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Abstract

Higher order energy functions have the ability to en-
code high level structural dependencies between pix-
els, which have been shown to be extremely pow-
erful for image labeling problems. Their use, how-
ever, is severely hampered in practice by the in-
tractable complexity of representing and minimizing
such functions. We observed that higher order func-
tions encountered in computer vision are very often
“sparse”, i.e. many labelings of a higher order clique
are equally unlikely and hence have the same high
cost. In this paper, we address the problem of min-
imizing such sparse higher order energy functions.
Our method works by transforming the problem into
an equivalent quadratic function minimization prob-
lem. The resulting quadratic function can be min-
imized using popular message passing or graph cut
based algorithms for MAP inference. Although this is
primarily a theoretical paper, we also show how label-
ing problems such as texture denoising and inpainting
can be formulated using sparse higher order energy
functions. We demonstrate experimentally that for
some challenging tasks our formulation is able to out-
perform various state-of-the art techniques, especially
the well-known patch-based approach of Freeman et
al. [11]. Given the broad use of patch-based models
in computer vision, we believe that our contributions
will be applicable in many problem domains.

1 Introduction

Many computer vision problems such as object seg-
mentation, disparity estimation, object recognition,
and 3D reconstruction can be formulated as pixel
or voxel labeling problems. The conventional meth-
ods for solving these problems use pairwise Condi-
tional and Markov Random Field (crf/mrf) formu-
lations [38], which allow for the exact or approximate
inference of Maximum a Posteriori (map) solutions
using extremely efficient algorithms such as Belief
Propagation (bp) [8, 31, 41], graph cut [3, 20, 23]
and Tree-Reweighted (trw) [18, 40] message passing.
Although pairwise random field models permit effi-
cient inference, they have restricted expressive power
as they can only model interactions between pairs
of random variables. They are unable to enforce
the high level structural dependencies between pix-
els which have been shown to be extremely powerful
for image labeling problems.

The last few years have seen the successful appli-
cation of higher order crfs and mrfs to some low
level vision problems such as image restoration, dis-
parity estimation and object segmentation [16, 27,
33, 42, 45, 9]. In spite of these encouraging results,
the use of such models have not spread to other la-
beling problems. We believe that this is primarily
due to the lack of efficient algorithms for performing
inference in such models.

This paper proposes a new method for minimizing
general higher order functions that can be used to
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perform map inference in higher order random fields.
Most methods for minimizing such energy functions
can be placed in one of the following categories:

1. Message passing schemes [13, 24, 27, 39] which
work by passing messages in the graphical
model.

2. Transformations methods [2, 10, 14, 16, 17, 26,
32, 36] which convert the higher order functions
into pairwise ones by adding auxiliary variables.

3. Local update methods based on gradient
descent[33, 9].

We follow the classical transformation approach for
minimizing higher order functions which can be bro-
ken down into two essential steps [2]: (a) Transfor-
mation of the higher order energy into a quadratic
function, and (b) Minimization of the resulting func-
tion using efficient inference algorithms. The first
step in this approach is also the most crucial one.
Transformation of a general m-order function to an
equivalent quadratic function involves the addition
of exponential number of auxiliary variables [2, 14].
Alternatively, the addition of a single random vari-
able with an exponential label space is needed. Both
these approaches make the resulting quadratic func-
tion minimization problem intractable.
Recent work on solving higher order functions in

vision have side-stepped the problem of minimiz-
ing general higher order functions. Instead they
have focused on specific families of potential func-
tions (such as the Pn Potts model [16], global co-
occurrence potentials [26, 46]) which can be trans-
formed to quadratic ones by the addition of a few
auxiliary variables.
We present a method for minimizing general higher

order functions. This is intrinsically a computation-
ally expensive problem since even the parametriza-
tion of a general m order function of k-state vari-
ables requires km parameters. However, the higher
order functions used in computer vision have certain
properties which makes them easier to handle. For
instance, certain higher order potentials assign a low
cost to only a small number of labeling assignments
(also called patterns), the rest of the km possible la-
belings are assigned a high constant cost. A typical

example of such a potential would be a patch-based
potential for image restoration. (A detailed discussed
of patch-based models in computer vision is given in
sec. 5). We propose a compact representation for
such potentials which allows efficient inference. We
then show that for some challenging tasks the com-
pact representation is empirically superior to stan-
dard patch-based approaches, such as [11]. A related
special-case of our compact representation was con-
currently proposed by [24]1, which we discuss in more
detail later.

Outline of the Paper We start by reviewing work
on discrete energy minimization in section 2. In sec-
tion 3, we show how higher order energy functions can
be transformed to quadratic ones using a multi-state
auxiliary variable. Section 4 explains how higher or-
der pseudo-boolean functions can be transformed to
quadratic pseudo-boolean functions by the addition
of boolean variables, and specifically presents two
types of such transformations. We discuss approaches
of incorporating patch-based priors for image labeling
problems in section 5. Section 6 describes the exper-
imental evaluation of our transformation schemes on
the binary texture restoration problem. We conclude
by summarizing our work and providing directions
for future work in section 7.

2 Notation and Preliminaries

Consider a random field defined over a set of latent
variables x = {xi|i ∈ V} where V = {1, 2, ..., n}.
Each random variable xi can take a label from the
label set L = {l1, l2, ..., lk}. Let C represent a set
of subsets of V (i.e., cliques), over which the higher
order random field is defined. The map solution of
a random field can be found by minimizing an en-
ergy function E : Ln → R . Energy functions corre-
sponding to higher order random fields can be writ-
ten as a sum of higher order potential functions as:
E(x) =

∑

c∈C ψc(xc), where xc represents the set of
random variables included in any clique c ∈ C. The
higher order potential ψc : L|c| → R is defined over

1The paper of Komodakis et al. [24] and the original version
of our work [36] appeared both in CVPR 2009.
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this clique assigns a cost to each possible configura-
tions (or labelings) of xc. Here |c| represents the num-
ber of variables included in the clique (also called the
clique order) .

Minimizing Quadratic Functions Before pro-
ceeding further, we review the basics of discrete en-
ergy minimization algorithms in computer vision. As
we mentioned earlier, the problem of map inference
in a pairwise random field can be solved by minimiz-
ing a quadratic function of discrete variables. Algo-
rithms for map inference can be classified into two
broad categories: (a) message passing (bp/trw) and
(b) combinatorial algorithms such as graph cut. The
readers should refer to [18, 40, 41] and [3, 23] for more
information on message passing and graph cut based
algorithms respectively. In their classical form, these
algorithms allow for the exact or approximate mini-
mization of quadratic energy functions with certain
computation time and solution quality guarantees.
We will next look at the minimization of functions of
boolean variables.

