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Abstract

Cosegmentation is typically defined as the task of jointly

segmenting “something similar” in a given set of images.

Existing methods are too generic and so far have not

demonstrated competitive results for any specific task. In

this paper we overcome this limitation by adding two new

aspects to cosegmentation: (1) the “something” has to be

an object, and (2) the “similarity” measure is learned. In

this way, we are able to achieve excellent results on the re-

cently introduced iCoseg dataset, which contains small sets

of images of either the same object instance or similar ob-

jects of the same class. The challenge of this dataset lies in

the extreme changes in viewpoint, lighting, and object de-

formations within each set. We are able to considerably out-

perform several competitors. To achieve this performance,

we borrow recent ideas from object recognition: the use of

powerful features extracted from a pool of candidate object-

like segmentations. We believe that our work will be bene-

ficial to several application areas, such as image retrieval.

1. Introduction

This paper addresses the task of unsupervised pixel-

accurate segmentation of “similarly looking objects” in a

small number of images, where no a priori information

about the images (such as object class) is available. Such

a problem was considered in recent papers under the name

image cosegmentation [4, 14, 15, 19, 21, 23]. We improve

on previous cosegmentation approaches by making the fol-

lowing contributions:

1) We observe that in most applications of cosegmenta-

tion the regions of interest are objects, i.e. “things” (such

as a bird or a car) as opposed to “stuff” (such as grass or

sky). Although this assumption was implicit in [4, 14, 15,

19, 21, 23], it was not directly incorporated in the mod-

els. We propose to add a measure of “objectness” explicitly,

by exploiting object-like segmentation proposals from [11],

and using features that were found to be important for scor-

ing hypotheses in the case of single image segmentation.

We show that this improves results considerably compared

to previous cosegmentation approaches. In fact, using

just a single image as input already outperforms methods

in [15, 23].

We use the term object cosegmentation to emphasize the

fact that we are interested in segmenting “objects” rather

than “stuff”.

2) In general, the “objectness” assumption alone is not suf-

ficient if, for example, an image contains multiple objects.

We show that the performance can often be boosted further

by learning a “similarity” measure between the segmenta-

tions of two images. More precisely, we train a Random

Forest classifier for scoring a pair of segmentation propos-

als using both single image features and “pairwise” features

such as differences of histograms.

Cosegmentation scenarios To the best of our knowledge,

the task of cosegmentation has not previously been clearly

defined. We argue that there is no “generic” cosegmenta-

tion problem. Indeed, “similarly looking object” can refer

to different scenarios and each will have different degrees

of variability of object appearances; cosegmentation algo-

rithms should ideally take this into account.

In some previous work, “similarly looking object” re-

ferred to objects of the same class and the task was called

unsupervised class segmentation (we discuss this in more

detail in the next section).

Cosegmentation can also refer to the case where the im-

ages depict the same physical object. This scenario can be

very challenging if, for example, the images capture differ-

ent physical parts of the object (viewpoint or zoom change)

or the object is deformable. Examples of such variations are

the Stonehenge, Statue and Alaskan bear classes in Fig. 5.

In fact, we believe that this may be even more challenging

than segmenting different object instances from the same

class, e.g. different spoons.

Our approach can be adapted to these different scenarios

by training the system on an adequate dataset, with the ap-

propriate variability of appearance. If the variability is too

high then the method would learn to rely on single image

features only.

Concerning the image background, it is important for

our approach (and all other cosegmentation methods) that

at least in some images the background varies. This avoids

the trivial solution that the whole image is segmented as the

object.
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Figure 1. Motivation for object cosegmentation. The task is to extract the common object (apple) from the two input images. One

possibility would be to use single image segmentation techniques that generate multiple object-like proposals. Taking the 3 top-ranked

proposals for each image is enough to get an accurate segmentation of the apple. However, it is less clear how to choose the correct

segmentation from that pool of proposals. Typical cosegmentation methods fail due to the similarities in terms of color between the black

object in the first image and the background of the second image, preferring an arbitrary shaped segmentation for the second image. This

failure in imposing object-like segmentations and the success of object segmentation methods in generating good proposals motivates our

approach to cosegmentation: a system that chooses jointly for both images the best available proposal.

