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Abstract

Many computer vision tasks can be formulated as la-
beling problems. The desired solution is often a spatially
smooth labeling where label transitions are aligned with
color edges of the input image. We show that such solutions
can be efficiently achieved by smoothing the label costs with
a very fast edge preserving filter. In this paper we propose
a generic and simple framework comprising three steps: (i)
constructing a cost volume (ii) fast cost volume filtering and
(iii) winner-take-all label selection. Our main contribution
is to show that with such a simple framework state-of-the-
art results can be achieved for several computer vision ap-
plications. In particular, we achieve (i) disparity maps in
real-time, whose quality exceeds those of all other fast (lo-
cal) approaches on the Middlebury stereo benchmark, and
(ii) optical flow fields with very fine structures as well as
large displacements. To demonstrate robustness, the few pa-
rameters of our framework are set to nearly identical values
for both applications. Also, competitive results for interac-
tive image segmentation are presented. With this work, we
hope to inspire other researchers to leverage this framework
to other application areas.

1. Introduction
Discrete label-based approaches have been success-

fully applied to many computer vision problems such as
stereo, optical flow, interactive image segmentation or ob-
ject recognition. In a typical labeling approach, the input
data is used to construct a three-dimensional cost volume,
which stores the costs for choosing a label l (i.e. disparities
in stereo) at image coordinates x and y. For stereo, these
costs are given by pixel-wise correlation (e.g. absolute dif-
ferences of the intensities) between corresponding pixels.

Then the goal is to find a solution which (i) obeys the
label costs, (ii) is spatially smooth; and (iii) label changes
are aligned with edges in the image. To this end, a popular
approach is to utilize a Conditional (Markov) Random Field
model (CRF). This means that an energy function is formu-
lated, where the label costs are encoded in a data term and
the spatially smooth edge-aligned solution is enforced by an
e.g. pairwise smoothness term. This cost function can then

This work was supported in part by the Vienna Science and Technol-
ogy Fund (WWTF) under project ICT08-019.

be minimized using global energy minimization approaches
such as graph cut or belief propagation. A drawback is that
such global methods are often relatively slow and do not
scale well to high-resolution images or large label spaces.
Fast approximations (e.g. [26]) usually come at the price of
loss in quality, due to less-global optimization schema.

Continuous counterparts to discrete labeling methods are
based on convex energy functionals which can be efficiently
optimized on the GPU, e.g. [17, 13, 10]. A drawback is
that many of these approaches have a restricted form of
the data and smoothness term. For instance, the brightness
constancy assumption in optical flow is usually linearized
and thus only valid for small displacements. To overcome
this problem, a coarse-to-fine framework is commonly used
which however, still cannot handle objects whose scale is
much smaller than their motion. Another problem is posed
by the convexity of the smoothness term, which might over-
smooth the solution. This may be the reason why convex
models have not reported state-of-the-art stereo results yet.

An interesting alternative to an energy-based approach
is to apply a local filtering method. The filtering operation
achieves a form of spatially-local smoothing of the label
space, in contrast to a potential spatially-global smoothing
of a CRF. Despite this conceptual drawback, an observa-
tion of this and previous work [31] is that “local smooth-
ing” is able to achieve high quality results. We believe that
the reason is the dominance of the data term with respect
to the smoothness term.1 An important observation is that
the data term will play an even more dominant role in the
future, since both video and still-picture cameras are con-
sistently growing in terms of frame-resolution and also dy-
namic range. Note, a detailed comparison between energy-
based and filtering-based methods is beyond the scope of
this paper, and we will only briefly discuss them in sec. 6.

In general, relatively little work has been done in the do-
main of filter-based methods for discrete labeling problems
[31, 19, 8]. Above all, there is no filter-based approach for
general multi-labeling problems which is both fast (real-
time) and achieves high quality results. The key contribu-
tion of this paper is to present such a framework.

1For some applications it may be possible to show that the smoothness
term of a learned energy propagates information only locally. Note that
for some applications global constraints exist such as the occlusion con-
straint in stereo matching and optical flow. In our approach we model the
occlusion constraint with a fast additional operation.
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Let us briefly review the existing ideas of filter-based
methods, which are the motivation of our work (details in
sec. 2). Apart from [8] all work has concentrated on the ap-
plication of stereo matching. Yoon and Kweon [31] showed
that an edge-preserving bilateral filter on the cost volume
can achieve high-accuracy results. Note that the authors
of [31] did not use the term “filtering” to describe their
method, but called it weighted support window aggregation
scheme. This means that they use a naive implementation of
the bilateral filter, which is slow and diminishes the runtime
advantage of local over global methods. Richard et al. [19]
realized this shortcoming and suggested an approximate but
fast (real-time) implementation of the filter. However, their
solution could not even get close to the state-of-the-art re-
sults in stereo matching. Also, their approach is specifically
tailored to stereo matching and hence does not convey the
important insight that this filtering concept can be leveraged
to general labeling tasks, outside stereo matching. Recently,
[8] suggested edge-sensitive smoothing of label costs for
image editing tasks different from stereo. However, their
approach, based on fast geodesic filter operations, is inher-
ently limited to problems with two labels only.