Quadratic Pseudo-boolean Function Mini-
mization An energy function is called a pseudo-
boolean function if the label set L contains only two
labels i.e. L = {0, 1}. Formally, the energy is now de-
fined as: E : {0, 1}n → R and can also be written as
a set function. The minimization of pseudo-boolean
functions is a well studied problem in combinatorial
optimization [15] and operations research [2]. It is
known that certain classes of pseudo-boolean func-
tions such as submodular functions can be minimized
exactly in polynomial time. Another important
characteristic is that any Quadratic Pseudo-boolean
Function (qpbf) can be minimized by solving an st
minimum cut problem (st-mincut) [2, 20]. Further,
if the qpf is submodular, all edges in the equivalent
st-mincut problem have non-negative weights, which
allows it to be solved exactly in polynomial time us-
ing maximum flow algorithms [10, 20].

In what follows, we will assume that we have al-
gorithms for approximate minimization of arbitrary
multi-label quadratic energy functions, and mainly
focus our attention on converting a general higher

order energy function to a quadratic one.

3 Transforming Multi-label

Functions

We will now describe how to transform arbi-
trary higher order potential functions to equivalent
quadratic ones. We start with a simple example to
motivate our transformation. Consider a higher or-
der potential function which assigns a cost θ0 if the
variables xc take a particular labeling X0 ∈ L|c|, and
θ1 otherwise. More formally,

ψc(xc) =

{

θ0 if xc = X0

θ1 otherwise.
(1)

where θ0 ≤ θ1, and X0 denotes a particular labeling
of the variables xc. The potential is illustrated in
figure 1(b). The minimization of this higher order
function can be transformed to the minimization of
a quadratic function using one additional switching
variable z as:

min
xc

ψc(xc) = min
xc,z∈{0,1}

f(z) +
∑

i∈c

gi(z, xi) (2)

where the selection function f is defined as: f(0) = θ0
and f(1) = θ1, while the consistency function gi is
defined as:

gi(z, xi) =







0 if z = 1
0 if z = 0 and xi = X0(i)
inf otherwise.

(3)

where X0(i) denotes the label of variable xi in label-
ing X0.

3.1 General Higher Order Potentials

The method used to transform the simple poten-
tial function (1) can also be used to transform any
higher order function into a quadratic one. We ob-
served that higher order potentials for many vision
problems assign a low cost (or energy) to only a
few label assignments. The rest of the labelings
are given a high (almost constant) cost (see figure
1(a)). This motivated to develop a parameterization
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of higher order potentials which exploits this spar-
sity. We parameterize higher order potentials by a
list of possible labelings (also called patterns [24])
X = {X1,X2, ...,Xt} of the clique variables xc, and
their corresponding costs Θ = {θ1, θ2, ..., θt}. We
also include a high constant cost θmax for all other
labelings. Formally, the potential functions can be
defined as:

ψc(xc) =

{

θq if xc = Xq ∈ X
θmax otherwise.

(4)

where θq ≤ θmax, ∀θq ∈ Θ. The higher order poten-
tial is illustrated in Figure 1(c). This representation
was concurrently proposed by Komodakis et al. [24].
The minimization of the above defined higher order

function can be transformed to a quadratic function
using a (t+ 1)-state switching variable as:

min
xc

ψc(xc) = min
xc,z∈{1,2,...,t+1}

f(z) +
∑

i∈c

g(z, xi) (5)

where f(z) =

{

θq if z = q ∈ {1, .., t}
θmax if z = t+ 1,

(6)

and gi(z, xi) =







0 if z = q ∈ {1, .., t} and xi = Xq(i)
0 if z = t+ 1
inf otherwise.

(7)

where Xq(i) denotes the label of variable xi in label-
ing Xq. The reader should observe that the last i.e.
(t + 1)th state of the switching variable z does not
penalize any labeling of the clique variables xc. It
should also be noted that the transformation method
described above can handle the Pn model potentials
proposed in [16]. In fact it can be used to transform
any general higher order potential. However, in the
worst case, the addition of a switching variable with
|L||c| states is required, which makes minimization of
even moderate order functions infeasible.

3.2 Compact Parameterization

The above defined parametrization significantly re-
duces the complexity of performing inference in
higher order cliques. However, the computation cost
is still quite high for potentials which assign a low

Figure 1: Different parameterizations of higher or-
der potentials. (a) The original higher order potential
function. (b) The higher order basis function defined
in equation (1). (c) Approximating function (a) us-
ing the functional form defined in equation (4). It
can be seen that this representation requires the def-
inition of 7 labelings (t=7), and thus would require
the addition of a t + 1 = 8-state auxiliary variable
for its transformation to a quadratic function (as de-
scribed in equation 5). (d) The compact representa-
tion of the higher function using the functional form
defined in equation (8). This representation (8) re-
quires only t = 3 deviation functions, and thus needs
only a t+1 = 4-state label to yield a quadratic trans-
formation.

cost to many labelings. Notice, that the representa-
tion defined in equation (5) requires a t+1-state aux-
iliary variable for representing a higher order function
where t labelings are assigned a low cost (less than
the constant cost θmax). This would make the use of
this representation infeasible for higher order poten-
tials where a large number of labelings of the clique
variables are assigned low weights (< θmax).

We observed that many low cost label assignments
tend to be close to each other in term of the difference
between labelings of pixels. For instance, consider the
case of the two label foreground (f) / background
(b) image segmentation problem. It is conceivable
that the cost of a segmentation labeling (fffb) for 4
adjacent pixels on a line would be close to the cost
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of the labeling (ffbb). We can encode the cost of
such groups of similar labelings in the higher order
potential in such a way that their transformation to
quadratic functions does not require increasing the
number of states of the switching variable z. The
differences of the representations are illustrated in
figure 1(c) and (d).
We parameterize the compact higher order poten-

tials by a list of labeling deviation cost functions
D = {d1, d2, ..., dt}, and a list of associated costs θ =
{θ1, θ2, ..., θt}. We also maintain a parameter for
the maximum cost θmax that the potential can assign
to any labeling. The deviation cost functions encode
how the cost changes as the labeling moves away from
some desired labeling. Formally, the potential func-
tions can be defined as:

ψc(xc) = min{ min
q∈{1,2,...,t}

θq + dq(xc), θmax} (8)

where deviation functions dq : L|c| → R are defined
as: dq(xc) =

∑

i∈c;l∈L w
q
ilδ(xi = l), where wq

il is the
cost added to the deviation function if variable xi of
the clique c is assigned label l. The function δ(xi = l)
is the Kronecker delta function that returns value 1
if xi = l and returns 0 for all assignments of xi. This
higher order potential is illustrated in Figure 1(d).
It should be noted that the higher order potential
(8) is a generalization of the pattern-based potential
defined in equation (4) and in [24]. Setting weights
wq

il as:

wq
il =

{

0 if Xq(i) = l
θmax otherwise

(9)

makes potential (8) equivalent to equation (4).