2. Related work

Single image segmentation The task of segmenting the

foreground object in a single image without side informa-

tion is ill-posed, since multiple objects might be present.

Therefore, in the last two decades, a lot of research has fo-

cused on the problem of partitioning the image into multiple

areas belonging to different objects and background.

Recently, a slightly different task has been suggested: in-

stead of segmenting the image into multiple regions, the

goal is to extract a set of binary segmentations ranked ac-

cording with their object likeness. An example is [11],

which is the work that we build on. Multiple segmenta-

tions are computed using parametric maxflow. Then, a scor-

ing function is learned and used to select the best propos-

als. This scoring function encodes properties expected in

all objects independent of the class, e.g. convexity, curvi-

linear continuity, contrast with the background, alignment

of boundaries with image edges and the location in the im-

age. The work in [13] follows a closely related approach

with similar results.

Although these approaches have been successfully used

as a building block for object segmentation and recognition

systems (in particular [11] was part of the system that won

the segmentation competition of the VOC Pascal Challenge

2009), it is not clear how to use them as a standalone method

for image segmentation. Indeed, their accuracy relies on the

use of multiple binary segmentations for each image, which

leaves the question of choosing the optimal one.

Another related approach is the measure of “objectness”

proposed in [2] and applied to bounding boxes. The moti-

vation of this work is to reduce the search space of sliding

window methods for object detection, by pre-computing an

“objectness” measure for each bounding box, i.e. a prob-

ability of the box containing an object. Then, the object

detectors specific to each class are only applied to the best

scoring boxes in terms of “objectness”.

Cosegmentation As mentioned in the introduction, there

are several recent articles which address the generic task

of cosegmenting multiple images [4, 14, 15, 19, 21, 23].

The methods in [15, 23] can be considered as state-of-the-

art. The models used in these approaches do not explic-

itly encode the “objectness” assumption, which can lead to

failure cases shown in Fig. 1: arbitrarily shaped regions

(with similar appearance in both images) are segmented.

Numerical results in our experimental section confirm that

object-aware approaches can indeed outperform methods

in [15, 23]. Another important difference is that previous

systems have an objective function where each pixel is a

random variable. In contrast, our objective works with a

pool of proposal segmentations, hence we cannot represent

all possible segmentations. We will confirm experimentally

that in rare cases this limits our performance. Finally, an-

other difference in our work is that previous cosegmentation

systems did not train the weighting of features.

Unsupervised class segmentation Different generative

models have been proposed for the task of Unsupervised

class segmentation. Examples are the LOCUS model [24],

which learns a shape model for the class, and the use of a

topic model over image segments [10], assigning segments

to topics depending on their visual words.

Both [10, 24] model separately what is common in all

images (the shape of the object, sift features) and what is

image specific (the appearance of the object).

Although [24] reports significantly better error rates than

[10], it uses shape features, assuming a rough alignment of

all the objects, given a reference frame. For example, [24]
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reports results for a subset of the Weizmann horse database

[6]. The horses in this dataset are all facing left. In [10]

there is no modeling of shape information which makes it a

more generic model, applicable to other scenarios.

Recently, [1] proposes a method inspired by interactive

image segmentation. Similarly to LOCUS, the method al-

ternates between learning a class model and updating the

image segmentations, thus suffering from the same draw-

back of requiring rough alignment and similar pose.

We note that building a model for an object class typi-

cally requires a large number of training images, and there-

fore the methods above are not suitable for our scenario of

only 2-10 input images.

3D reconstruction approaches In recent decades there

has been significant progress on building 3D models from

multiple images. While such approaches could be feasible

for some of our examples, we believe that most of our data is

too challenging for an automatic 3D reconstruction. In par-

ticular, it may be difficult to establish reliable point-to-point

matches due to large changes of viewpoint and/or zoom.

