regions and to precisely capture
disparity discontinuities.

The second property goes beyond that and is to our
knowledge not present in existing stereo methods. It con-
cerns the problem of assigning disparities to small discon-
nected background regions in the presence of complex oc-
clusions. For instance, consider again the small green back-
ground regions visible through the holes in the wooden lat-
tice in Figure 1. For existing stereo methods, which con-
sider each such region in isolation, assigning the correct dis-
parity is difficult or even impossible due to the potential lack
of texture and partial (or perhaps complete) occlusion in the
other view. In both cases, the smoothness term would favor
assigning the foreground disparity. For a human observer,

on the other hand, the foreground/background assignment is
easy based on surface colors. Our algorithm, employing ob-
ject and color models as well as occlusion reasoning, is sim-
ilarly able to assign the correct disparities. This is true even
for the surface patches along the right image edge, which
are fully occluded in the other view. In the same way, our
method can also handle background regions that are com-
pletely untextured and thus contain no disparity cues.

Let us briefly consider possible applications of our work.
Aside from being able to accurately reconstruct difficult
stereo scenes, our work may also enable and inspire new
work in the domain of automatic and interactive object-level
scene manipulation. As point-and-shoot stereo cameras are
entering the consumer market, there is a pressing need to
advance object-level segmentation from 2D to 3D to enable
better image manipulation and editing techniques. A 3D
object-level segmentation such as provided by our method
would also be useful for interactive extraction of foreground
regions, as well as for 2D/3D inpainting. Another example
is image re-targeting where it has recently been shown that
objects with depth give improved results [17].

2. Related Work
As mentioned, many stereo methods perform a color seg-

mentation of one of the images in a pre-processing step and
use the resulting segments either as a hard [23, 2] or soft
[21, 26, 4] constraint.

Early methods employing hard constraints (e.g., [23]) as-
sume that each color segment can be modeled with a sin-
gle disparity plane, which fails if segments straddle depth
boundaries. Thus, an oversegmentation into very small seg-
ments (“superpixels”) is often used. In contrast, our method
jointly computes segmentation and depth, aiming to recover
large segments corresponding to entire objects, and using a
symmetric process that yields a consistent segmentation of
both images.

More recent methods, including ours, use segmentation
as a soft constraint, meaning they prefer solutions consistent
with a given color segmentation, but also allow for deviation
— typically at the price of higher costs in the energy model.
In the simplest case, a soft segmentation method is derived
by adjusting the pair-wise smoothness penalty with the out-
put of a color segmentation algorithm [26]. However, due
to the MRF shrinking bias, this often does not preserve the
segmentation well. Sun et al. [21] bias the disparity map
towards the disparity result of a hard segmentation method
by adjusting the data term, which is problematic if the hard
segmentation is inaccurate.

The soft segmentation method of [4] uses higher-order
cliques to make the stereo result consistent with a pre-
computed segmentation, but optimizing these higher-order
cliques is difficult and time consuming. In contrast, our
color models require only an additional unary data term,
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which does not affect the run time.1 Like [4] we employ an
MDL term (but apply it at the object rather than the surface
level) and perform optimization using fusion moves [16].

We are aware of only one paper [22] that employs color
models in stereo matching. In this work, an oversegmenta-
tion of one input image is refined using single Gaussians to
model color within each small segment. However, the color
models are not used during matching, and thus the method
cannot handle the difficult occlusion cases described above.

From the perspective of object segmentation, [10]
presents a method for bilayer segmentation of stereo input
into foreground and background regions. The authors also
use color models. However, the most distinct difference to
our work is that we segment the scene into an arbitrary num-
ber of objects and not just two. Furthermore, in contrast to
our work, the two objects have no influence on the depth es-
timation other than leaving the disparity change across the
two objects unconstrained.

