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Abstract

Common local stereo methods match support windows at integer-valued disparities.
The implicit assumption that pixels within the support region have constant disparity
does not hold for slanted surfaces and leads to a bias towards reconstructing fronto-
parallel surfaces. This work overcomes this bias by estimating an individual 3D plane at
each pixel onto which the support region is projected. The major challenge of this ap-
proach is to find a pixel’s optimal 3D plane among all possible planes whose number is
infinite. We show that an ideal algorithm to solve this problem is PatchMatch [1] that we
extend to find an approximate nearest neighbor according to a plane. In addition to Patch-
Match’s spatial propagation scheme, we propose (1) view propagation where planes are
propagated among left and right views of the stereo pair and (2) temporal propagation
where planes are propagated from preceding and consecutive frames of a video when
doing temporal stereo. Adaptive support weights are used in matching cost aggregation
to improve results at disparity borders. We also show that our slanted support windows
can be used to compute a cost volume for global stereo methods, which allows for ex-
plicit treatment of occlusions and can handle large untextured regions. In the results we
demonstrate that our method reconstructs highly slanted surfaces and achieves impres-
sive disparity details with sub-pixel precision. In the Middlebury table, our method is
currently top-performer among local methods and takes rank 2 among approximately
110 competitors if sub-pixel precision is considered.

1 Introduction
In local stereo matching, a support window is centered on a pixel of the reference frame.
This support window is then displaced in the second image to find the point of lowest color
dissimilarity, which represents the matching point. There is an implicit assumption in this
procedure, i.e., all pixels within the support window have constant disparity. In practice,
this assumption is unlikely to hold for two reasons. (1) The support window contains pixels
that lie on a different surface than the center pixel. (2) The window captures a surface
that is slanted, i.e., not fronto-parallel. There has recently been a large number of papers
that address problem (1), and it seems that the adaptive support weight strategy is the best
solution to this problem [7, 9, 10, 16]. In contrast, less attention has been paid to problem
(2), which we tackle.

Figure 1a illustrates the problem. Standard local algorithms [7, 9, 10, 16] apply fronto-
parallel windows at discrete disparities to reconstruct the four points of Figure 1a. In our
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Figure 1: Support Regions (in 1D). The points of the green surface shall be reconstructed.
Support regions are shown by red bars. (a) Fronto-parallel windows at integer disparities as
used in standard methods. (b) Our support regions. We estimate a 3D plane at each point.

(a) (b) (c)

Figure 2: Advantage of our method. (a) Left image and ground truth disparities of the
Corridor pair. (b) The disparity map computed with fronto-parallel windows approximates
the slanted surfaces via many fronto-parallel ones. (c) Our slanted support windows correctly
reconstruct the scene as a collection of slanted planar surfaces.

example, an optimal support can only be found for point P where the surface segment co-
incides with the fronto-parallel plane at the whole-valued disparity 1. Note that this case is
very unlikely in practice. For all other cases, this method fails in finding an optimal support,
because the surface segment lies at a sub-pixel disparity (Q), the point lies on a slanted pla-
nar surface (R) or on a rounded one (S). Our remedy is to compute an individual 3D plane
at each pixel onto which the support region is projected. Figure 1b shows that this leads to
considerably improved support regions. For example, we can model the optimal support for
P, Q and R. At point S our planar model represents an oversimplification of the real rounded
surface shape. However, we will show in experiments that even in this case the planar ap-
proximation works very well (e.g., see ball in Figure 2c). Figure 2 illustrates the advantage
of our algorithm using the Corridor pair that consists of several highly slanted surfaces. In
figure 2b, we run our algorithm allowing fronto-parallel windows only. The resulting 3D
reconstruction is relatively poor, because a single slanted surface is approximated by sev-
eral fronto-parallel surfaces (see floor, ceiling and walls). In contrast, our slanted support
windows correctly reconstruct these slanted surfaces with sub-pixel precision (Figure 2c). 1

There are several algorithms that compute disparity maps with sub-pixel precision. Of-
ten, sub-pixel information is derived in post-processing by fitting a parabola in the cost vol-
ume (e.g., [14]). The more sophisticated way (that we follow) is to account for sub-pixel
precision directly in the matching. In the simplest form, this is accomplished by extending
the label space, i.e., some fractional disparity values (half- or quarter-pixel) are considered
in addition to the whole-valued ones (e.g., [6]).2 Instead of adding additional fronto-parallel
planes to the label space, one can add slanted ones [5]. However, this requires to first extract
those planes that make up the scene, which is a non-trivial task considering that the number
of candidate planes is infinite. For example, the very popular segmentation-based methods
(e.g., [2, 12]) extract several planes using an initial disparity map in the first step. In the

1In our algorithm, it would be relatively straight-forward to replace our planar model with, e.g., a B-spline model
[3]. However, regularization of this spline to avoid overfitting the data would require additional parameters.