Some techniques, such as [9], work with silhouettes rather

than point-to-point correspondences. However, correspon-

dences are still needed for camera calibration. Note that,

silhouettes correspond to object segmentations, and thus our

approach can be seen as complementary to silhouette-based

3D reconstruction methods.

2.1. Applications of cosegmentation

In this section we discuss potential application areas of

our system. Although we do not address these specific ap-

plications in this paper, they are worthy of mention.

One interesting scenario is the use of our system to re-

rank images in an image retrieval system. For example,

if the input to the retrieval system is one image, our sys-

tem may provide a ranking which focuses on the similar-

ity of the common object as opposed to the similarity of

the full image. If the input is a text query, e.g. “animals”,

our system can be used to provide object sensitive image

pair-distances within the retrieved set. Clustering the im-

ages based on these distances can help visualize the variety

of images within the results retrieved (see Fig. 2).

A possible related application is motivated by the recent

trend of solving recognition problems by associating an im-

age with a large database of images, e.g. [17], where the

images in the database have meta-data attached (e.g. class

label, motion direction). Our approach will help to find an

object sensitive association. Another scenario is motivated

by [4], where a user provides the system with a set of pho-

tographs from a photo collection which contain the same

object, for example the iCoseg dataset in Fig. 5. Our sys-

tem automatically provides a solution before any user inter-

action is done.

Bear

Kite

Panda

Statue

Figure 2. Illustrating the idea of an object-sensitive cluster-

ing system. We selected 31 images from 4 classes of the iCoseg

dataset. All possible pairwise distances between the images were

computed with our method, and used to map the images onto a 2D

map (using multi-dimensional scaling) - the corresponding seg-

mentations are in the bottom part. We see that the 4 classes are

nicely separated and images with very similar foreground objects

are close (e.g. top 2 bears). A retrieval system could visualize

only the cluster means to illustrate the variability in the dataset.

For each image we choose the closest image using our pairwise

similarity measure and also show the segmentation corresponding

to segmenting that pair.

3. Our approach

We are given L images containing the same object and

the goal is to segment the common object. For each im-

age Il, l = 1, ..., L, we retrieve 200 proposal segmentations

using the implementation of [11] and retain the 50 high-

est scoring ones. We denote by Sl = {S1

l , ..., S
50

l } the set

of proposal segmentations for image Il. A proposal seg-

mentation Sk
l is a binary labeling assigning to each pixel

in the image Il a label 0 for background, and label 1 for

foreground. For all the objects in the image, we expect that

one of these proposals contains only the full object. Fig. 3

shows examples of proposals obtained with [11].

Figure 3. Top scoring proposals obtained with [11]. Each pro-

posal corresponds to a binary segmentation of the image and they

are obtained by running parametric maxflow with different seeds.

The score measures their object-likeness and it is computed based

on several features: graph partition (e.g. value of the cut), region

(e.g. area and perimeter) and gestalt (e.g. convexity). The result of

our method for this image is shown in Fig. 8.

We formulate the task of cosegmentation as a labeling

problem in a complete graph. Each image corresponds to a
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node in the graph and each proposal segmentation to a label.

The goal is to find a labeling x = (xl∣l = 1, ..., L;xl ∈
{1, ..., 50}) that maximizes the scoring function:

E(x) =
∑

l,p≤L,l ∕=p

P (xl, xp). (1)

Assigning label xl = k corresponds to selecting the pro-

posal Sk
l as the segmentation for image Il.

The pairwise term P (xl, xp) is learned using a Random

Forest regressor [7]. This term encodes both how similar

and how close to the ground truth the two proposals are,

and is described in detail in section 3.1. Since the problem

is defined in a complete graph, we compute the pairwise

term for all pairs of proposals for all pairs of images.

Inference We use for inference an exact A*-search algo-

rithm introduced in [3, 5]. The use of an exact inference

algorithm limits the number of images that can be jointly

segmented. Alternatively we could use an approximate in-

ference method, like loopy belief propagation. For the sim-

plest case, where L=2, the inference reduces to choosing the

pair of proposals with the highest score.