In this work, we overcome the above limitations and
present a filter-framework which efficiently achieves high-
quality solutions for general multi-label problems, hence
is competitive with energy-based methods. This is possible
due to the recently proposed guided filter [11], which has
the edge-preserving property and a runtime independent of
the filter size. Thus, state-of-the-art results can be achieved
without the need to trade off accuracy against efficiency.

Let us now detail our method from a stereo perspective.
We first construct a cost volume with axes (x, y, l), which is
known as disparity space image (DSI) in stereo [21]. Figure
1(b) shows an (x, l) slice through this volume for the scan-
line in figure 1(a). We can obtain a solution to the labeling
problem by choosing the label of the lowest cost at each
pixel (i.e. argmin over the columns of figure 1(b)). The
pixels with the lowest costs are marked red in figure 1(b).
The result is noisy, because the solution is not regularized.

To regularize the solution we can aggregate (smooth)
the costs over a support window (known as window-based
methods in stereo matching). It is known that this aggre-
gation is equivalent to filtering the (x, y) dimensions of the
cost volume [21] with a box filter. The result is shown in
figure 1(c), where we filtered the cost volume in figure 1(b).
The solution with the minimum costs (marked red in figure
1(c)) is smooth but not aligned with the image edges. This is
because the box filter overlaps depth discontinuities, which
are illustrated with green dashed lines in figure 1. This leads
to the well-known “edge-fattening effect” in stereo.

To overcome this problem, we smooth the cost volume
with a weighted box filter. The weights are chosen such
that they preserve edges in the input image. For instance,
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Figure 1. Cost volume filtering. (a) Zoom of the green line
in the input image. (b) Slice of cost volume (white/black/red:
high/low/lowest costs) for line in (a). (c-e) Cost slice smoothed
along x and y-axes (y is not shown here) with box filter, bilateral
filter and guided filter [11], respectively. (f) Ground truth labeling.

smoothing the cost volume with the bilateral filter (figure
1(d)) gives a spatially smooth solution, which is also aligned
with the image edges. Since fast approximations of the bi-
lateral filter degrade the quality, we use the guided filter
[11]. Figure 1(e) shows its edge-preserving properties.

Our generic and fast cost-filtering framework, is widely
applicable, which we demonstrate for three applications:

• A real-time stereo approach that outperforms all other lo-
cal methods on the Middlebury benchmark both in terms of
speed and accuracy.

• A discrete optical flow approach that handles both fine
(small scale) motion structure and large displacements. We
tackle the huge label space by fast cost filtering.

• A fast and high-quality interactive image segmentation
method.

2. Related Work

As mentioned above, there have only been a few attempts
to simulate the edge-preserving smoothness properties of an
CRF by filtering the label costs. We review those now.

Criminisi et al. [8, 7] showed an approach which is ap-
plicable to problems with two labels, like binary image seg-
mentation and panoramic stitching of two overlapping im-
ages. The idea is to filter a likelihood-ratio mask with a fast
geodesic morphological operator. It remains unclear if this
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approach could be extended to multi-label problems such as
stereo.2 Also, the relationship between their morphological
operator and e.g. the bilateral filter is not discussed in detail.

In the continuous domain, Tschumperlè and Deriche
[25] showed that a diffusion tensor-based smoothness regu-
larizer can be transformed into local convolutions with ori-
ented Gaussians. In the optical flow approach of Xiao et
al. [29], the Gaussian kernels were replaced by the bilateral
filter. In this line of research, Werlberger et al. [28] and Sun
et al. [24] incorporated the adaptive support weights of [31]
into a variational approach. In contrast, the goal of our work
is to apply local filtering in a discrete framework.

In the real-time stereo approach of Richardt et al. [19]
the cost volume is smoothed with a fast approximation of
the bilateral filter. Due to this approximation, huge amounts
of memory would be required ([19] reported 764 GB) when
applied to full-color (e.g. RGB) stereo images. Therefore,
[19] is limited to grayscale input images, giving poor results
at disparity boundaries. This is also reflected in the Middle-
bury stereo benchmark [2], where their method is on the
76th rank out of over 90 methods. In contrast, our real-time
implementation uses color images and ranks 9th. To in-
crease the quality, [19] proposed an alternative that uses two
color channels. However, this method is 13 times slower
than their grayscale approach (non-real-time) and still infe-
rior to their re-implementation of [31].