Finally, there is an interesting connection to the recent
paper by Ladicky et al. [15] on joint stereo matching and
object recognition. The main difference to our work is
that their approach requires training a classifier for prede-
fined object classes in an offline learning phase, whereas
our method extracts object segments during runtime in an
unsupervised manner. While we cannot expect to compete
with the authors’ object-level results, our approach has the
important advantage that it does not need to know the object
classes in advance and hence is considerably more general.

3. Our Model
We now describe our joint object and disparity scene

model.

Scene Representation As stated above, we represent the
scene as a collection of objects. A crucial point is how to de-
scribe the depth of an object. We make the assumption that
an object’s depth can roughly be estimated by a 3D plane
and call this plane object plane. Obviously, this assumption
is an oversimplification and will not hold true for many real-
world objects. For example, consider the complex 3D shape
of the mask in the Cones test set of Figure 1. Our solution
is to add an additional level of detail on top of the object
planes in order to model depth variations within an object.
This is inspired by the plane-plus-parallax model [13].

To implement this level of detail, we compute a separate
disparity map. It is important to note that this disparity map
is not computed independently from the object planes. In-
stead, we compute a parallax value at each pixel p within an
object op. This parallax is obtained by subtracting p’s dis-
parity according to op’s object plane from its disparity ac-

1The recent work of [25] has shown that our global color model term
can be transformed into (not tractable) higher-order cliques. Furthermore,
it has shown that a simple iterative procedure (where color models are data
terms) does perform equally well as a complex inference procedure of the
higher-order model, which justifies our simple, iterative procedure.

cording to the disparity map. The idea is to put constraints
on the parallax values, i.e., we enforce that parallax values
have a compact distribution within object op. This distribu-
tion is stored in the so-called parallax model of object op.
The parallax model provides the probability of the occur-
rence of a specific parallax in object op and our model tries
to avoid parallaxes that have low probabilities.

We represent the disparity map that provides the ad-
ditional level of detail using a surface-based representa-
tion. More precisely, the disparity map is a collection of
3D planes. We call these planes depth planes. Note that
these depth planes are considerably smaller than objects in
their spatial extents and can consequently capture the de-
sired depth details within an object.

Notation Let I be the coordinates of all pixels of left and
right images. Further, let O denote the set of all possible
objects and F the set of all possible depth planes. An object
o ∈ O contains the following parameters: (1) a color model,
(2) a parallax model and (3) an object plane, where the latter
two parameters are used to regularize the disparity map F ,
as discussed above. We search for two mappings (1) F :
I → F that assigns each pixel to a depth plane, and (2)
O : I → O that assigns each pixel to an object.

Note that F is an implicit disparity map. If a pixel p is
assigned to a depth plane fp, we can compute disparity by
dp = fp[a] · px + fp[b] · py + fp[c] where a, b and c denote
plane parameters and px, py are p’s image coordinates.

We now define an energy function that evaluates the
quality of F and O, which implicitly defines a probabil-
ity distribution over object and depth plane labellings. We
then try to minimize the energy to obtain a “good” approxi-
mation to the Maximum a Posteriori (MAP) solution of the
model. Formally, we define the energy as:

E(F,O) = Epc(F,O) + Eoc(O) + Edc(F,O)+

Ecol(O) + Epar(F,O) + Emdl(O) + Econ(F,O)
(1)

where different terms correspond to the different likelihood
and prior terms of our model. Note, the parameters for each
object, e.g., its color model, are also part of the energy func-
tion but are omitted for ease of notation and will be ex-
plained in detail when appropriate. The individual energy
terms are defined next.