2This typically goes along with an increased runtime. For example, when implementing this strategy in a
standard local algorithm runtime is doubled or quadrupled when using half- and quarter-pixel precision, respectively.
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matching step, these planes are checked to find the best-suited one for each pixel/segment.
The problem is that if the correct plane has been missed in step 1, the matching step will fail.
This is also the limitation of the local algorithm in [17] that we consider as closest related
work. In the plane extraction step in [17], a disparity map using fronto-parallel windows is
computed. This disparity map serves to extract a plane orientation at each pixel via plane
fitting. In the matching step, cost aggregation is performed along the estimated plane ori-
entations, i.e., slanted support windows are used. However, [17] cannot reconstruct highly
slanted surfaces (e.g., the ground plane in the Teddy set of Figure 4), because the results
of matching with fronto-parallel windows are too poor to allow inferring the correct plane
orientation. Furthermore, quantization of disparity values is required.

In this work we propose an algorithm based on PatchMatch [1] to effectively solve the
problem of finding a “good” slanted support plane at each pixel. In contrast to other local
algorithms (e.g., [7, 9, 10, 16, 17]), we do not construct the full stereo cost volume, which is
impossible in our case due to an infinite label space consisting of all 3D planes. Instead, we
smartly traverse parts of it. This enables a one-shot optimization where planes and assign-
ments of pixels to planes are estimated jointly, which effectively circumvents the problem of
missing correct planes (see above). We can even reconstruct rounded surfaces where many
slightly different support planes are needed. PatchMatch [1] itself is an approximate dense
nearest neighbor algorithm, i.e., for each patch of one image an integer-valued (x,y)-vector
to a similar colored patch in a second image is computed. Here, we use the PatchMatch idea
of random search and propagation to find the nearest neighbor on the epipolar line according
to a plane. This enables handling of slanted surfaces and sub-pixel precision. Our slanted
support windows can also handle the well-known window foreshortening problem, which is
specifically important for a large baseline stereo setup.

2 Algorithm
2.1 Model
For each pixel p of both frames, we search a plane fp. We compute both left and right
disparity maps, because, as most other local methods, we perform occlusion handling via
left/right consistency checking. Once fp has been found, we can compute p’s disparity as

dp = a fp px +b fp py + c fp (1)

where a fp , b fp and c fp are the three parameters of plane fp and px and py denote p’s x- and
y-coordinates. The plane fp we desire to find is the one of minimum aggregated matching
costs among all possible planes:

fp = argmin
f∈F

m(p, f ), (2)

where F denotes the set of all planes whose size is infinite. Note that this infinite label
space prevents us from simply checking all possible labels, as one would do in standard
local stereo matching where labels correspond to discrete disparity values. The aggregated
costs for matching pixel p according to plane f are computed as

m(p, f ) = ∑
q∈Wp

w(p,q) ·ρ(q,q− (a f qx +b f qy + c f )). (3)

Here, Wp denotes a square window centered on pixel p. We will also apply our method
for temporal stereo. In this case, Wp is no longer a 2D, but a 3D window where the third
dimension is formed by pixels of preceding and consecutive frames of the video sequence,
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as has recently been proposed in [10]. The weight function w(p,q) is used to overcome the
edge-fattening problem and implements the adaptive support weight idea [16]. It computes
the likelihood for p and q lying on the same plane by looking at the pixels’ colors, i.e., it
returns high values if colors are similar:

w(p,q) = e−
||Ip−Iq||

γ . (4)

Here, γ is a user-defined parameter and ||Ip− Iq|| computes the L1-distance of p and q’s
colors in RGB space. Our function can be seen as a simplified form of the weighting function
proposed in [16].3 Note that there is nothing that speaks against using other support weight
functions (e.g., [7, 9]), which might potentially further improve results.4 Let us now focus
on the second part of equation (3). Here, we first compute q’s disparity according to plane
f and derive q’s matching point in the other view q′ by subtracting this disparity from q’s
x-coordinate.5 The function ρ(q,q′) now computes the pixel dissimilarity between q and q′:

