
Supplementary Material: Decision Tree Fields
Note, the supplementary material is not needed to understand the main paper.

Sebastian Nowozin
Microsoft Research

Cambridge, UK
Sebastian.Nowozin@microsoft.com

Carsten Rother
Microsoft Research

Cambridge, UK
carrot@microsoft.com

Shai Bagon
Weizmann Institute

shai.bagon@weizmann.ac.il

Toby Sharp
Microsoft Research

Cambridge, UK
toby.sharp@microsoft.com

Bangpeng Yao
Stanford University
Stanford, CA, USA

bangpeng@cs.stanford.edu

Pushmeet Kohli
Microsoft Research

Cambridge, UK
pkohli@microsoft.com

Abstract

As mentioned in the paper, in this supplementary doc-
ument we describe experimental details that were omitted
from the main paper for reasons of clarity and space. Addi-
tionally, we remind the reader of the the Gibbs sampler and
the minimization via Simulated annealing (SA) that we use
for inference.

1. Additional Experiment: Generic Object
Class Recognition

As mentioned in the first paragraph of Section 5 in the
main paper, we evaluated our DTF model on one other ap-
plication, which was generic Object Class Recognition. We
did not include these results in the main paper since our
initial conclusion is that for this application DTF does not
outperform a standard CRF approach, as we explain next.

We used the DAGS scene understanding data set [2]. In
this data set, there are 715 images with each pixel labeled as
one of eight classes (sky, tree, road, etc.); a labeling decom-
poses the image into semantic parts. The data set is parti-
tioned to five folds of training and test images. For each fold
there are 572 training images and 143 test images, and the
benchmark measure is the cross-validated multiclass per-
pixel accuracy.

For a simple 4-neighborhood CRF with contrast-
sensitive potential we obtain results of 67.5%. Because
we use only simple pixel-difference features and no region-
based features, our results are below state-of the art of
79.42% reported in [5]. Moreover, we obtain the same per-
formance with a DTF using the same 4-neighborhood struc-
ture but learned conditionally. Upon closer inspection we

see that we learned contrast sensitive term. Initial tests on
using a densely connected factor graph did not show im-
provements. We conjecture that in contrast to our other
applications, the reasons may be: a) that the DAGS data
set does not contain enough structure in the label set, or,
b) there may exist such structure but given the variability in
the task, the amount of training images is too small to be
able to discover this structure.

We plan to investigate other challenging semantic seg-
mentation data sets, such as the PASCAL VOC segmenta-
tion set, in the near future.

2. Experimental Details, Additions
2.1. Snakes Experiment

The unary model consists of 10 decision trees of depth
25 with tests that check whether a pixel at a fixed relative
position is of a certain color (here 5 possible colors). Note,
more trees or deeper trees lead to over-fitting, hence we as-
sume that this is the best possible setting given the training
database. For the MRF, we learn a total of two 10-by-10
tables of energy values, one for the horizontal and vertical
factor, respectively. In our model, the MRF corresponds to
a DTF with decision trees of depth one. For the DTF, we
use four decision trees of depth 15.

The pairwise decision trees perform tests on the colors
of two pixels within a 3-by-3 window. During training of
the decision trees (both unary and pairwise) we evaluate all
possible decision tree tests, which is possible since images
are small. After decision tree training, the model weights
are optimized using (4) over a range of different σt values
for the pairwise factors.

We use TRW to obtain the MAP labelling for the test im-
ages, and Gibbs sampler to obtain samples for unary model.

1

Small occlusion Large occlusion

Figure 1. Completing small and large occluded boxes of Chinese
characters: test (left) and ground truth (right).

2.2. Chinese Characters Experiment

We use the KAIST Hanja2 database, available
at http://ai.kaist.ac.kr/Resource/dbase/
Hanja/HanjaDB2.htm.

We have two data sets, containing small and large oc-
clusions, respectively. We draw the width and height
of the occluding box from a uniform distribution over
{amin, . . . , amax}. In the small occlusion setting we have a
“small occlusion” box with (amin = 5, amax = 20), and one
with a “large occlusion” box with (amin = 10, amax = 40).
Figure 1 shows examples of large and small occlusions on
test characters. The typical image in this data set is 80×100
pixels in size. We use a training set of 300 images and a dis-
joint test set of 100 images. The charcters in the training set
are shown in figures 8.