Photo Consistency Term Epc The photo consistency
term measures the pixel dissimilarity of corresponding
points and accounts for occlusion handling. Moreover, it
ensures that corresponding pixels are assigned to the same
depth plane and object. We first give the definition of our
data term and then provide an explanation in the paragraphs
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Figure 2. The data term. More information is given in the text. (a)
The 3D point P is visible from both cameras. (b) P is occluded
by M . (c) It is impossible for the right camera to see M , because
its viewing ray is blocked by P .

below. The term is defined as

Epc(F,O) =
∑
p∈I

 ρ(p,mp) : fp = fmp
∧ op = omp

λocc : otherwise if dp < dmp

∞ : otherwise.
(2)

Here, mp denotes the matching point of p in the other view.
If p lies in the left view mp is computed as p − dp and
as p + dp if p resides in the right view. The constant
λocc is a user-defined penalty for occlusion. The function
ρ() computes the dissimilarity between two correspond-
ing pixels. In our implementation, we compute the Birch-
field/Tomasi measure [1] and then truncate the resulting
value by λocc − 1. This truncation ensures that the costs
of an occlusion are always higher than that of a visible
match, and encourages a smaller number of occluded pixels
in the lowest energy (or MAP) solution. Our treatment of
occluded pixels is similar to [12], the main difference be-
ing the surface-based representation of our disparity map
F , which prevents us from detecting wrong occlusions at
slanted surfaces [4].

The photo consistency term is able to distinguish be-
tween different scenes shown in Figure 2. In the first case
(Figure 2a), the pixel p and its matching point mp both lie
on the same depth plane. Hence, they generate the same
3D point P and the data term measures photo consistency.
In the second case (Figure 2b), p and mp lie on different
depth planes, which leads to two different 3D points P and
M . Furthermore, p has lower disparity than mp. This case
corresponds to an occlusion, since the 3D point M blocks
the viewing ray of the right camera so that the right camera
cannot see P . Consequently, our data term imposes the oc-
clusion penalty λocc. Finally, in the third case (Figure 2c),
p has higher disparity than mp. Given the assumption that
surfaces are opaque, this case is impossible. The viewing
ray of the right camera would have to “see through” P in
order to see M . To avoid this case, we assign an infinite
penalty to this configuration.

Object-Coherency Term Eoc The object-coherence
prior encourages neighboring pixels in the image to take
the same object label. It takes the form of a standard Potts
model prior used in image segmentation [19] and is defined

as
Eoc(F,O) =

∑
<p,q>∈N

λocoh ∗ T [op 6= oq] (3)

where λocoh is a penalty. T is the indicator function that
returns 1 if its argument is true and 0 otherwise.

Depth Plane-Coherency Term Edc This encodes the
prior that depth plane assignments within an object shall
be spatially coherent. The depth plane-coherency prior is
defined as Edc(F,O) =

∑
<p,q>∈N


λdcoh

2 : op = oq ∧ fp 6= fq ∧ |dp − dq| ≤ 1
λdcoh : op = oq ∧ fp 6= fq ∧ |dp − dq| > 1

0 : otherwise
(4)

where N represents the set of all spatial neighbors (4-
connectivity) in left as well as right images and λdcoh de-
notes a constant penalty.

The depth plane-coherency prior does not penalize a
depth plane transition if neighboring pixels are assigned to
different objects, since it is reasonable to assume that object
discontinuities go along with discontinuities in depth. If
there is a depth plane transition within an object, the prior
checks whether this transition is smooth in disparity. This
means we impose a small penalty if the corresponding jump
in disparity is smaller than a pixel. Otherwise, if the jump
exceeds the threshold of 1, we impose a larger penalty. Note
that disparity discontinuities (larger jumps) inside an object
can occur because of self-occlusion, but are less likely than
a smooth disparity transition and derive a larger penalty.

Object-Color Term Ecol Each object contains a color
model. This color model is implemented as a Gaussian
Mixture Model (GMM) with five mixture components.2

The GMM gives the probability that a pixel lies inside the
object according to its color value. We evaluate the color
costs at each pixel using the GrabCut data term [19]

Ecol(O) =
∑
p∈I

λcolor ∗ − log(π(cp, op)) (5)

where cp denotes the color of pixel p and λcolor is a penalty
for color inconsistency. The function π(c, o) returns the
probability of color c in the GMM of object o.3

The object-color term enforces that an object has a com-
pact set of colors. This compactness is maximized if an ob-
ject’s GMM captures very similar colors with low variance
among them. Hence, Ecol is minimized if every pixel is a
separate object. In our energy model, we have two terms
that work against a degenerate solution, i.e., the object-
coherency prior and (more importantly) the object-MDL
term. This avoids an undesired clutter in the object assign-
ments O.