ρ(q,q′) = (1−α) ·min(||Iq− Iq′ ||,τcol)+α ·min(||∇Iq−∇Iq′ ||,τgrad), (5)

where ||∇Iq−∇Iq′ || denotes the absolute difference of gray-value gradients computed at q
and q′. Since the x-coordinate of q′ lies in the continuous domain, we derive its color and
gradient values by linear interpolation. The user-defined parameter α balances the influence
of color and gradient term. Parameters τcol and τgrad truncate costs for robustness in occlu-
sion regions. This match measure has recently been applied in [9] and has the advantage of
handling radiometric differences in the input images due to using the gradient.

2.2 Inference via PatchMatch
Let us now focus on the problem of finding a 3D plane at each pixel in both views that
minimizes the cost given in equation (3). Our algorithm is based on PatchMatch [1]. Its
basic idea is that in natural stereo pairs relatively large regions of pixels can be modeled by
approximately the same plane. We find the plane for a region by initializing each pixel with a
random plane. The hope is that after this random initialization at least one pixel of the region
carries a plane that is close to the correct one. Note that this is very likely because we have
many guesses, i.e., each pixel of the region represents one. Having a single “good” guess is
already enough for the algorithm to work, since there is a propagation step that passes this
plane on to the other pixels of the region. Apart from propagating the plane among spatial
neighboring pixels as in [1], we introduce two new propagation steps, i.e., view propagation
and temporal propagation. Finally, there is also a plane refinement step where we alter plane
parameters to get closer to the optimal plane. We now explain details for these steps.
Random Initialization We assign each pixel of both views to a random plane. In principle,
one can obtain a random plane by directly assigning random values to the three parameters
a f , b f and c f of a plane f . However, this strategy will not sample the space of all allowed
planes evenly. In our method for computing a random plane at pixel (x0,y0), we first select a
random disparity z0 that lies in the range of allowed continuous disparity values. This gives
us a point P=(x0,y0,z0) on our random plane. We now compute the plane’s normal vector as
a random unit vector~n = (nx,ny,nz). We then convert to the plane representation of equation

3We have removed the spatial term of [16] that compares pixel positions. In our experiments, improvement due
to this term has been too small in order to justify another parameter.

4One can also use a symmetrical function that computes support weights in both images for increased robustness
near occlusions [16]. In our experience, the practical benefit of this strategy is relatively low.

5If q resides in the right image, the disparity value is added.
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Figure 3: Different steps of the algorithm. (a) Left and right disparity maps at an intermediate
step of the first iteration. All pixels up to the marked red one have already been processed.
The other ones are still assigned to planes found in random initialization. We use three
types of propagation illustrated by arrows. (b) Results after iteration 3. (c) Results after
post-processing. We perform left/right consistency checking and occlusion filling.

(1) by a f := − nx
nz

, b f := − ny
nz

and c f := nxx0+nyy0+nzz0
nz

. Note that we can enforce fronto-
parallel windows by setting~n := (0,0,1). In addition, we can switch off sub-pixel precision
by enforcing an integer-valued disparity for z0.6 We will do this in our experiments.
Iteration In an iteration, each pixel runs through four stages, i.e., (1) spatial propagation,
(2) view propagation, (3) temporal propagation and (4) plane refinement. We first process all
pixels of the left frame and then all pixels of the right image. In even iteration, we start with
the top left pixel and traverse pixels in row-major order until we reach the bottom right pixel.
In odd iterations, we reverse the order, i.e., we start with the right bottom pixel and stop at
the top left one. In our experiment, we run three iterations. Figure 3 plots results obtained in
different iterations.

Spatial Propagation The idea behind this form of propagation is that spatial neighbor-
ing pixels are likely to have similar planes. Let p denote the current pixel and fp its plane.
We evaluate whether assigning p to the plane fq of a spatial neighbor q improves the costs of
equation (3), i.e., we check the condition m(p, fq)<m(p, fp). If this is the case, we accept fq
as p’s new plane, i.e., fp := fq. In even iterations we consider the left and upper neighbors,
whereas in odd iterations the right and lower neighbors are checked.