The minimization of the above defined higher or-
der function can be transformed to that a quadratic
function using a (t+ 1)-state switching variable as:

min
xc

ψc(xc) = min
xc,z∈{1,2,...,t+1}

f(z)+
∑

i∈c

g(z, xi) (10)

where f(z) =

{

θq if z = q ∈ {1, .., t}
θmax if z = t+ 1,

(11)

gi(z, xi) =

{

wq
il if z = q and xi = l ∈ L
0 if z = t+ 1.

(12)

Figure 2: Transformation of higher order pseudo-
boolean functions to equivalent quadratic functions.
A higher order pseudo-boolean function (a) repre-
sented by its truth table. Type-I graph construction
(b) and Type-II graph construction (c) for minimiz-
ing its equivalent quadratic function. In graph (c), m
denotes the number of variables included in the clique
(in this case m = 3).

The role of the switching variable in the above men-
tioned transformation can be seen as that of finding
which deviation function will assign the lowest cost
to any particular labeling. The final higher order
function generated using the parametrization (8) is
a lower envelop of the linear deviation cost functions
θq+dq(xc). For instance, the function shown in figure
4(c) is a lower envelop of the higher order functions
shown in figure 4(b). This transformation method
can be seen as a generalization of the method pro-
posed in [17] for transforming the Robust Pn model
potentials.

Related work on representing sparse higher
order potentials Komodakis et al. [24] and we [36]
concurrently introduced the pattern-based represen-
tation (defined in equation 4) for higher order po-
tentials. However, deviation functions (equation 8)
were not considered in [24]. Komodakis et al. [24]
primarily focused on minimizing the pattern based
potentials using dual decomposition. In their experi-
ments, they used the pattern based representation to
model potentials defined over up to 4 random vari-
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ables2. Note, in this work we show experiments with
up to 144 random variables.

They investigated two different decompositions
schemes. In the first one, each pattern-based higher
order clique is a so-called ”slave”, i.e. optimized indi-
vidually. In the second (denoted as Pat-B) all higher
order cliques in an image row are optimized jointly.
Pat-B exploited the structure of the pattern based
potential to perform efficient inference. However, it
is not obvious how it could handle energy functions
containing both pattern based potentials and other
pairwise potentials. In this work we show experimen-
tally that such combinations of pairwise and higher
order potentials results in good labeling solutions.

An alterative way of using message passing for
sparse higher order potentials has been discussed in
the recent, follow-up work by Tarlow et al. [39]. They
showed that our, and [24], sparse higher order poten-
tials can be optimized via belief propagation in the
given factor-graph.

4 Transforming Pseudo-

Boolean Functions

In previous section, we discussed how to transform
multi-label higher order functions to quadratic ones
by the addition of a multi-state auxiliary variable.
The same method can also be applied to transforming
higher order pseudo-boolean functions. However, the
resulting quadratic function is not pseudo-boolean as
it contains multi-state switching variables. In this
section, we discuss two alternative transformation
approaches for transforming higher order pseudo-
boolean functions which works by adding boolean
auxiliary variables. These methods will produce a
quadratic pseudo-boolean function (qpbf) which can
be minimized using algorithms for quadratic pseudo-
boolean optimization (qpbo) [2].

In what follows, we assume binary labels, i.e.,
L = {0, 1}. Consider a higher order potential which

2Note, [24] showed also experiments using the robust P
n

model with 9 random variables in each clique. This is an in-
stance of pattern-based potentials that can be optimized glob-
ally in polynomial time [17].

assigns a cost θ ≥ 0 if the variables xc take the la-
beling X0 ∈ {0, 1}|c|, and θmax ≥ θ otherwise. More
formally,

ψc(xc) =

{

θ0 if xc = X0

θmax otherwise,
(13)

where X0 denotes the preferred labeling of the vari-
ables xc. We will call this higher order potential a
δ basis function since it assigns a low cost to only
one single labelling. A constant θ0 can be subtracted
from this potential to yield:

ψc(xc) =

{

0 if xc = X0

θ otherwise,
(14)

where θ = θmax − θ0 > 0.

Type-I Transformation The minimization of
higher order potential function (14) can be trans-
formed to the minimization of a quadratic func-
tion using two additional switching variables z0, z1 ∈
{0, 1} as: minxc

ψc(xc) =

min
xc;z0,z1∈{0,1}

θz0 + θ(1 − z1)− θz0(1 − z1)

+θ
∑

i∈S0(X0)
(1− z0)xi

+θ
∑

i∈S1(X0)
z1(1− xi). (15)

Here, S0(X0) is the set of indices of random vari-
ables which were assigned the labels 0 in the as-
signment X0. Similarly, S1(X0) represents the set
of variables which were assigned the label 1 in X0.
The minimization problem (15) involves a quadratic
function with at most one non-submodular term (i.e.,
−θz0(1 − z1)).

3 It can be easily verified that the
transformed qpbf in (15) is equivalent to (14). The
transformation is illustrated for a particular higher
order function in Figure 2(b).

Type-II Transformation We now describe an al-
ternative method to transform higher order pseudo-
boolean functions which requires the addition of only
one auxiliary variable, but results in a slightly com-
plex transformation.

3This is independent of the clique size |c| or the enforced
labeling X0.
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Theorem 1 The minimization of the higher order
pseudo-boolean function (14) is equivalent to the fol-
lowing qpbf minimization problem:

ψc(xc) = θ +
θ

2
min

z∈{0,1}
f(z,xc), (16)

where the qpbf function f is defined as:

f(z,xc) = z(m− 2)

+ z(
∑

i∈S1(X0)

(1 − xi)−
∑

i∈S0(X0)

(1− xi))

+ (1− z)(
∑

i∈S1(X0)

xi −
∑

i∈S0(X0)

xi)

+
∑

i∈S0(X0)

xi −
∑

i∈S1(X0)

xi (17)

where m = |c| is the order of the clique4. The trans-
formation is illustrated for a particular higher order
function in Figure 2(c).