2We use the GMM implementation of OpenCV 2.1.
3Note we avoid the degenerate case of infinite probability π by assum-

ing a minimum variance for all Gaussians.
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Object-Parallax Term Epar Our parallax term regular-
izes the disparities of an object with respect to its object
plane. It computes the plane parallax as follows. Let us de-
note the disparity at pixel p according to op’s object plane
by dopp . The parallax is then computed as dp − d

op
p . The

key idea is that distribution of the parallax is likely to be
compact.4 We implement the parallax distribution using a
non-parametric histogram.5 We define the object-parallax
term as

Epar(F,O) =
∑
p∈I

λparallax ∗ (1− θ(dp − dopp , op)) (6)

where λparallax is a penalty for parallax inconsistency. The
function θ(par, o) returns the probability of parallax par in
object o’s histogram.

Note that analogously to the color term, the parallax term
introduces a bias, i.e., it prefers flat objects over rounded
ones. For example, if we set λparallax to a high value,
the depth planes of an object become identical to the ob-
ject planes. We believe that this is a good bias, because flat
surfaces may be predominant in natural images, especially
in man-made environments.

Object-MDL Term Emdl The term puts a penalty on the
occurrence of an object and hence prefers solutions that
have a small number of objects (MDL principle). We de-
fine the object-MDL term as

Emdl(O) =
∑
o∈O

λmdl ∗ T [∃p ∈ I : op = o] (7)

where λmdl is a constant penalty.

3D Connectivity Prior Econ The connectivity prior is a
global potential in the model. It operates on the object as-
signments of all pixels O and enforces that objects are al-
ways connected in 3D. The potential assigns a cost of 0 to
all solutions in which all objects that appear in the labeling
are connected. Solutions that do not satisfy this constraint
are given infinite cost. In that sense, the connectivity term
is more of a constraint than a prior on the solution.

An object is considered connected if there exists a path
that connects all pixels with the same object label, such that
on the path are either (1) pixels that belong to the same ob-
ject or (2) pixels that belong to different objects but have
higher disparity relative to the disparity of the object plane.
Here, case (2) represents a path that is occluded by a fore-
ground surface, which is a valid explanation for 3D connec-

4We could have additionally enforced that the distribution of the paral-
lax has a particular form, e.g., singled-peaked distribution with mode at 0.
However, we did not find that to be necessary.

5We use a histogram instead of GMM, since it is a simple non-
parametric model which worked well in this case.

Figure 3. Checking 3D connectivity of two regions. We draw ran-
dom lines between the regions and check whether these lines are
fully occluded according to the computed disparity map. Green
lines pass this test, while red ones fail. Since most lines are oc-
cluded in the lattice example (left images), we label the two back-
ground regions as being 3D connected. The two foreground cones
(right images) fail our 3D connectivity test.

tivity. More formally,

Econ(F,O) =
∑

(p,q)∈Il,Ir:op=oq

{
0 : if C(p, q) = true
∞ : otherwise ,

(8)
where Il, Ir are left and right input images, respectively.
The function C checks for connectivity of any two pixels p
and q and is defined as

C(p, q) = ∃Π : (
∏

s∈Π
p
q

(os = op) ∨ (d
op
s ≤ ds)), (9)

where Πp
q is any path traversing the 4-connected neighbor-

hood system N , with start-point p and end-point q. d
op
s

represents the disparity of pixel s for object plane of op.
The computation of the connectivity prior (8) can be per-

formed using depth or breadth first search in a graph with
worst case runtime complexity that is polynomial in the
number of edges in the image. The constructed graph con-
tains one node for every pixel s that satisfies the condition:

(os = op) ∨ (dops ≤ ds). (10)

The graph contains all edges between the nodes that are
present in the original neighborhood system N .