Since we also apply our labeling framework to optical
flow and interactive segmentation, we now briefly review
those methods most relevant in the context of this work.

For optical flow, a popular approach is to use a vari-
ational coarse-to-fine framework that cannot handle large
displacements of small objects, as shown in [5, 23]. To
overcome this problem, discrete data terms can be inte-
grated into a variational framework (see [23, 5, 30]). Purely
discrete label-based approaches do not suffer from this
problem, but a major challenge is the huge label space
(each flow vector is a label and subpixel accuracy further
increases the label space). Due to these difficulties, discrete
approaches, e.g. [4, 16, 15], usually have to trade off search
space (quality) against speed. In contrast, our filter based
method efficiently deals with the search space and handles
both, large displacements and fine small-scale structures.

Related to interactive segmentation, [11] adopted the
guided filter to compute a soft-segmentation, so called alpha
matte [18]. This is done by filtering a binary segmentation
mask, as opposed to the cost volume as in our approach.

3. Cost-Volume Filtering

In this section we describe our labeling framework and
apply it to three different vision applications in section 4.

2To generate a smooth real-valued output for image editing tasks, such
as denoising or cartoonization, [8] smoothes the input image (as opposed
to a multi-labeled likelihood map).

We consider a general labeling problem, where the goal
is to assign each pixel i with coordinates (x, y) in the image
I to a label l from the set L = {1, . . . , L}. The label as-
signed to pixel i is denoted by fi and f is the collection of
all label assignments. Our approach consists of three steps:
constructing the cost-volume, filtering the cost volume and
label selection. The cost volume C is a three dimensional
array which stores the costs for choosing label l at pixel
i = (x, y).

The L slices of the cost volume are now filtered. To be
more precise, the output of the filtering at pixel index i at
label l is a weighted average of all pixels in the same slice:

C ′
i,l =

∑

j

Wi,j(I)Cj,l. (1)

Here, C ′ is the filtered cost volume and i and j are pixel
indexes. The filter weights Wi,j depend on the guidance im-
age I , which is in the case of e.g. stereo the reference image.

Once the cost volume is filtered, the label at pixel i is
simply chosen in a winner-take-all manner as

fi = argmin
l

C ′
i,l. (2)

The filter weights Wi,j in eq. (1) should be chosen such
that intensity changes in the guidance image are maintained
in the filter output. In this work we use the weights of the
guided filter [11], which we briefly review now (but other
weights are also possible).

For simplicity, we start by using a grayscale guidance
image I . Then the weights Wi,j are given by:

Wi,j =
1

|ω|2
∑

k:(i,j)∈ωk

(1 +
(Ii − μk)(Ij − μk)

σ2
k + ε

), (3)

where μk and σk are the mean and the variance of I in a
squared window ωk with dimensions r×r, centered at pixel
k.3 We denote the number of pixels in this window with |ω|
and ε is a smoothness parameter explained below.

To see why the filter weights preserve edges of I in the
filter output, let us consider figure 2 which shows a 1-D
step edge. The numerator (Ii − μk)(Ij − μk) in eq. (3)
has a positive sign if Ij is located on the same side of the
edge as Ii, and has a negative sign otherwise. Thus the term
1 +

(Ii−μk)(Ij−μk)

σ2
k+ε

in eq. (3), is large for pixel pairs on the

same side of the edge and small otherwise. Hence, pixels
are not averaged if they are separated by an image edge.

The strength of the averaging is controlled by the param-
eter ε in eq. (3). If σ2 � ε (then μk is similar to Ii and Ij)
then the numerator in eq. (3) is much smaller than the de-
nominator. Hence, the kernel converges to an (unweighed)
low-pass filter: Wi,j =

1
|ω|2

∑
k:(i,j)∈ωk

1.

3The size of the filter kernel itself is (4r+ 1)2, because the sum in eq.
(3) is defined over all windows which include pixel indexes i and j.
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Figure 2. 1D step edge. We shown μ and σ for a kernel centered
exactly at the edge. See text for details. Figure courtesy from [11].
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Figure 3. Filter kernels. We show kernels of the guided filter with
r = 9 and ε = 0.012, at different locations in an image of [1].

The filter weights are similarly defined for color images:

Wi,j =
1

|ω|2
∑

k:(i,j)∈ωk

(1+(Ii−μk)
T (Σk+εU)−1(Ij−μk)).