Proof By expanding equation (17) and substituting
|S1(X0)| +|S0(X0)| = |c| = m, we obtain:

f(z,xc) = 2z(|S1(X0)| − 1)

+ 2z(
∑

i∈S0(X0)

xi −
∑

i∈S1(X0)

xi) (18)

f(z,xc) = 2z(
∑

i∈S0(X0)

xi+
∑

i∈S1(X0)

(1−xi)−1) (19)

Combining (19) with (16), we can easily find that

z∗ = argmin
z
f(z,xc) = 1 (20)

if and only if xc = X0. Under this condition,
f(z∗,xc) = −2, and from (16) we get ψc = 0. For all
other xc ∈ {0, 1}|c|, z∗ = argminz f(z,xc) = 0, and
hence ψc(xc) = θ.

4Note that the coefficient of each monomial in (17) exactly
corresponds to an edge capacity in Type-II graph construction.

Figure 3: Composing higher order pseudo-boolean
functions by adding basis functions of the form 14.(a)
and (b) are two δ basis functions. (c) The poten-
tial obtained by summing the basis functions shown in
(a) and (b). (d) The potential function obtained af-
ter subtracting a constant θmax from (c) (this doesn’t
change the labeling with the minimal energy).

4.1 Composing General Pseudo-

boolean Functions

Multiple instances of the δ basis higher order pseudo-
boolean potentials (14) can be used to compose gen-
eral higher order energy functions. The composition
method works by summing these pseudo-boolean po-
tential. The equivalent qpbf of the target higher
order pseudo-boolean function is obtained by sum-
ming the qpbfs corresponding to the individual ba-
sis pseudo-boolean potentials of the form (13) (see
Figure 3 for illustration). The composition scheme
requires the selection of θmax which is the highest
possible energy that can be assigned to any labeling.

The reader should observe that this way of obtain-
ing equivalent quadratic functions for general higher
order functions is fundamentally different from the
strategy employed in Section 3.1. There, we use a
multi-state switching variable to select among differ-
ent constituent higher order functions; in contrast,
here we sum the constituent higher order functions.
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4.2 Compact Representation for

Higher Order Pseudo-boolean

Potentials

The composition method described above would in
the worst case require the addition of 2|c|+1 auxiliary
variables for Type-I transformation and 2|c| auxiliary
variables for Type-II transformation 5. To reduce
the number of auxiliary variables, we use a scheme
similar to the one discussed in Section 3.2 to model
the cost of multiple labelings using only two auxiliary
variables for Type-I transformation and one auxiliary
variable for Type-II transformation.
We define the deviation basis higher order poten-

tial ψf
c which assigns the minimum of a deviation

cost function f(xc) and a constant threshold cost θ.
Formally,

ψf
c (xc) = min{f(xc), θ}. (21)

where the deviation function f : {0, 1}|c| → R speci-
fies the penalty for deviating from the favored label-
ing X0, and is written as:

f(xc) = θ
∑

i∈c

abs(wi)(xi 6= X0(i)) (22)

where the absolute value of the weights wi control
the cost of different labelings deviating from X0. The
function f can also be seen as assigning a cost equal
to a weighted hamming distance of a labelling from
X0.
The function f can alternatively be defined as:

f(xc) = θ
∑

i∈c

wixi + θK (23)

where the constant K =
∑

i|wi<0 wi, and the weight
wi specifies what is the cost of assigning the label 1 to
variable xi. Naturally, the weights would be negative
for pixels which have been assigned the label 1 in the
favored labeling X0. Similarly, variables labeled 0
will be assigned a positive weight. On substituting
the value of K, f becomes:

f(xc) = θ
∑

i∈c;wi>0

wixi+θ
∑

i∈c;wi<0

(−wi)(1−xi) (24)

5There are 2|c| possible labelings of the variables involved
in the clique c.

We now show how the higher order pseudo-boolean
function defined in equation (21) can be transformed
to a qpbf.

Transformation using Type-I Construction

Theorem 2 Using Type-I transformation, the min-
imization of higher order pseudo-boolean potential
function (21) can be transformed to the following
qpbf minimization problem: minxc

ψf (xc) =

min
xc;z0,z1∈{0,1}

θz0 + θ(1 − z1)− θz0(1 − z1)

+θ
∑

i|wi≥0 wi(1 − z0)xi

+θ
∑

i|wi<0(−wi)z1(1− xi)

Transformation using Type-II Construction

Theorem 3 Using Type-II transformation, the min-
imization of higher order function (21) can be writ-
ten as the result of the following qpbf minimization
problem:

ψc(xc) = θ +
θ

2
min

z∈{0,1}
F (z,xc)), (25)

where the qpbf function F is defined as:

F (z,xc) = z(
∑

i∈c

abs(wi)− 2)

+ z(
∑

i|wi<0

(−wi)(1− xi)−
∑

i|wi≥0

wi(1− xi))

+ (1− z)(
∑

i|wi<0

(−wi)xi −
∑

i|wi≥0

wixi)

+
∑

i|wi≥0

wixi −
∑

i|wi<0

(−wi)xi (26)

where abs(wi) is the absolute value of the weight wi.

Proof On expanding equation and simplifying equa-
tion (26), we get:

f(z,xc) = 2z(−
∑

i|wi<0

wi − 1)

+ 2z(
∑

i|wi≥0

wixi +
∑

i|wi<0

wixi) (27)
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Figure 4: Difference between the min and sum com-
position schemes.(a) Original function to be repre-
sented. (b) Two deviation basis functions (21). (c)
The composition of the functions shown in (b) by tak-
ing their lower envelope (by minimizing over a multi-
state variable as explained in section 3.2). (d) The
composition of the functions shown in (b) by summing
them (causes misrepresentations in regions where the
basis functions overlap).

f(z,xc) = 2z(
∑

i|wi≥0

wixi−
∑

i|wi<0

wi(1−xi)−1) (28)

Substituting this in equation (25) we see that ψc is a
lower envelop of two functions, i.e.

ψc(xc) = min{ψ1
c(xc), ψ

2
c (xc)} (29)

where ψ1
c (xc) = θ and

ψ2
c (xc) = θ(

∑

i|wi≥0

wixi −
∑

i|wi<0

wi(1− xi)) (30)

which makes it equivalent to the higher order
deviation function defined in equation (21).