In the case when most objects in the image are convex,
a more efficient check can be implemented by just consid-
ering the line joining pixels p and q instead of all possible
paths. For computational tractability we use the following
strategy (see Figure 3). We randomly sample a large set of
pairs of points p and q, where p and q belong to different
connected components of the object. We then draw a line
between p and q and check if all pixels on the line satisfy
condition (10).

4. Inference via Energy Minimization
We minimize the energy defined in the previous section

using the fusion move algorithm [26, 16]. The basic road-
map for the inference is as follows. We start with an initial
solution S that consists of a disparity map F and an ob-
ject map O. We then obtain a proposal S′ from a proposal
generator discussed in Section 4.1. S and S′ are fused to
produce a new solution S∗. In the fusion move, we gen-
erate a new solution by “selecting” some depth planes and
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objects from S and others from S′. The challenge is to com-
pute the “optimal” fusion result S∗, i.e., the one that leads
to the largest decrease of energy among all possible fusion
moves (see Section 4.2). Once a fused solution S∗ has been
computed, we set S := S∗ and fuse the next proposal S′′

obtained from the proposal generator. We also perform a
refinement step where parameters of the present objects are
refit.

4.1. Proposal Generator
We now describe how the different proposals for the fu-

sion move algorithm are generated. The proposal generator
first returns initial proposals. Once all initial proposals are
fused, we run a refit proposal and finally fuse all expansion
proposals. Refit and expansion proposals are iterated three
times. We now describe these proposal types.

Initial Proposals We first compute a disparity map F in
a way that is equivalent to the SegPl proposals of [26, 4].
One of the two input images is selected to serve as a ref-
erence frame. We compute an initial disparity map using
the fast stereo matcher of [3] as well as a color segmen-
tation of the reference image via mean-shift segmentation
[6]. F is now derived by fitting a plane to each color seg-
ment using the initial disparity map. To derive O, we take
the color segmentation result and group segments that have
similar depths according to F .6 Segments that fall into the
same group define the spatial extent of an object o. Object
o’s parameters are estimated as follows. We initialize o’s
color model by using all pixels of o as samples for a GMM.
The GMM parameters are then computed by OpenCV’s EM
algorithm. The object plane is derived by fitting a plane ac-
cording to the disparity map F . To initialize the parallax
model, we compute the difference between o’s disparities
in F and the disparities according to o’s object plane and
store the resulting parallaxes in a histogram. Due to our
symmetrical formulation, we still need to propagate F and
O to the second view. This works by image warping, i.e., we
generate the second view by warping the plane and object
indices according to the disparity map F of the reference
view. After warping, we fill the occluded regions by repli-
cating plane and object indices along horizontal scanlines.
To derive a large variety of initial proposals we combine dif-
ferent initial disparity maps with different mean-shift seg-
mentations and also use different parameter settings in the

6Our depth segmentation algorithm tries to find a new mapping F ∗ of
segments to planes that consists of fewer planes, but still represents a good
approximation of the disparity map F via energy minimization. The data
term of our energy function measures the absolute difference between the
disparity of the new mapping F ∗ and the original disparity map F . The
smoothness term penalizes neighboring pixels that are assigned to differ-
ent depth planes. We optimize this energy by performing an α-expansion
for each depth plane f present in F , which is efficient, because we can do
it on the segment level. Segments that have the same depth plane assign-
ment in F ∗ form a single depth segment. We can obtain different depth
segmentations by varying the smoothness penalty of the energy function.

depth segmentation algorithm. In total, we have approxi-
mately 30 initial proposals.