3.1. Learning the pairwise term between proposals

At training time, our method requires ground truth seg-

mentations of pairs of images depicting similar objects. The

test images belong to different classes than the ones used to

train the system.

For each training image, we start by extracting proposal

segmentations using [11]. Then, for each pair of proposals,

we extract features depending both on the proposals and on

the corresponding images. We extract a total of 33 features.

There are two different types of features. The first type (sec-

tion 3.1.1) takes into account the two proposals and images

simultaneously. The second type (section 3.1.2) only con-

siders one of the images.

We train a Random Forest regressor based on these fea-

tures. For the two proposals being considered, we compute

the overlap of each proposal with ground truth and regress

on the sum of the overlaps, where the overlap is given by:

Overlap(Sk
l , GTl) = (Sk

l ∩GTl)/(S
k
l ∪GTl). At test time,

the score of the Random Forest regressor is used as a pair-

wise term between proposals.

3.1.1 Features including both images

Most of the features discussed in this section are based on

histogram similarity.

Given two normalized histograms ℎ1 and ℎ2 with b bins,

we use as histogram similarity the �2-distance measure:

�2(ℎ1, ℎ2) =
∑

b (ℎ
b
1
− ℎb

2
)2/(ℎb

1
+ ℎb

2
).

We consider a total of seven features that take into ac-

count both images. The first three features depend on the

foreground segment of both images and the last features

only depend on the proposal segmentations.

Similarity between the foreground color histograms of

both proposals. The color histograms are computed by

fitting a Gaussian Mixture Model (GMM) to the RGB color

of both images simultaneously, where each Gaussian in the

mixture model corresponds to a bin.

Similarity between the foreground histograms of tex-

tons. We use the implementation of [12] to compute a

patch codebook with 100 clusters for each pair of images.

The foreground histogram of each proposal is obtained from

this codebook.

Similarity between the foreground histograms of SIFT

descriptors. For each pair of images, we compute SIFT

descriptors [18] over a regular grid and cluster them in 100

clusters. We use the code from [16].

Similarity between the curvature histograms of the seg-

mentation (2 features). To compute a histogram over

curvature, we use an integral representation of the curva-

ture [8]. For each point in the boundary we compute the

number of foreground pixels inside a circle centered at that

point. We use two circles of different radius, obtaining two

different histograms.

Similarity between the histograms of the boundary ori-

entation. For each point in the boundary we compute the

orientation at that point and cluster them into eight bins.

Segmentation overlap. Overlap of both segmentations

when constrained to the tightest possible bounding box and

reshaped to have 64× 64 pixels.

3.1.2 Features independent for each image

Following [11], we also consider features that are computed

individually for each image.

Foreground and background similarity (3 fea-

tures). Distance between the foreground and background

histograms of color, textons and SIFT described in the

previous section.

Alignment with image edges. Average edge strength on

the segmentation boundary.

Centroid (2 features). Coordinates of the center of mass

of the foreground region, normalized by each dimension.

Major and minor axis length (2 features). Lengths of

the major and the minor axes of the ellipse that has the same

normalized second central moments as the segmentation.

Convexity and area (2 features). Ratio of the number of

foreground pixels over the area of the convex hull and over

the total area of the image.

Bounding box (2 features). Size of the bounding box (2

dimensions), normalized by the size of the image.

Boundary pixels. Percentage of boundary pixels that be-

long to the segmentation.

3.2. Learning a single image classifier

For completeness, in the experimental section (section

4), we report the results of training a regression Random

Forest for single images, using the features discussed in sec-

tion 3.1.2.
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This method is similar to [11], differing only in some

of the features and in the dataset used for training. The

results of a single image classifier, trained with the same

features used for the pairwise classifier, provide informa-

tion of how much gain in performance, comparing with ex-

isting cosegmentation methods, comes from single image

measures alone.