The features for the unary and pairwise decision trees
are simple: they can test whether a pixel at a relative offset
is black, grey, or white. The pairwise features can test all
pairs of combinations, nine in total, for two image pixels
located at relative offsets of the potential variables. For each
decision tree node we propose 2000 tests from a uniform
random distribution, where each test is allows to look up
to 80 pixels away, incorporating global context cues in both
the unary and pairwise interactions. The maximum decision
tree depth is 15 for the unaries, and 6 for the pairwise trees.
We use a random subsampling with ratio of 0.5, meaning
that on average every second pixel in the training image is
used during training. For the prior parameters, we fix σu =
1 for the unary interactions, and select the pairwise prior
parameter σpw ∈ {0.1, 0.01, 0.001}.

Training is very efficient; for the 300 training images
and the most complex model (DTF, pairwise tree depth six)
we have 11150 parameters and the entire training, including
learning the decision trees and pseudolikelihood optimiza-
tion, takes less than one hour.

For inference we run a Gibbs sampler for 50 burn-in
sweeps and 200 sampling sweeps to obtain the posterior
and MPM predictions. For MAP inference we use simu-
lated annealing for a total of 200 sweeps, starting from a
temperature of 20.0 down to 0.05, see Section 3.2.

2.3. Body-part Recognition

The task of body-part recognition reported by [6] takes
depth images as input and assign each foreground pixel
to one of 31 body parts: LU/RU/LW/RW head, neck,
L/R shoulder, LU/RU/LW/RW arm, L/R elbow, L/R wrist,
L/R hand, LU/RU/LW/RW torso, LU/RU/LW/RW leg, L/R
knee, L/R ankle, L/R foot (Left, Right, Upper, loWer).

We used the same experimental set as [6], here with 30
or 1500 training images, and 150 test images. Hence we
assume that the mask of the person was already extracted in
a pre-processing stage. Also, we randomly sample ≈ 2000
pixels from each training image. Figure 9 shows the 30
depth images used in the smaller training set.

The features for the body parts recognition performs
simple depth comparisons (in the same fashion as the fea-
tures reported in [6]). For a unary feature (acting on a single
location x):

fθ (I, x) = dI

(
x +

u

dI(x)

)
− dI

(
x +

v

dI(x)

)
where dI(x) is the depth at pixel x in image I , and the fea-
ture parameters θ = (u, v) are the offsets for the depth dif-
ference test. In the same fashion we compute a pair-wise
feature (acting on a pair of pixels x1, and x2):

fθ (I, x1, x2) = dI

(
x1 +

u

dI(x1)

)
− dI

(
x2 +

v

dI(x2)

)
Note that the relative displacement between x1 and x2 is
determined by the factor structure.

During tree learning we randomly sample offsets θ =
(u, v) from a normal distribution. For each sample θ we
explore 20 possible thresholds. For the prior parameters,
we fix σu = 1 for the unary interactions, and varied the
pair-wise interaction prior σp ∈ {0.1, 0.2, 0.5} The depth
of the decision trees for the unary interactions is fixed to 16
for the small training data set (30 images), and to 20 for the
large training data set (1500 images).

For inference we used TRW [4] to compute MAP assign-
ment for the different body parts. For our full connectivity
model (+1,5,20) inference takes an average of 30 seconds
for an input image of size ≈ 150 × 150 pixels. We believe
that we can obtain additional speedups by avoiding the ex-
plicit unrolling of the factor graph; however, in this work
we address the training problem and leave this extension to
future work.

Additional qualitative examples of our body-part
recognition results can be visualized in Figures 3 and 4.
Note how varied the different poses of the input images are.
The data set contains a large variety of different poses and
body sizes, making this task challenging.

Varying tree depth. To demonstrate the improvement in
recognition performance gained by using conditional pair-
wise information we varied the pair-wise tree depth for

http://ai.kaist.ac.kr/Resource/dbase/Hanja/HanjaDB2.htm
http://ai.kaist.ac.kr/Resource/dbase/Hanja/HanjaDB2.htm

Figure 2. Body parts recognition results (30 training images): For
neighborhood size +1,5,20 we increase the depth of the pair-wise
trees from 1 (MRF) to 6, and record the resulting accuracy.

our most complex configuration (+1, 5, 20) from depth 1
(MRF) to depth 6. Results are shown in Figure 2: the
deeper the trees, the better they are able to capture condi-
tional pair-wise interactions, and recognition performance,
accordingly, increase.