Refit Proposals A refit proposal 〈F ′, O′〉 is derived by re-
fitting the object parameters of the current solution 〈F,O〉.
More precisely, for each object o present in O we compute
a new color model, object plane and parallax model accord-
ing to o’s spatial extent in O and the disparity map F . This
operation defines O′, while F ′ is set to F .

Expansion Proposals In this type of proposal, we select
one depth plane f present in F and one object o present
in O where F and O again represent the current solution.
The proposal solution 〈F ′, O′〉 is then derived by setting
all pixels of F ′ to f and all pixels of O′ to o. To keep
the number of expansions tractable, we require that there
exist at least 500 pixels, i.e., a small fraction of the image
dimensions, whose depth plane assignment in F is f and
whose object assignment in O is o.

4.2. Computing the Optimal Fusion
To compute the optimal fusion of two proposal solutions,

we construct a quadratic pseudo-boolean (QPB) function to
represent the energy of the fused solutions. This function
may contain non-submodular terms and is NP-hard to min-
imize in general. We use QPBO-F [11] to derive a solution
to the fusion move problem that is guaranteed to have equal
or lower energy than our current solution.7

For the fusion move, our goal is to compute a boolean
variable xp for each pixel p, where xp = 0 means that p
takes the depth plane and object label of proposal 1 and
xp = 1 means that the labels of proposal 2 are taken. The
photo consistency term of equation (2) introduces two pair-
wise terms at each pixel p. The first one connects p with
its matching point mp according to proposal 1. The sec-
ond one establishes a connection to the matching point m′p
induced by proposal 2. The costs of these pairwise terms
are derived by evaluating the three cases defined in equa-
tion (2). The object-coherency prior of equation (3) and
the depth plane-coherency term of equation (4) both intro-
duce pair-wise terms between spatially neighboring pixels.
The object-color term (equation (5)) and the object-parallax
term (equation (6)) are trivial to express, because each of
them converts to a unary term in the pseudo-boolean en-
ergy. The object-MDL prior in equation (7) defines higher-
order cliques over all pixels assigned to the same object in
proposals 1 or 2. Here, we follow [14, 7] and express the
MDL prior as a Pn Potts model whose transformation to a
pair-wise energy is explained in [9].8

7QPBO only guarantees to find part of a global optimal labeling and can
leave pixels unlabeled. Hence we are not guaranteed to find the optimal
fusion move. However, we empirically observed that the percentage of
unlabeled pixels is very close or equal to 0 in most cases.

8Due to the use of fusion moves, there is no guarantee that the MDL
term introduces a Pn Potts type higher-order clique. The prior can take
the form of a general sparse higher-order clique, which can be optimized
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Maintaining the 3D connectivity constraint of equation
(8) during a fusion move is very hard. In fact, it can be
easily shown that the problem of finding the optimal fusion
move is NP-hard in the presence of the connectivity term.
We therefore remove the connectivity term from the energy
when computing the fusion move. One strategy for opti-
mization is “Move & Check”. After the fused solution has
been found, we can evaluate it with respect to the connec-
tivity term. If some regions of the object fail the connectiv-
ity check, we either assign them to different objects, or roll
back the move. Because of efficiency reasons, we do the
check step after all the moves have been made. We found
empirically that this strategy works well.

5. Results
We test our algorithm on standard image pairs and

newly-recorded real-world scenes. The algorithm’s parame-
ters are set as follows: λocc = 25, λocoh = 25, λdcoh = 25,
λcolor = 4, λparallax = 2 and λmdl = 100000.9 These
parameters have been estimated empirically in order to op-
timize quality of disparity results.

We use the commonly-accepted Middlebury benchmark
[20] to evaluate our method. In this benchmark, our method
currently takes rank eight among approximately 90 meth-
ods. We have found that our algorithm works particularly
well on the Cones test sets. When sorting the Middle-
bury table according to Cones, our algorithm is the top per-
former. Results for the four Middlebury images are shown
in Figures 1, 4 and 5. For quantitative results, the reader is
referred to the Middlebury online table.