3.3. Possible extensions

The score of the single image classifier can be directly

included in the scoring function as a unary term. However,

this requires an extra parameter that weights the unary and

the pairwise parts of the model.

Another possible extension is to address the case when

the variability between pairs of objects in the set is high.

Consider the following example scenario, where the set has

three images A, B and C. The objects in images A and B are

very similar, but the object in C is quite different to both A

and B. We expect that P(A,B) is large, and both P(A,C)
and P(B,C) are small, where P(A,B) = P (x∗

A, x
∗
B), i.e.

the similarity between the two selected proposals in each

image. Currently, the segmentation of the object in image

B is influenced equally by the pairwise term P(A,B) and

P(B,C). The idea is to down-weight the importance of the

term P(B,C). To achieve this we plan to replace the sum

over P in (1) by a sum over f(P ), where f is some robust

function, e.g. truncated linear. Learning f is left as future

work.

4. Experiments

We report results on three different datasets: a dataset

with 20 pairs of images of the same object, the iCoseg

dataset [4] and the MSRC dataset [22].

We show quantitative and qualitative results. The mea-

sure used for the quantitative results is the accuracy, i.e.

the percentage of pixels in the image (both foreground and

background) correctly classified. Since the performance

of our method varies substantially for different classes, we

separate the results per class. Note, our algorithm does not

use any information about the class of the object.

4.1. Images with the same object

The cosegmentation dataset contains 20 image pairs

with the exact same object in similar poses and typically

with very different backgrounds. i.e. the ideal setting for

cosegmentation. Most of these images have been used be-

fore in cosegmentation [14, 21]. For this dataset, the accu-

racy using leave-one-out cross validation ,i.e. using 19 pairs

of images for training and testing in the remaining pair, is

91.9% for our single image implementation and 91.8% for

our joint method applied to pairs of images.

The results shown in Fig. 4 are visually comparable to

the ones presented in previous work on cosegmentation

[14, 15, 19, 21]. The accuracy for our method is slightly

lower compared with the best accuracy previously reported

girl stone dog banana

93.3 (96.2) 94.7 (95.5) 92.6 (98.1) 94.5 (95.3)

Figure 4. Results for images with the same object. For each pair

of images we report the accuracy for our method and, in brackets,

the upper bound.

for each of the images: “girl” 98% [14], “stone” 99% [15],

“dog” 96% [14] and “banana” 97% [19]. However, the per-

formance of our method is upper bounded by the accuracy

of the best segmentation in the pool of proposals (this ac-

curacy is reported in brackets in Fig. 4). A post-processing

step, using e.g. [20], could further improve our results, by

recomputing a pixel-accurate segmentation. A similar post-

processing step was used in [15]. Note that, in [14, 19] the

authors used prior information about the object’s color, in-

corporated in the model as unary terms.

4.2. The iCoseg dataset

The iCoseg dataset introduced in [4] contains several

groups of images. In [4] the authors used the iCoseg dataset

in an interactive cosegmentation framework and, to the best

of our knowledge, this dataset was never used in a fully au-

tomatic setting.

Each group contains images of the same object instance

or similar objects from the same class. iCoseg is a chal-

lenging dataset because the objects are deformable, change

considerably in terms of viewpoint and illumination, and in

some cases, only a part of the object is visible. This con-

trasts significantly with the images typically used to test

cosegmentation systems, like the ones in Fig. 4. The di-

versity of the dataset can be seen in the Fig. 5, 6 and 7.

We resized the images to half the size and excluded im-

ages in some of the groups to make it feasible to use A*-

search for maximizing function (1).

We use the cosegmentation dataset (discussed in section

4.1) for training. This shows that training our model on a

totally distinct dataset gives good performance.

Table 1 shows the segmentation accuracy of different

methods for the iCoseg dataset. We compare our results

with three previously proposed methods. The method of

[11] was designed for single image segmentation and we

select the highest scoring segmentation as the result.