Behavior of the Summation Composition
Scheme The method of composing higher order
potentials using the summation scheme described
in the previous sub-sections suffers from a problem
when using compact representations of higher order

potentials. This occurs when there is significant over-
lap in the subset of labelings which are assigned a
non-threshold cost θ by multiple higher order poten-
tials. This problem is illustrated in figure 4.

5 Sparse Potentials versus

Patch-based Methods for

Image Labeling

Suppose we had a dictionary containing all possible
10×10 patches that are present in natural real-world
images. One could use this dictionary to define a
higher order prior for the image restoration prob-
lem which can be incorporated in the standard MRF
formulation. This higher order potential is defined
over sets of variables, where each set corresponds to
a 10 × 10 image patch. It enforces that patches in
the restored image come from the set of natural im-
age patches. In other words, the potential function
assigns a low cost (or energy) to the labelings that
appear in the dictionary of natural patches. The rest
of the labelings are given a high (almost constant)
cost.
It is well known that only a relatively small frac-

tion of all possible labeling of a 10 × 10 patch actu-
ally appear in natural images. We can use this spar-
sity property to compactly represent the higher order
prior potential by storing only the labelings that need
to be assigned a low cost, and assigning a (constant)
high cost to all other labelings. Unfortunately, for
most applications, the number of patches might still
be too large to be represented explicitly. There are
several ideas in the literature to overcome this prob-
lem. For some application there exist an underlying
(input) image which can guide the selection process
such that at each position in the image a different set
of candidate patches is chosen (i.e. a classical con-
ditional random field). It has been shown that with
a small set of candidate patches (e.g. k between 4
and 25) convincing results can be achieved for super-
resolution [11], or new-view synthesis [9, 44]6. An-

6These works use implicitly a small dictionary, since the
problem of new-view synthesis is cast as a multi-labeling prob-
lem, where a label corresponds to one out of k possible colors
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Figure 5: Illustration of the main steps involved in the “classical” framework for patched-based methods
such as [11]. Here for the task of binary texture restoration. A dictionary of e.g. all 10×10 patches of natural
(binary) textures is given. The first step is to select for each 10×10 pixel region a set of k candidate patches.
This defines implicitly a higher order random field (see details in text). Instead of optimizing this random
field, the classical approach is to construct an auxiliary labeling problem where each pixel has k possible
labels, which corresponds to the k possible candidate patches. The solution to the auxiliary problem gives
for each pixel one candidate patch (“selection step”). Finally, the “averaging step” constructs the output
labeling by averaging all selected (overlapping) patches. The contribution of this work is to replace this
two step procedure: “selection” and “averaging” with a one step procedure which directly optimizes the
underlying higher order random field.

other idea is to iterate the selection process: An ini-
tial solution with a small set of candidate patches can
be used to select a better set of candidate patches in
the next iteration7. In principle, the sparse energy
can have the same global optimum as the original
energy defined over all natural patches. Such an en-
ergy can be constructed by using even one candidate
patch with a low cost (patch from the global opti-
mum labelling of the pixel) and assigning a very high
cost to all other patches.
To summarize, sparse functions have played an im-

portant role in designing computer vision models and
in optimizing them. Sparsity in patch appearance has
also been exploited by other methods on sparse cod-
ing and dictionary learning for image analysis and
restoration [30, 29].
As motivated above, sparse patch-based higher or-

der random fields are good models for many vision
applications, however, they are very hard to opti-
mize, as we have seen in the previous sections. To
the best of our knowledge only very few papers have
attempted to optimize them directly, such as [9],

for each pixel.
7Such ideas have been addressed in [43, 12, 4].

which used the very local Iterated Conditional Modes
(ICM) approach, and the two recent papers [24, 39],
which used message passing-based techniques. The
majority of papers use an alternative way to deal with
patch-based observations as outlined below. The key
contribution of this paper is to show that sparse
patch-based higher order random fields can be opti-
mized efficiently (using the transformation approach)
and that the results are (empirically) superior to the
classical, alternative way to deal with patch-based
observations.

Classical Patch-based Methods Freeman et al.
[11] was probably one of the first to describe a way
to deal with patch-based observation while circum-
venting the need of a higher order random field. This
work inspired many other patch-based algorithms for
various problems such as image inpainting [7, 22], ob-
ject recognition [28], and new view synthesis [9, 44].
Let us review the “classical” patch-based approach

for the problem of binary texture restoration, as de-
picted in fig. 5 (a detailed description is given in
sec. 6). Note, we only explain the main ideas. (De-
tails differ considerably between various realizations
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of these ideas). Given a (very) large dictionary of all
10× 10 patches of natural (binary) textures, the first
step is to construct an auxiliary, pairwise MRF en-
ergy function. The solution to this auxiliary problem
will help in finding the solution to the true underlying
higher order random field. The auxiliary problem is
also defined over pixels but has a different label set,
in contrast to the true higher order function. Each
position (or pixel) in the image can take one out of
k labels, where each label corresponds to a (10× 10)
patch. The pairwise terms between two neighboring
pixels (e.g. 4-connected) encode how well their cho-
sen (overlapping) patches agree in the labeling of the
pixels8. The auxiliary energy is minimized to get a
patch labeling for the image, which we denote in fig.
5 as the “selection step” (i.e. one patch is assigned
to each pixel). To get a unique binary (or RGB)
value for each image pixel, a second “averaging step”
is needed which extracts an binary (or RGB) pixel
labeling from the patch labeling. For instance, in
the case of binary texture denoising, one can average
(and round) the values assigned to a pixel by various
patches. Note, the non-local mean procedure [4] can
also be seen as variant of this two step procedure.
The idea is to select and average all possible patches,
and iterate this procedure many times.
The contribution of our work is to replace this two

step procedure: “selection” and “averaging” with a
one step procedure which directly optimize the under-
lying higher order random field. This direct approach
has three key advantages over the classical one:

• ”Patch robustness”, i.e. inconsistency
with candidate patch labelings. If none of
the k candidate patches fits at a certain posi-
tion, we allow for choosing any arbitrary patch.
All these arbitrary patches have a constant cost
which has to be higher than all of the costs of
the candidate patches.

• Deviation from patch labelings. In the aux-
iliary problem, one would ideally like to repre-
sent as many patch labelings (patterns) as pos-
sible. We propose a way to represent a set of sim-

8Various connectivity, and patch-overlap, structures have
been considered in the past, see e.g. [11, 44].

ilar patch labeling (patterns) by using a simple
patch labeling (pattern) and a deviation func-
tion (sec. 3.2). This representation allows us
to consider many more patch labelings for each
pixel with no extra overhead on the memory or
computational cost compared to using a single
patch labeling.