View Propagation Here, we exploit the strong coherency that exists between left and
right disparity maps, i.e., a pixel and its matching point in the other view are likely to have
similar planes. We check all pixels of the second view that have our current pixel p as a
matching point according to their current plane.7 Let p′ be such a pixel and fp′ denote its
plane transformed to the first view. If m(p, fp′)< m(p, fp), we set fp := fp′ .

Temporal Propagation This form of propagation can only be used when working on
stereo video sequences. The assumption is that a pixel p of the current video frame and a
pixel p′ at the same coordinates in the preceding or consecutive image are likely to have
similar planes. Obviously, this assumption is more likely to hold if there is little motion in
the sequence, which is oftentimes the case. We check the condition m(p, fp′)< m(p, fp). If
it is fulfilled, we set fp := fp′ .

6The same adjustments need to be done in the plane refinement step to prevent this step from generating slanted
support windows and sub-pixel disparities, respectively.

7When computing the matching point we obtain a continuous x-coordinate, which does not make sense here.
Hence, we round to the closest whole-valued x-coordinate. Note this rounding procedure is the reason why planes
of corresponding points are, in general, not exactly the same, but only similar. The other reason for different planes
is the occlusion problem.
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Plane Refinement The goal of this step is to refine the parameters of the plane fp at
pixel p = (x0,y0) in order to further reduce the costs of equation (3). We convert fp to the
point plus normal vector representation. We have two parameters, i.e., ∆max

z0
that defines the

maximum allowed change of the 3D point’s z-coordinate z0 and ∆max
n that sets a limit on the

allowed change of components of the normal vector ~n. We now estimate ∆z0 as a random
value that lies in the interval [−∆max

z0
,∆max

z0
] and compute z′0 := z0 +∆z0 , which gives us a

new 3D point P′ = (x0,y0,z′0). Analogously, we estimate three random values of the interval
[−∆max

n ,∆max
n ], which form the components of the vector ~∆n. We now estimate the modified

normal vector as ~n′ := u(~n+ ~∆n) where u() computes the unit vector. Finally, we convert the
plane defined by P′ and ~n′ to the representation of equation (1), which gives as the modified
plane f ′p. If m(p, f ′p)< m(p, fp), we accept the plane, i.e., fp := f ′p.

This refinement procedure is iterated. We start by setting ∆max
z0

:= maxdisp/2, where
maxdisp is the maximum allowed disparity, and ∆max

n := 1. After each refinement, we set
∆max

z0
:= ∆max

z0
/2 and ∆max

n := ∆max
n /2, which exponentially reduces the search scope. We stop

if ∆max
z0

< 0.1. The idea is to allow large changes in the first iterations, which makes sense
if the current plane is completely wrong. In later iterations, we sample planes that are very
close to our current one, which allows capturing disparity details, e.g., at rounded surfaces.8

2.3 Post-Processing
We now apply occlusion treatment via left/right consistency checking. For each pixel p, we
compute its matching point p′ in the other view.9 We now check the condition |dp−dp′ | ≤ 1.
If this condition is false, pixel p is invalidated. This consistency check typically fails for
occluded pixels, but also for mismatched ones.

We now fill in the disparity for invalidated pixels. For an invalidated pixel p, we search
its closest valid pixel to the left and to the right. The planes f l and f r of both points are
recorded. We now compute the disparities when assigning p to f l and f r (equation (1)) and
select the lower of the two as p’s filled-in disparity. Selecting the lower disparity is motivated
by the fact that occlusion occurs at the background. Note that this filling scheme extrapolates
planes, instead of replicating constant disparities as is commonly done (e.g., [7, 9]). Hence
we can also correctly treat slanted surfaces at this stage. However, the obvious problem is
that this strategy generates horizontal streaks in the disparity map. To weaken this problem,
we apply a weighted median filter on the filled-in disparities (also see [9]). The weight mask
for the median filter is computed by equation (4). We use the same setting for γ and the
window size that we have used in the matching process. (This also means that we apply a 3D
median filter when doing temporal stereo.) Note that all pixels that have survived left/right
checking are not affected by this operation. Disparity maps before and after post-processing
are shown in Figures 3b and 3c, respectively.

2.4 Building a Data Term for Global Methods
Window-based matching costs allow global algorithms to inherit the ability to precisely cap-
ture depth discontinuities from adaptive support weight approaches [15]. Hence, it is no
longer necessary to compute an explicit color segmentation, which is currently needed by
many state-of-the-art methods (e.g., [3, 13]).10 The problem is that one also inherits a disad-
vantage of window-based matching, i.e., the bias towards fronto-parallel surfaces. Note that

8As an alternative to the current refinement step, we could do gradient descent.
9The continuous x-coordinate of the matching point is rounded to the next whole-valued x-coordinate.