The second method [23] extends GrabCut [20] to pairs of

images by jointly modeling the foreground color of both im-

ages. Since this method was formulated for pairs of images,
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Our method Competitors Baselines

1 image All images 1 image [11] Pairs [23] All images [15] Upper bound Uniform

Alaskan bear (9/19 images) 79.0 90.0 60.4 58.2 74.8 96.4 79.0

Balloon (8/24 images) 79.5 90.1 97.5 89.3 85.2 99.3 86.8

Baseball (8/25 images) 84.5 90.9 74.6 69.9 73.0 96.5 88.8

Bear (5/5 images) 78.2 95.3 83.5 87.3 74.0 97.5 68.4

Elephant (7/15 images) 75.4 43.1 74.3 62.3 70.1 96.5 82.9

Ferrari (11/11 images) 84.8 89.9 71.8 77.7 85.0 97.1 73.9

Gymnastics (6/6 images) 82.1 91.7 72.2 83.4 90.9 96.4 83.4

Kite (8/18 images) 89.3 90.3 81.5 87.0 87.0 96.7 83.5

Kite panda (7/7 images) 80.2 90.2 87.7 70.7 73.2 97.8 68.7

Liverpool (9/33 images) 87.4 87.5 83.2 70.6 76.4 92.7 76.0

Panda (8/25 images) 87.8 92.7 79.5 80.0 84.0 96.3 62.0

Skating (7/11 images) 78.4 77.5 73.4 69.9 82.1 85.8 62.7

Statue (10/41 images) 92.9 93.8 91.5 89.3 90.6 97.8 73.7

Stonehenge (5/5 images) 84.2 63.3 83.3 61.1 56.6 96.1 78.2

Stonehenge 2 (9/18 images) 88.9 88.8 79.7 66.9 86.0 93.8 64.4

Taj Mahal (5/5 images) 80.7 91.1 82.2 79.6 73.7 96.5 82.2

Table 1. Segmentation accuracy for the iCoseg dataset

Alaskan bear Balloon Ferrari Gymnastics Kite panda Statue Stonehenge 2

96.9 91.8 85.6 90.4 95.6 96.1 92.0

93.3 99.4 97.5 93.8 91.5 96.4 91.8

Figure 5. Results for the iCoseg dataset. Our method is robust to changes in object size (Balloon), viewpoint (Ferrari and Gymnastics)

and partial occlusions of the object (Alaskan bear, Kite panda and Statue). Below each image we report the accuracy of the segmentation.

we apply it to all possible pairs in each class. We chose

two different ways of initializing the algorithm (using the

histogram intersection proposed in [23] and using the best

scoring segmentations from [11]), and then selected the re-

sult with lower energy. The accuracy reported is the average

of accuracies for all pairs.

We also compare with [15]. We use the reference imple-

mentation of the method and set the only free parameter to

0.001. Since the superpixel code used in [15] is not freely

available, we use mean shift to compute the superpixels. For

each class, we tested this method using SIFT and color fea-

tures, with and without graph cut post-processing and report

results for the best of the 4 settings.

The last two columns show two different baselines. First,

we report the accuracy upper bound for our method. This

is given by choosing the best segmentation according to

ground truth from the 50 used proposals. Finally, we report

results considering a uniform segmentation, i.e. for each

image, we take the full and the empty segmentations and

choose the one with the best error rate.

Our method using all images is best for 11 out of 16

classes. For 4 classes (Balloon, Elephant, Skating and

Stonehenge) other methods are clearly better, which we dis-

cuss below.

Fig. 5 shows results of jointly segmenting all the im-

ages in a class. The dataset contains considerable variation

within each class and our method is robust to that varia-

tion. For example, the Alaskan bear and Statue classes have

images with significant object occlusion while the Ferrari

images have great variations in terms of view point.