Comparison to Random Forests. As in previous ex-
periments, we compared DTF with Random Forests. In this
case we have also used Random Forests to heuristically set
conditional pairwise terms. This is done by simply using
the empirical histogram of the training data as probability
distribution for the pairwise terms. The weight is then the
negative log probability. Furthermore, the global weighting
of the different pairwise factors is done optimally using the
test data.

The results are summarized in table 1. We see that Ran-
dom Forests consistently perform worse than DTFs. This is
not surprising since random forests ignore the problem of
“over-counting”, i.e. ignore the fact that the same random
variable is present in different pairwise terms.

A comment concerning the comparison with [6]. For
unaries only we achieve 19.79% accuracy using a random
forest, while [6] achieves 14.8%. The difference stems from
the fact that [6] uses for each tree a subset of the training
data, which is sub-optimal for small training data sets.

Model unary +1 +1,20 +1,5,20
Random Forest 19.79 20.91 20.79 23.39
DTF 21.36 23.71 25.72 27.35

Table 1. Comparison of Random Forests with DTFs for Body-part
recognition (30 training images).

Figure 3. Body-parts recognition results (30 training images).
MRF (top), DTF (bottom). Accuracy is shown below each re-
sult. Note the improvement in labeling the arm and elbow parts.
(Notice that DTF unary is the same configuration as MRF unary).

Figure 4. Body-parts recognition results (30 training images).
MRF (top), DTF (bottom). Accuracy is shown below each result.
Note the improvement in labeling of the shoulder and upper torso.

3. Inference Methods

3.1. Gibbs Sampler

We use Gibbs sampling as introduced by Geman and Ge-
man [1] to obtain approximate samples from our model.

Figure 5. Illustrating one learned vertical interaction (20 pixels apart): The average depth-normalized silhouette reaching one of the
32 leaf nodes in the learned decision tree for the vertical pairwise interaction is shown on the left. Note how these patterns differ from
those of Figure 10 in the main paper. For one specific leaf node (marked in red) the corresponding pattern and learned weight matrix is
shown in the second column. The top two attractive terms (blue) and repulsive terms (red) are illustrated as arrows on poses taken from the
test set (right). The first pose shows how the knee on top of the lower leg (both left and right) are plausible (vertical) configurations where
the learned patch is matched. However, for the second pose the leaf pattern is not matched and indeed this (not-vertical) configuration is
no longer valid. The first and third pose show that the left-arm-over-right-torso, and right-upper-torso-over-left-lower-torso are plausible
(vertical) configurations, but only when the leaf pattern is not matched. Therefore these (vertical) configuration are inhibited for this
specific leaf.

Algorithm 1 Gibbs Sampler
1: GIBBSSAMPLER(p̃)
2: Input:
3: p̃(y|x,w) ∝ p(y|x,w), unnormalized target dis-

tribution,
4: B, number of burn-in sweeps,
5: T , number of sample sweeps.
6: Output:
7: y(t), sample sequence with y(t) ∼ p(y|x,w)
8: Algorithm:
9: y(0) ← arbitrary in Y

10: α← exp(− log(20)/B)
11: for b = 0, . . . , B do
12: τ ← αb20 {Reduce temperature towards 1}
13: for i ∈ V do
14: Sample y

(0)
i ∼ p̃τ (yi|y(0)

V \{i}, x, w) using (1)
15: end for
16: end for
17: for t = 1, . . . , T do
18: y(t) ← y(t−1)

19: for i ∈ V do
20: Sample y

(t)
i ∼ p̃1(yi|y(t)

V \{i}, x, w) using (1)
21: end for
22: output y(t)

23: end for

Let us use (2) from the main paper to define an unnor-
malized temperized distribution,

p̃τ (y|x,w) := exp(−1
τ

E(y,x,w)),

where τ > 0 is a temperature parameter. For τ = 1 we have
p̃τ (y|x,w) ∝ p(y|x,w).

0 10 20 30 40 50
0

5

10

15

20

1

Burn−in sweep

T
em

pe
ra

tu
re

Temperature schedule

Figure 7. Temperature schedule used for the burn-in phase of the
Gibbs sampler and during simulated annealing.

Algorithm 1 is the basic Gibbs sampler, consisting of a
burn-in phase, and a sampling phase. Sampling each vari-
able once is called a sweep.

In the algorithm, sampling from the conditional distri-
bution is feasible because it only requires the unnormalized
distribution p̃ and normalization over the domain of a single
variable. This is shown in Figure 6.