10The second argument for using window-based correlation in global matching is that one can use robust
radiometric-insensitive matching costs such as NCC or Census that only work on a window basis.
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this problem is not present in standard global data terms that compute the match measure on
a pixel basis (1×1 match window). The data term proposed in the following allows global
methods to take advantage of adaptive support weight windows without fronto-parallel bias.

We now construct a cost volume that stores the costs for matching each pixel at each
allowed whole-valued disparity. (The discretization of disparity is the obvious downside of
this approach.) Let us now compute the costs for matching all pixels at a fixed disparity
d. This is accomplished by setting a minimum allowed disparity mindisp := d− 0.5 and
a maximum allowed disparity maxdisp := d + 0.5− eps where eps is a very small value.
We now run the PatchMatch algorithm of Section 2.2.11 The costs for matching pixel p at
disparity d are now derived by looking up p’s plane fp and evaluating the costs m(p, fp).

We embed the above data costs in a global algorithm that optimizes an energy function
consisting of data and smoothness terms. The data term is thereby taken from [8] and enables
symmetrical occlusion handling. As a smoothness term, we use the second-order term of
[13], which overcomes the fronto-parallel bias of competing terms (e.g., truncated linear
model). The exact form of this energy is found in the supplementary material. We perform
energy minimization using the α-expansion algorithm [4].

3 Results
Let us first focus on the local method. We apply a window of 35×35 pixels and set the other
parameters to {γ,α,τcol ,τgrad} := {10,0.9,10,2}. We implement two competitors in our
PatchMatch framework: (1) fronto-parallel windows matched at whole-valued disparities,
(2) fronto-parallel windows matched at continuous sub-pixel positions (see Section 2.2).
Also these competitors can be seen as contributions of this paper. Competitor (1) should be
regarded in the context of techniques that speed up the adaptive support weight approach.
Previous methods [9, 10] use special adaptive support weight functions to make the runtime
independent of the match window size. In contrast, our method keeps the dependency on the
window size, but removes dependency on the disparity search range.12 In contrast to [9, 10],
this strategy works for arbitrary adaptive support weighting functions (e.g., [7]). Speaking
of runtime, PatchMatch Stereo consumes approximately one minute on a Middlebury pair.13

Competitor (2) overcomes the need to quantize disparities for sub-pixel matching, as required
in previous work [6, 17]. Note that already this method is very successful in sub-pixel
estimation when compared against the state-of-the-art (see Table 1 - error threshold 0.5).

Figure 4 plots results of our two competitors (Figures 4a and 4b) and our slanted window
algorithm (Figure 4c) on the Middlebury set [11]. The most obvious difference is found in
the Teddy test set where, in contrast to its competitors, our method correctly reconstructs the
highly slanted ground plane. Let us now look at Figure 4d where we show 3D reconstructions
of objects from the Middlebury images. The problem of competitor (1) is that it reconstructs
a single slanted surface via various fronto-parallel disparity segments so that, e.g., the 3D
reconstruction of the slanted plane from the Venus set shown top-left in Figure 4d looks like
a staircase. Allowing sub-pixel matching (competitor (2)) only weakens this fronto-parallel
bias. In contrast, our slanted windows can reconstruct the Venus plane as what it is - a planar

11We enforce minimum and maximum allowed disparity by modifying equation (3) so that m(p, f ) returns infinite
costs if p’s disparity according to plane f lies outside the interval [mindisp,maxdisp]. We also modify the random
initialization step so that it only computes planes that lead to disparities inside this interval.