Fig. 6 compares the result of segmenting the images in-

dividually and jointly. For both classes, segmenting jointly
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Single image segmentation Joint segmentation

87.2 74.9 89.4 94.2

70.2 78.7 97.0 89.1

Figure 6. Comparison of our single image segmentation and

joint segmentation. Single image segmentation fails to correctly

segment the object due to strong internal edges (Panda) and strong

edges in the background (Taj Mahal).

significantly increases the accuracy of the segmentations.

For example, for the Panda images, the single image method

aligns with the strong boundaries inside the object, while

the joint segmentation, correctly retrieves the full panda.

Table 1 shows that for some classes the joint method is

outperformed by single image segmentation, e.g. Elephant

and Skating. Fig. 7 shows segmentations for some images

in those classes. In both the Elephant and the Stonehenge

classes the object is depicted in very similar backgrounds,

which increases the ambiguity of the cosegmentation task.

Note that, for the other group with Stonehenge images

(Stonehenge 2), some of the images have very different

lighting conditions which helps disambiguate the object.

This can be seen in the last column of Fig. 5.

For the Skating class, the object is quite complex since

all the skaters are considered foreground. Since the pro-

posal segmentations considered by our algorithm are con-

nected, there is a considerable amount of background incor-

rectly labeled foreground.

Elephant Skating Stonehenge

37.6 68.1 59.8

39.8 73.3 59.4

Figure 7. Failure cases for the iCoseg dataset. Joint segmenta-

tion fails for these classes due to the high similarity of the back-

ground in all the images (Elephant and Stonehenge) and the com-

plexity of the object (Skating).

4.3. Images with objects of the same class

The MSRC dataset was first introduced in the context of

supervised class segmentation [22]. We select a subset of

its classes and 10 images for each of these classes such that

there is a single object in each image.

For each class we train a regression Random Forest us-

ing the images of the remaining classes. We take all possi-

ble pairs of images inside a class as training examples. We

show results for this experiment in Fig. 8.

Since, as an intermediate step for our model we need to

compute the pairwise scores for all pairs in the class, we

also report the average accuracy of the top scoring pair of

proposals, i.e. for each pair of images, we take as the solu-

tion the segmentations with the highest pairwise term.

For the MSRC dataset the use of joint segmentation does

not improve scores considerably compared with using our

single image classifier. We believe that this is due to the

characteristics of the dataset, where objects tend to be cen-

tered in the image, have a good contrast with background,

be homogeneous in terms of color. Another reason may be

the larger intra-class variability, compared with iCoseg.

5. Discussion

From the results reported for the different datasets we

conclude that our method outperforms existing methods for

cosegmentation.

For unsupervised object class segmentation (section 4.3)

using single image methods (e.g. [11]) already outper-

forms existing methods for cosegmentation. Intuitively, us-

ing multiple images should provide more information and

make the problem easier to solve; however, that is not the

case for this dataset due to the amount of intra-class vari-

ation and the fact that the objects are usually very distinct

from the rest of the image. Although our method uses mul-

tiple images, it is capable of adapting to such situation by

weighting the importance of single image features accord-

ingly.

We also showed that for the MSRC dataset our single

image version outperforms [11]. This is probably due to

the fact that they use the Pascal VOC dataset for training,

which contains high variability in terms of object proper-

ties, while we perform leave-one-out cross validation in the

MSRC dataset, i.e. while testing in one of the classes we

train in the remaining classes. This further supports our

claim that adapting the training set to the task is important

for achieving good performance.

In the experiments for the iCoseg dataset, we showed

that our method considerably outperforms both state-of-

the-art methods for cosegmentation and single image ap-

proaches. It has, however some limitations, especially when

the background is very similar in all of the images.