In the algorithm, we use B + 1 sweeps during the so
called “burn-in phase”, aimed at diminishing the influence
of the starting point. The temperature is initially set to a
high value (20.0) and gradually decreased towards 1, so as
to recover the true distribution. This heuristic is very ef-
fective at approximately placing y(0) at a high-mass region
of the label space. Figure 7 shows the resulting annealing
schedule for 50 burn-in sweeps.

Although we have not implemented this, the Gibbs sam-
pler can be parallelized as well by partitioning the variable

p̃τ (yi|y(t)
V \{i}, x, w) =

p̃τ (yi, y
(t)
V \{i}|x,w)∑

yi∈Yi
p̃τ (yi, y

(t)
V \{i}|x,w)

=

∑
F∈M(i) exp(− 1

τ EF (yi, y
(t)
F\{i}, xF , wtF

))∑
yi∈Yi

∑
F∈M(i) exp(− 1

τ EF (yi, y
(t)
F\{i}, xF , wtF

))
(1)

Figure 6. Gibbs sampling updates around a variable i ∈ V . All factors not in M(i) appear in both the numerator and denominator and
therefore do not influence the ratio. Note the similarity between (1) here and (5) from the main paper. Due to this similarity, we can use
the same code to compute both equations efficiently.

set V into disjoint subsets such that no pairwise or higher-
order interaction is present between any two variables con-
tained in the same set. This can be achieved by approxi-
mately solving a graph coloring problem on a small auxil-
iary graph. We are currently investigating this further and
will report results in a future report.

3.2. Simulated Annealing

For very small temperatures the probability mass in
p(y|x,w) will become concentrated at the MAP state y∗. If
we reduce the temperature from a high value, say τstart = 20
to a very small one, say τend = 0.05 while running the Gibbs
sampler, then we will obtain an approximate MAP state.
This is the idea of simulated annealing [3, 1]; one imple-
mentation of simulated annealing is shown in Algorithm 2.

Algorithm 2 Simulated Annealing MAP Inference
1: SIMULATEDANNEALINGINFERENCE(p̃)
2: Input:
3: p̃(y|x,w) ∝ p(y|x,w), unnormalized target dis-

tribution,
4: B, number of sweeps,
5: (τstart, τend), initial and final temperatures.
6: Output:
7: y∗, approximate MAP state
8: Algorithm:
9: y ← arbitrary in Y

10: α← exp(log(τend/τstart)/B)
11: for b = 0, . . . , B do
12: τ ← αbτstart {Reduce temperature towards τend}
13: for i ∈ V do
14: Sample yi ∼ p̃τ (yi|yV \{i}, x, w) using (1)
15: end for
16: end for
17: y∗ ← y

3.3. A Comment on the Inference Problem

The difficulty of the test-time inference problem in the
DTF model depends on the task.

In the body parts experiment we can solve the MAP in-
ference problem well by tree-reweighted message passing
(TRW) [4], as indicated by a small primal-dual gap.

For the Chinese character task, the learned model has

repulsive potentials, complicating MAP inference. In that
case, for one 100-by-100 degree-27 graph it takes < 30s
to carry out 200 simulated annealing sweeps, and < 10s
to approximately minimize the energy using TRW. For the
quality of the approximate minimizers obtained, in 59% of
the cases E(SA) < E(TRW), in 15% of the cases E(GT) <
E(TRW), and in 2% of the cases E(GT) < E(SA), where GT
is the ground truth labeling. This indicates that the energy
minimization is not optimal. We plan to release a set of
these learned inference problems as an energy minimization
benchmark.

References
[1] S. Geman and D. Geman. Stochastic relaxation, Gibbs distri-

butions, and the Bayesian restoration of images. PAMI, 6:721–
741, 1984. 3, 5

[2] S. Gould, R. Fulton, and D. Koller. Decomposing a scene
into geometric and semantically consistent regions. In ICCV,
2009. 1

[3] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization
by simulated annealing. Science, 220:671–680, 1983. 5

[4] V. Kolmogorov. Convergent tree-reweighted message passing
for energy minimization. IEEE Trans. Pattern Anal. Mach.
Intell, 28(10):1568–1583, 2006. 2, 5

[5] M. P. Kumar and D. Koller. Efficiently selecting regions for
scene understanding. In CVPR, 2010. 1

[6] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake. Real-time human pose
recognition in parts from a single depth image. In CVPR,
2011. 2, 3

Figure 8. Chinese characters: training set with 300 characters.

Figure 9. Train set used for body-part recognition. Depth map next to ground-truth labeling.