12This is also why our algorithm should be efficient when computing optical flow, which is future work.
13We have an unoptimized C implementation. An obvious idea is to run the algorithm on the GPU, which we

have not yet done. For the special case of using integer disparities, running our plane refinement step and three
overall iterations might be too excessive. One or two iterations and turning off plane refinement may already be
sufficient to get good results and would considerably reduce runtime.
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(a)

(b)

(c)

(d)

Figure 4: Middlebury results. (a) Fronto-parallel windows matched at integer disparities.
We show disparity map (top), disparity errors > 1 pixel (bottom left) and disparity errors >
0.5 pixels (bottom right). (b) Fronto-parallel windows matched at continuous disparities. (c)
Our slanted support windows. Note, e.g., the correctly reconstructed slanted ground plane in
the Teddy set. For Teddy, our method is the new Middlebury top-performer (error > 1 pixel
measured in unoccluded regions). (d) Crops of above disparity maps with different scal-
ing to highlight disparity details. Using fronto-parallel windows (left and middle disparity
maps) results in a bias towards reconstructing fronto-parallel disparity segments. Our slanted
windows (right disparity maps) overcome this bias (see corresponding 3D reconstructions).
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Algorithm thresh. Rank Tsukuba Venus Teddy Cones
nocc all disc nocc all disc nocc all disc nocc all disc

Slanted Support 1.0 11 2.0957 2.3343 9.3154 0.2120 0.3915 2.6226 2.991 8.168 9.622 2.474 7.808 7.116
Fronto-Par. Sub-Pixel 1.0 22 2.1357 2.3243 9.9260 0.2527 0.4216 2.7627 5.5217 10.517 14.215 3.2327 8.3317 8.2018
Fronto-Par. Integer 1.0 32 2.2358 2.4444 9.1853 0.2525 0.4116 2.2116 6.7334 12.234 16.938 3.7135 8.9027 9.3135

Slanted Support 0.5 2 15.037 15.436 20.345 1.004 1.344 7.757 5.661 11.82 16.51 3.801 10.21 10.21
Fronto-Par. Sub-Pixel 0.5 4 14.136 14.432 19.235 1.737 2.157 7.847 9.636 16.28 22.68 7.0824 12.616 13.211
Fronto-Par. Integer 0.5 41 19.151 19.446 21.253 7.5756 8.0956 13.438 14.236 20.739 29.137 11.653 16.942 18.341

Table 1: Quantitative Middlebury results for the disparity maps of Figure 4. Subscripts
denote rankings in the table. We use error threshold 1.0 (Middlebury default threshold) and
threshold 0.5 to measure sub-pixel performance. Our method (Slanted Support) performs
particularly well for the more complex scenes of the benchmark, i.e., Teddy and Cones.

surface. Also note that our slanted support windows are effective in reconstructing rounded
surfaces (e.g., the handle of the cup in Figure 4d). Table 1 gives quantitative results that
are taken from the Middlebury table. When using the Middlebury default error threshold
of one pixel, our method takes rank 11 among approximately 110 algorithms and is the
best-performing local method in this ranking. Note that for Teddy, our slanted window
method is the top-performer according to the error percentage in unoccluded regions, which
is because most other algorithms run into problems when reconstructing the slanted ground
plane. When using an error threshold of 0.5 to assess sub-pixel performance, our method
takes rank 2 in the table and is the top-performer on the complex Teddy and Cones images.14

We have also applied our method on stereo videos (Figure 5). Here, we have employed a 3D
window of size 71× 71× 3 pixels. We use a larger spatial window to account for the high
resolution of these sequences (up to 1024×576 pixels). Note we can handle high-resolution
images, since our algorithm is memory-efficient, i.e., one only needs to hold the current
plane parameters and corresponding aggregated costs at each pixel in memory.

Let us now focus on evaluating the data term described in Section 2.4 using the Teddy
set. We first construct the cost volume via pixel-wise correlation (no aggregation performed)
using the match measure of equation (5). (Pixel-wise correlation is what standard global
methods commonly do.) The corresponding disparity map of Figure 6a shows that disparity
borders cannot be well-preserved when using this data term.15 We now construct the cost
volume using adaptive support weight windows, but only allow fronto-parallel windows.
Figure 6b shows that results at disparity borders are improved, but the algorithm fails to
capture the slanted ground plane. In contrast, our data term with slanted windows correctly
reconstructs object boundaries and the slanted ground plane.

Let us give our general opinion. Local adaptive support weight methods are starting to
outperform global methods on Middlebury. Also the global algorithm we have used here
cannot compete with our local results on the Middlebury images. However, we believe
that this is only because the Middlebury images are ideal for local methods, i.e., almost no
untextured regions. Global methods still make sense, because they allow occlusion handling
directly in the matching process and can treat large untextured regions. As an example, we
plot the Middlebury Plastic set that contains large untextured regions. As seen from Figure
6d our local method fails, whereas the global method (used with our slanted window data
term) can correctly reconstruct disparity (Figure 6e).