• Incorporation of generic pairwise (and
higher order) costs on the pixel labeling.
We allow for any generic unary, pairwise (and
higher order - after decomposing into pairwise
terms) cost function on the pixel level to be
added to the energy function. In our experi-
ments, we demonstrate that the addition of pair-
wise functions is crucial to obtain good results.

Let us motivate the importance of the last point with
an example from the domain of object-class specific
segmentation. A standard MRF/CRF model for seg-
mentation has pairwise potentials which incorporate
a boundary length prior (shorter boundaries are en-
couraged). While segmenting a specific object-class
such as cars, one might want to incorporate a higher
order patch-based prior which encourages parts of the
segmentation to take the shape of sharp corners (edge
of car) and round corners (wheel of car). We be-
lieve that using both, generic length-based priors and
object-specific patch-based priors may lead to best re-
sults. We illustrate this point in our experiments on
texture inpainting in sec. 6.

6 Experiments

We evaluated our theoretical contributions on the
problems of texture restoration and inpainting, which
are popular test-beds for energy minimization meth-
ods [5, 19, 35]. The main focus of this section is to
illustrate the advantages of sparse higher order mod-
els over the “classical” patch-based approaches [11],
and other state-of-the art techniques such as [43]. In
the following we concentrate on exploring the differ-
ent aspects of our model, rather than promoting one
universal model.
Note, an experimental comparison to other related

work, such as the submodular triple-clique model for

11



texture restoration of [5] and the FRAME model [47],
is beyond the scope of this work.

We first introduce our experimental set-up in sec.
6.1. We then proceed, in sec. 6.2, to compare the
performance of the three transformation schemes pro-
posed in sec. 3 and 4. After that we consider the
application of texture restoration (sec. 6.3) and after
that texture inpainting (sec. 6.4).

6.1 Problem set-up

Given an image of a texture as in fig. 6a (crop of Bro-
datz texture D101) our goal is to build a sparse higher
order function which models the texture well. The
model is then used to solve inference tasks such as:
restoring (denoising) a noisy version of a test image
(fig. 6c) or reconstructing (inpainting) an unobserved
area of the texture (fig. 13a). Our model consists of
pairwise and sparse higher order terms. For all appli-
cations we use the same pairwise terms, as explained
next. The higher order terms are constructed in dif-
ferent ways (application dependent), as explained in
the individual subsections. Note, for most parts of
the experiments the in- and output will be binary
images (0/1 labeling). (We will show one experiment
with multiple labels, i.e. gray-scale images.)

To extract pairwise terms we followed the proce-
dure outlined in [19]9, which builds on [5]. In brief,
given a training image (e.g. fig. 6a), we first com-
pute the joint histogram of all pixel-pairs with the
same shift (sx, sy), where we constrained the max-
imum shift length, i.e. max{|sx|, |sy|} ≤ 30. The
pairwise potentials are then defined as θi,j(xi, xj) =
− logPr(xi, xj), with xi, xj being the output label-
ing at the two pixels i, j. For restoration, the unary
potential is given as

∑

i∈V −λ/(1 + |Ti − xi|), where
Ti is the value of the pixel i in the noisy test image
(e.g. fig. 6c). To obtain good result, it is impor-
tant to select those pairwise potentials which best
describe the texture, and to learn the optimal value
for λ, i.e. the trade-off between unary and pairwise
terms. As in [19], we used the discriminative learning
procedure on a validation dataset, which resulted in
9 pairwise terms (7 sub- and 2 non-submodular) for

9We also used their data, which is available online.

the texture in fig. 6. For a test image (fig. 6b) with
60% noise (fig. 6c) such a pairwise model, optimized
with QPBO [19], gives a reasonable result shown in
fig. 6f with 16.4% error rate (number of misclassified
pixels).

6.2 Comparing Transformation

Schemes

We compared the performance of our three transfor-
mations: Multi-label (sec. 3), binary Type-I and
Type-II (sec. 4) on various textures (real and toy
data). For optimization, we used the top perform-
ing publicly available methods for minimizing non-
submodular binary and multi-label functions: (Se-
quential) Tree-ReWeighted message passing (TRW-
S) and Belief Propagation (BP) from [38], and the
roof-dual relaxation based approaches (QPBO, QP-
BOP) from [2, 35]. Note, in order to enable other re-
searchers to run alternative inference techniques, we
will make some problem instances publicly available
Table 1 shows results for two examples models,

which capture the main conclusions we have drawn
from our experiments. Some of the results of table
1 are shown in fig. 7. The toy texture (top row
in table 1 and fig. 7) is a perfectly repeated texture
(30×30pixels) which has only four distinctively differ-
ent patterns of size 3× 3. We encoded these patterns
as higher order cliques, and did not use any pairwise
terms. The second texture (bottom row in table 1
and fig. 7) is a 30 × 30 crop of the real texture in
fig. 10 where we used 25 5 × 5 patterns without de-
viation cost function and additionally pairwise terms
(see details in sec. 6.3).
The first conclusion is that the two binary con-

structions (Type-I and -II) perform very similar. For
both constructions the graph-cut based techniques
QPBO and QPBOP performed badly, i.e. left all
nodes unlabeled for these instances. (Note it is not
surprising that TRW-S also has a weak lower bound
since it is solving the same LP relaxation as QPBO).
Secondly, the binary constructions are considerably
inferior to the multi-label construction, for all in-
stances. For example, the multi-label construction
finds the global minimum with TRW-S for the toy
texture. (Unfortunately, real textures are more chal-
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Figure 6: Binary texture restoration for Brodatz texture D101. (a) Training image (86× 86 pixels). (b) Test
image. (c) Test image with 60% noise used as input. (d) 6 (out of 10) selected patterns of size 10× 10pixels.
(e) Their corresponding deviation cost function. (f-l) Results of various different models (see text for details).