Let us look at the Teddy results in Figure 4. As seen
in Figure 4b, our algorithm accomplishes to segment the
scene into a small number of large objects based on their
color, depth and 3D connectivity. A particularly interesting
case is marked by the yellow rectangle. There is a small iso-
lated white region (see arrow) that is only visible in the right
image. Common algorithms would fill in disparity for this
region via spatial disparity propagation, i.e., they extrapo-
late the disparity of neighboring visible pixels. Note that
in the case depicted in Figure 4, this form of propagation
has to fail, because for this region, none of its spatial neigh-
bors carries the correct (background) disparity. In contrast,
our algorithm combines this isolated region and the region
above the flower pot to a single object due to their colors
being similar. Together the regions form an object that cor-
responds to the wall of the toy house. Since the isolated
white region is now a member of the object wall, its dispar-
ity is biased towards the wall’s object plane. Therefore, we
can reconstruct the correct depth. This grouping also makes
sense in terms of 3D connectivity. The two regions can be

with the construction introduced in [18]. However, this case does not occur
when using our sequence of proposals explained in Section 4.1.

9We keep this parameters constant except for Figure 6b, where we set
λocc = 15.

(a)

(b)

(c)

Figure 4. Results on the Teddy images. (a) Input images. (b) Ex-
tracted objects. (c) Disparity results. Our algorithm propagates
reasonable depth information to completely occluded regions us-
ing color information (see region marked by the yellow rectangle).

Figure 5. Disparity results for the Tsukuba and Venus sets.

connected in 3D, because there is an occluder (the flower
pot) between them.

Apart from using standard images, it is important to test
our method on real-world stereo pairs. In the Cemetery test
pair of Figure 6a, our algorithm can correctly reconstruct
the thin structure of the gate. It also accomplishes segmen-
tation of the image into meaningful objects, e.g., see the
two road lanes. The effect of our 3D connectivity term is de-
picted by looking at the tomb stones that are similar in color
and depth and hence would form a “good” object. However,
they are not connected in 2D and there is also no occluder
present, which would represent an explanation for the tomb
stones being connected in 3D. Hence the 3D connectivity
term splits them into separate objects.

Finally, the Fairy test set of Figure 6b illustrates another
case that we believe to be challenging for competing algo-
rithms. Here, the challenge is the lack of texture at the back-
ground wall. In particular, the small region marked by the
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(a) (b)

Figure 6. Results on newly-recorded real-world scenes. (a) The
Cemetery image pair. Our method can successfully reconstruct
the thin structure of the gate. (b) The Fairy test set. Our method
accomplishes to reconstruct the background, although there is very
little texture present. This also works for the small isolated region
(white arrow), because our algorithm looks at its color.

arrow poses a problem. The spatial smoothness term er-
roneously motivates to assign this region to the foreground
disparity and the data term is not able to balance this out
due to no texture being present. Our algorithm looks at the
color of this small region. It finds that the color matches
that of the background and biases the disparity towards the
object plane of the background object.

6. Conclusions
We have proposed a combined algorithm for stereo

matching and object segmentation. Our model represents
the scene as a small collection of objects. Objects are as-
sumed to be approximately planar and incorporate a color
model. The object level enables our algorithm to utilize
color segmentation as a soft constraint and to handle dif-
ficult occlusion cases, which cannot be accomplished by
competing stereo methods. Furthermore, we have intro-
duced a 3D connectivity constraint that enforces consis-
tency of object assignments with stereo geometry.

Further work should concentrate on improving the algo-
rithm’s run time. Currently, our algorithm is slow, i.e., it
takes approximately 20 minutes to obtain results on images
such as the ones from the Middlebury set. Furthermore, the
optimization of the 3D connectivity constraint represents an
open topic.
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