In summary, our method presents several advantages

compared to existing methods for the same or similar tasks:

(1) it can be applicable to sets with a small number of im-

ages (in contrast to generative methods for unsupervised

object segmentation); (2) it does not require images of the
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Our method Competitors

1 image Pairs All 1 image [11] Pairs [23] All [15]

Bird 90.8 94.5 95.3 90.7 88.0 62.2

Car 80.2 80.7 79.6 72.3 64.9 78.6

Cat 91.9 92.0 92.3 87.8 77.5 80.8

Cow 93.9 93.5 94.2 92.9 91.9 80.8

Dog 92.9 93.1 93.0 88.7 86.7 75.6

Plane 82.7 82.8 83.0 78.2 65.7 80.3

Sheep 94.6 93.7 94.0 94.3 89.8 92.5

91.4 95.4 98.4

85.4 93.4 91.5

90.3 96.4 97.3
Figure 8. Results for the MSRC dataset. For these dataset, the results of our joint method are comparable with single image segmentation.

same class for training (as opposed to supervised object seg-

mentation methods) and (3) it can be adapted to different

cosegmentation scenarios, by using a different training set

(as opposed to cosegmentation methods that have a “fixed”

concept of distance between foreground segments).

6. Conclusions and Future Work

We presented a novel method for cosegmentation of im-

ages. The main contribution is to show that requiring the

foreground segment to be an object significantly improves

on existing methods. We include this constraint by building

upon methods that generate a pool of object-like proposal

segmentations. In practice, for many applications, imposing

this constraint does not reduce the usefulness of the method.

We show state-of-the-art results in a recently introduced

challenging dataset. In this dataset, the objects present large

variations of viewpoint, scale and illumination.

As future work, we believe that the ideas listed in section

3.3 may be fruitful. We are also excited about applying our

system in the future to application scenarios mentioned in

section 2.1.
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study of parts-based object class detection using complete
graphs. IJCV, 87(1-2):93–117, 2010.

[6] E. Borenstein and S. Ullman. Class-specific, top-down seg-
mentation. In ECCV, 2002.

[7] L. Breiman. Random forests. In Machine Learning, 2001.

[8] J. W. Bullard, E. J. Garboczi, W. C. Carter, and E. R. F. Jr.
Numerical methods for computing interfacial mean curva-
ture. Computational Materials Science, 4:103–116, 1995.

[9] N. D. Campbell, G. Vogiatzis, C. Hernández, and R. Cipolla.
Automatic 3D object segmentation in multiple views using
volumetric graph-cuts. Image and Vision Computing, 28.

[10] L. Cao and L. Fei-Fei. Spatially coherent latent topic model
for concurrent object segmentation and classification. In
ICCV, 2007.

[11] J. Carreira and C. Sminchisescu. Constrained parametric
min-cuts for automatic object segmentation. In CVPR, 2010.

[12] T. Deselaers and V. Ferrari. Global and efficient self-
similarity for object classification and detection. In CVPR,
2010.

[13] I. Endres and D. Hoiem. Category independent object pro-
posals. In ECCV, 2010.

[14] D. S. Hochbaum and V. Singh. An efficient algorithm for
co-segmentation. In ICCV, 2009.

[15] A. Joulin, F. Bach, and J. Ponce. Discriminative clustering
for image co-segmentation. In CVPR, 2010.

[16] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In CVPR, 2006.

[17] C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman.
Sift flow: Dense correspondence across different scenes. In

ECCV, 2008.

[18] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60(2):91, 2004.

[19] L. Mukherjee, V. Singh, and C. R. Dyer. Half-integrality
based algorithms for cosegmentation of images. In CVPR,
2009.

[20] C. Rother, V. Kolmogorov, and A. Blake. Grabcut - inter-
active foreground extraction using iterated graph cuts. SIG-

GRAPH, August 2004.

[21] C. Rother, V. Kolmogorov, T. Minka, and A. Blake. Coseg-
mentation of image pairs by histogram matching - incorpo-
rating a global constraint into MRFs. In CVPR, 2006.

[22] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Texton-
boost: Joint appearance, shape and context modeling for
multi-class object recognition and segmentation. In ECCV,
2006.

[23] S. Vicente, V. Kolmogorov, and C. Rother. Cosegmentation
revisited: models and optimization. In ECCV, 2010.

[24] J. Winn and N. Jojic. Locus: learning object classes with
unsupervised segmentation. In ICCV, 2005.

8