Binary Type-I Binary Type-II Multi-label
BP TRW-S BP TRW-S BP TRW-S

fig. 7 top row 86.1; 38.5% 100(-179); 60.8% 86.0; 38.5% 100(-179); 60.8% 0; 0% 0(0), 0%
fig. 7 bot. row 91.8; 19.9% 100(-624); 31.7% 91.8; 19.9% 100(-624); 31.7% 91.2; 19.6% 99.9(0); 30.9%

Table 1: Comparing different transformation schemes for two different textures and various optimization
methods. We report for BP: energy; error, for TRW-S energy(lower bound); error. Note, the energy values
are shifted and scaled so that highest energy is 100 and the best lower bound is 0. Best performing methods
are shown in bold.

lenging and the lower bound of TRW-S can not give
insights on the optimality of the solution for the real
texture in table 1). The third conclusion is that BP
performs consistently better than TRW-S, both in
terms of lower energy and speed. Fig. 8 illustrates
a typical run of BP for the model in fig. 6j. Within
a few (here 3) iterations the energy reaches a low
value. In the remaining iterations the energy oscil-
lates around this energy value (here the lowest energy
is reached after 489 (out of 1000) iterations, which
is nearly the same energy as reached after 20 itera-
tions). Note, for this case the convergence of TRW-S
is much slower (about 1000 iterations), and the result
is inferior (best energy 3.74 ∗ 105 and lower bound

−4.97 ∗ 104).

Given the above results, one might question the
usefulness of the binary constructions. Two argu-
ments in support of the binary constructions are (a)
we found a few instances where the binary construc-
tion slightly outperformed the multi-label construction
using BP, and (b) a lot of active research in the
optimization community is on pseudo-boolean opti-
mization which hopefully will yield in the near future
methods, like [21], which are superior to QPBO and
QPBOP.

Finally, we see that low energies correlate with
low reconstruction error which confirms the quality
of our model. In terms of runtime of BP, we see that
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Figure 7: Comparing different transformation schemes for a toy texture (top row) and a real texture (bottom
row). The results (d-f, i-l) correspond to some experiments shown in table 1. (b) Shows the four patterns of
size 3 × 3pixels which are sufficient to fully represent the toy texture in (a). We see that, especially for the
toy texture (top row), the performance of the multi-label construction is considerably superior to the binary
construction Type-I. Furthermore, we see that TRW-S is (apart from (d)) inferior to BP.

Figure 8: A typical run of BP to achieve the result in fig. 6j. Intermediate results for 4 different iterations
are shown. The left images show the current labeling. The middle images illustrate in black those pixels
where the maximum (robustness) patch cost θmax is paid. It can be observed that only a few pixels do not
utilize the maximum cost. The right images illustrate all 10× 10 patches which are utilized, i.e. each white
dot in the middle images relates to a patch. Note that after 20 iterations there is no area in the right image
where a patch could be used which does not overlap with any other patch. Also, note that many patches do
overlap.
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the multi-label and binary type-II constructions have
about the same runtime, e.g. 2.1sec for the real tex-
ture in table 1, while binary type-I has slightly higher
runtime (2.5sec) since more auxiliary nodes are used.

6.3 Texture Restoration

For the task of texture restoration we investigated
two different ways to construct the sparse higher or-
der functions. In the first one, the sparse higher order
functions are constructed independently of the input
image, i.e. a pure prior. In the second one, the higher
order functions depend on the input image, which
means that for every clique of pixels the higher order
function may be different. This gives a so-called Con-
ditional Random Field (CRF). In the following we
will call the first option “static” higher order func-
tions and the second on “data-driven” higher order
functions.

Static higher order functions Given a training
image as in fig. 6a we aim at select a few patterns
which occur frequently and are as different as possible
in terms of their hamming distance. We achieve this
by k-means clustering over all training patches. Fig.
6d depicts 6 (out of k=10) such patterns. To compute
the deviation function for each particular pattern Xp

we consider all patterns which belong to the same
cluster as Xp. For each position within the patch we
record the frequency of having the same value as Xp.
Fig. 6e shows the associate deviation costs, where
a bright value means low frequency (i.e. high cost).
As expected, lower costs are at the edge of the pat-
tern. Note, the scale and truncation of the deviation
functions, as well as the weight of the higher order
function with respect to unary and pairwise terms,
are set by hand in order to achieve best performance.
The results for various models are shown in fig.

6(f-l). Further results for Brodatz texture D103,D20,
and D22 are shown in fig. 10, 11 and [34]. Let us
summarize the main findings. The higher order func-
tions always manage to capture visually the main
(large-scale) characterizes of a texture, e.g. fig. 6j
compare to fig. 6f. For most textures this is reflected
in a considerably reduced error rate. Furthermore,
as expected modelling more patterns helps (fig. 6h

compare to fig. 6i). Also, large cliques give typically
better results (fig. 6g compare to fig. 6i). Although,
for texture D103 (fig. 10) the improvement of using
10× 10 instead of 5× 5 patterns was not noticeable.
This is probably due to the fact that the repeated
texture elements are of a smaller size than 10 × 10.
Finally, the deviation functions help to improve re-
sults further (see fig. 6(i,j) and [34]). Fig. 6k shows
the result with the same model as in (i) but where
pairwise terms are switched off. The result is less
good since those pixels which are not “covered” by
a patch are unconstrained10 and hence take the op-
timal noisy labeling. One way to eliminate such un-
constrained pixels is to remove the option of patch
robustness, i.e. for each higher order clique one can-
didate pattern has to be utilized. This is achieved by
setting θmax to infinity and to assign to each pattern
a deviation cost which is not infinite. Fig 6l shows
the result. Although there are no “isolated” pixel er-
rors, the result is not visually pleasing. This shows
the importance of having patch robustness, which is
missing in the classical patch-based approach (sec.
5).

In terms of runtime, using more and large higher
order cliques is obviously more computationally ex-
pensive. The example in fig. 6j, which is an image
of size 86× 86, with 88935 patterns, each of size 100,
takes 32sec (14 rounds of BP) on a 1.8Ghz CPU. Note
that deviation functions do not increase the runtime.

Data-driven higher order functions The above
approach is obvious suboptimal since the known in-
put image is not exploited in the process of select-
ing candidate patches. We will explain such a data-
driven approach now. The basic idea has been intro-
duced in sec. 5. Given a large database of patches,
e.g. all patches of the training images in fig. 9a,
a set of k candidate patches is retrieved from the
database, individually for each image position. As
distance measure we simply use the hamming dis-
tance between the noisy test patch (fig. 6c) and all
patches in the database. Since the selected patches
are typically quite self-similar we did not use devi-

10Note, the black pixels in fig. 8(bottom, right) would be
the unconstrained pixels for that example.
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Figure 9: The same restoration problem as in fig. 6 but now the used techniques select patches in a data-
driven way by exploiting the given input image. All techniques use the same set of patches, i.e. 15 10 × 10
patches at each position. Our method (d,g) gives visually best results, since it solves the underlying higher
order random field directly. Other techniques (b,c,f) are visually inferior due to the inherent averaging step
of all selected patches. Note, results in (f,g) use a different dictionary which consists of the training images
in (a) augmented by the ground truth input image in fig. 6b.