14The sub-pixel top-performer is, to our knowledge, not published yet. Also note it hardly makes sense to measure
sub-pixel performance on Tsukuba, because the ground truth does not have sub-pixel information.

15Also the ground plane could not be reconstructed, although there is no fronto-parallel bias in this cost volume.
We found that this is, because optimization did not work very well, i.e., QPBO leaves a large percentage of pixels
unlabelled. This has not been a problem when using the adaptive support weight cost volumes, which is most likely
because they contain less ambiguity.
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Figure 5: Temporal stereo. We have applied our local algorithm on two stereo videos that
are found in the supplementary material.

(a) (b) (c) (d) (e)

Figure 6: Global matching. (a) Disparities and errors > 1 pixel when using pixel-wise cor-
relation in data term computation. (b) Fronto-parallel adaptive support weight windows. (c)
Our slanted windows used in data term computation allow preserving depth discontinuities
and reconstructing the slanted ground plane. (d) Our local algorithm fails on the untextured
Plastic set. (e) The global algorithm succeeds.

4 Conclusions
We have proposed a local algorithm that computes a 3D plane at each pixel onto which the
support region is projected. The ideal algorithm to solve the challenging task of finding these
planes is PatchMatch. Our results show impressive sub-pixel results and rank excellently in
the Middlebury benchmark. We have also demonstrated that our slanted windows can serve
as a data term for global methods. In future work, we will extend this algorithm to compute
optical flow and perform a GPU implementation that might lead to real-time performance.

Acknowledgements Michael Bleyer and Christoph Rhemann received financial support
from the Vienna Science and Technology Fund (WWTF) under project ICT08-019.

References
[1] C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman. Patchmatch: A randomized

correspondence algorithm for structural image editing. ACM Transactions on Graphics
(SIGGRAPH), 2009.

[2] M. Bleyer and M. Gelautz. A layered stereo matching algorithm using image segmen-
tation and global visibility constraints. ISPRS Journal, 59(3):128–150, 2005.

[3] M. Bleyer, C. Rother, and P. Kohli. Surface stereo with soft segmentation. In CVPR,
2010.

[4] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph
cuts. PAMI, 23(11):1222–1239, 2001.

[5] D. Gallup, J. Frahm, P. Mordohai, Q. Yang, and M. Pollefeys. Real-time plane-
sweeping stereo with multiple sweeping directions. In CVPR, 2007.



M. BLEYER, C. RHEMANN, C. ROTHER: PATCHMATCH STEREO 11

[6] S. Gehrig and U. Franke. Improving sub-pixel accuracy for long range stereo. In ICCV
VRML workshop, 2007.

[7] A. Hosni, M. Bleyer, M. Gelautz, and C. Rhemann. Local stereo matching using
geodesic support weights. In ICIP, 2009.

[8] V. Kolmogorov and R. Zabih. Multi-camera scene reconstruction via graph cuts. In
ECCV, 2002.

[9] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filter-
ing for visual correspondence and beyond. In CVPR, 2011.

[10] C. Richardt, D. Orr, I. Davies, A. Criminisi, and N. Dodgson. Real-time spatiotemporal
stereo matching using the dual-cross-bilateral grid. In ECCV, 2010.

[11] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms. IJCV, 47(1/2/3):7–42, 2002.
http://vision.middlebury.edu/stereo/.

[12] H. Tao, H. Sawhney, and R. Kumar. A global matching framework for stereo compu-
tation. In ICCV, pages 532–539, 2001.

[13] O. Woodford, P. Torr, I. Reid, and A. Fitzgibbon. Global stereo reconstruction under
second order smoothness priors. In CVPR, 2008.

[14] Q. Yang, R. Yang, J. Davis, and D. Nister. Spatial-depth super resolution for range
images. In CVPR, 2007.

[15] Q. Yang, L. Wang, R. Yang, H. Stewenius, and D. Nister. Stereo matching with color-
weighted correlation, hierarchical belief propagation and occlusion handling. PAMI,
2009.

[16] K.J. Yoon and I.S. Kweon. Locally adaptive support-weight approach for visual corre-
spondence search. In CVPR, 2005.

[17] Y. Zhang, M. Gong, and Y. Yang. Local stereo matching with 3D adaptive cost aggre-
gation for slanted surface modeling and sub-pixel accuracy. In ICPR, 2008.