Figure 10: Results for Brodtaz texture D103 with pairwise MRF, static higher order functions, and data-
driven higher order functions, where the latter gives clearly the best result.

Figure 11: Results for Brodtaz texture D20 with pairwise MRF, static higher order functions, and data-driven
higher order functions, where the latter gives clearly the best result.
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ation functions. As above, pairwise functions were
added to the model.

It can clearly be seen that the result with data-
driven higher order functions, fig. 9d, is considerably
better than with static higher order functions, fig. 6j.
The same is true for other textures, see fig. 10, 11.

Figure 9e and fig. 8(bottom row, second image
from right) explain why the result is so different.
Both images show in white those image positions
where a candidate patch has been utilized. It is ap-
parent that in fig. 9e there are many more white
pixels.

In order to emphasis the importance of solving the
higher order random field directly, in contrast to the
classical patch-based approach outlined in sec. 5,
we run two alternative methods. Figure 9b shows
the result of averaging and rounding all the available
patches. While the result is not bad in terms of er-
ror rate, artifacts due the “averaging step” are visible
(see e.g. top row of the texture). The same reason
holds for the results with the classical patch-based
approach of [11], outlined in sec. 5 — see fig. 9c.
Here we used an auxiliary energy with a 4-connected
pairwise MRF which models the patch overlap cost.
In a final experiment we changed the dictionary to ad-
ditionally include the ground truth input image (fig.
6b). Our method benefited most from the improved
dictionary, with a low error rate of 2.3% (fig. 9g),
followed by [11] with an error rate of 5.0% (fig. 9f)
and the approach of averaging all patches (error rate
7.5%; not shown).

Multi-label output The goal is to denoise the
gray-scale Brodatz texture D101 in fig. 12(b). For
this we use the same “static” training procedure as
above, but now with 15, instead of 2, labels for the
output. The 15 output labels are equally distributed
over the range of 0 to 255 gray-scale values. The in-
put image has 256 labels. We have to use our multi-
label construction (sec. 3), which also means that the
candidate patterns have 15 labels.

The result with a pairwise MRF and 15 labels is
shown in fig. 12d. For this we adjusted the 9 pairwise
terms from sec. 6.1 which were defined for binary la-
bels. Figure 12e depicts our result with 10 10 × 10

“static” patterns and pairwise terms. It is interest-
ing to note that a noticeable improvement can be
achieved by adding deviation functions, fig. 12f.
We expect that further improvements can be

achieved by using data-driven functions, and by in-
telligently selecting the 15 candidate gray-scale colors
(as done for new-view synthesis [9, 44]).

6.4 Texture Inpainting

The task of image inpainting is to invent new pixels in
a region of the input image which is un-observed. In
contrast to image restoration there is no information
(like noisy input data) available inside the unknown
region. This makes the problem quite challenging and
a good prior knowledge about the image is crucial in
order to achieve good results.
Figure 13a shows an inpainting task for the Bro-

datz texture D101 used before. The solutions of
three well-known exemplar-based inpainting tech-
niques [7, 6, 43] are shown in (b-d). These techniques
only use patches of the observed part of the input
image to construct a solution. They differ in the
way how they use the patches. The approach [43],
shown in (d), is probably state-of-the art and uses
the patches in the most excessive way. It optimizes
an objective function which forces every patch in the
unknown area to be as similar as possible to an ob-
served patch. However, even this technique does not
achieve a pleasing result in this case11.
Figure 13e shows our result with only pairwise

terms used (here the same 9 pairwise terms as for
texture restoration (sec. 6.1), which were trained us-
ing a different training image (fig. 6a)). We see that
the result preserves the rough structure of the tex-
ture. Finally, fig. 13f shows our result using jointly
pairwise terms and 15 12 × 12 patches with devia-
tion function. Here we used the static higher order
functions which were constructed in the same way as
above (sec. 6.3), however only the observed part of
the input image served as training data. In contrast

11We used our own implementation of [43] using the speed-
up patch-match technique of [1]. The result of photoshop’s
inpainting method, which is based on [43], is of similiar visual
quality as (d). Note, if the unknown area is smaller, then [43],
as well as our approach, achieve visually satisfying results.
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Figure 12: Gray-scale texture restoration. (a) Training image, and (c) test image with 60% noise. The data
(a-c) has 256 labels, while the results (d-f) have 15 labels. (d) Result with pairwise MRF. (e) Our result
without deviation functions, and (f) with deviation functions.

Figure 13: The task is to inpainting the red area of the input image (a). State-of the art methods produce
results: (b) Efros et al. [7], (c) Criminisi et al. [6], and (d) Wexler et al. [43]. Using our trained pairwise
model gives result (e). Our result (f) is visually best, and uses static, sparse higher order functions (15
12× 12 patterns with deviation function) and pairwise terms.
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to competitors is our solution visually appealing.

Note, in this case all ingredients of our model, i.e.
patch robustness, deviation functions, and additional
pairwise terms, were crucial to achieve the good re-
sult in fig. 13f. As mentioned already in sec. 5, we
believe that the idea of combining generic priors (here
pairwise terms) with patch-based priors may also be
important for other tasks such as object-class specific
segmentation.

7 Conclusion and Future Work

This paper provides a method for minimizing sparse
higher order energy functions. We studied the be-
havior of our methods in dealing with different en-
ergy functions. We applied our theoretical contribu-
tions to the problems of binary texture restoration
and inpainting, where we achieve results which im-
prove on existing techniques, especially the classical
patch-based approach of [11]. Since the classical ap-
proach is very wildly used in computer vision, such as
object recognition and segmentation, we believe that
our sparse higher order models will have high impact
in the future.

Our different transformation methods result in dif-
ficult optimization problems which are NP-hard to
solve. The use of sophisticated optimization algo-
rithms such the ones proposed recently in [21, 25, 37,
42] in solving these problems is a interesting direction
for future work.

Another future direction is to compare and analyze
optimization schemes based on message passing with
higher order functions. As discussed above, a sparse
structure in the higher order potentials can be ex-
ploited within a dual-decomposition paradigm [24],
or within a factor-graph representation [39].

Towards this end, we will make some instances of
our problems publicly available in order to encour-
age other researchers to work on these exciting and
challenging problems.
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