(4)
Here, Ii, Ij and μk are 3× 1 (color) vectors and the co-

variance matrix Σk and identity matrix U are of size 3× 3.
The filter weights for some image regions are visualized in
figure 3. The weights are high in regions which are self-
similar to the central pixel and low otherwise. It has been
shown [11] that a weighted average with weights in eq. (3)
or (4) can be implemented efficiently on the CPU as a se-
quence of box filters using the integral imaging technique
[9]. We apply the same technique to obtain an even more
efficient GPU implementation.

4. Applications

We implemented three different vision applications in
our framework. Notice that the method for stereo and op-
tical flow is almost identical and only one parameter is set
differently in the experiments (see explanation in sec. 5).

4.1. Stereo Matching

For stereo matching the labels l correspond to vectors
(u, v) which define the displacement in x and y direction.
In the x direction, the displacement corresponds to the dis-
parity d (u = d) and there is no shift in y direction (v = 0).
Cost computation: The cost volume expresses how well
a pixel i in image I matches the same pixel in the second
image I ′ shifted by vector l. We choose our pixel-based

matching costs to be a truncated absolute difference of the
color and the gradient at the matching points. Such a model
has been shown to be robust to illumination changes and is
commonly used in optical flow estimation [5, 6]:

Ci,l = (1− α) ·min
[||I ′i+l − Ii||, τ1

]
+ (5)

α ·min
[||∇xI

′
i+l −∇xIi||, τ2

]
.

Here, ∇x is the gradient in x direction, α balances the
color and gradient terms and τ1, τ2 are truncation values.4

We then filter the cost volume according to eq. (1) with
weights in (4), using I as guidance image. We then compute
the disparity map f for image I as per eq. (2).
Occlusion detection and filling: To detect occlusions, we
additionally compute the disparity map f ′ for the right im-
age I ′ in a similar manner. We mark a pixel in the left dis-
parity map as occluded if the disparity of its matching pixel
differs. The occluded pixels are then assigned to the lowest
disparity value of the spatially closest non-occluded pixels
which lie on the same scanline (pixel row).
Post-processing: This simple occlusion filling strategy can
generate streak-like artifacts in the disparity map. To re-
move them, while preserving the object boundaries, we ap-
ply a weighted median filter to the filled pixels. As filter
weights, we would ideally like to choose those of the guided
filter defined in eq. (4). However, computing these weights
involves building a sparse matrix of size N ×N , where N
is the number of image pixels. The non-zero entries of this
matrix increase tremendously for large windows sizes thus
immense memory and time is required for computing this
matrix 5. Thus we resort to the bilateral filter weights:

W bf
i,j =

1

Ki
exp(−|i− j|2

σ2
s

) exp(−|Ii − Ij |2
σ2
c

), (6)

where σs and σc adjust spatial and color similarity, Ki is a
normalization factor and we use filter dimensions rb × rb.
Alternative - symmetric stereo: Our stereo approach can
be extended to filter the cost volume, while preserving edges
in both input images simultaneously. To this end, we re-
place the 3 × 1 vector Ii in eq. (4) with a 6 × 1 vector
whose entries are given by the RGB color channels of Ii and
I ′i+l. The dimensions of Ij , Σk, U and μk change similarly.
We tested this approach but found the average improvement
negligible. Thus we do not report results for this approach.

4.2. Optical Flow

Our optical flow approach is almost identical to stereo.
Here, the labels l correspond to vectors (u, v) which define
the flow in x and y direction, respectively.

4One could also use a spatially varying α as it was recently proposed in
[30]. However, this approach gave worse results on the stereo test images.

5The filter weights do not have to be computed explicitly when using a
weighted average filter, which we use to smooth the cost volume.
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Cost computation: We compute the matching costs of cor-
responding pixels as in stereo, but additionally use the gra-
dient ∇y in y direction:

Ci,l = (1− α) ·min
[||I ′i+l − Ii||, τ1

]
+ (7)

α ·min
[||∇xI

′
i+l −∇xIi||+ ||∇yI

′
i+l −∇yIi||, τ2

]
.

As for stereo, we filter C using I as guidance image and
obtain the flow field in a winner-take-all manner.
Occlusion detection and filling: We apply the same left-
right cross checking procedure as in stereo to find occluded
pixels. For occlusion filling we cannot simply assign the
flow vector with the lowest magnitude of the spatially clos-
est pixels. This is because objects with a smaller flow
magnitude can occlude objects with higher flow magnitude.
Therefore, we use a weighted median filter to fill the oc-
cluded regions based on their color similarity to the visible
flow regions. In detail, we apply a weighted median with
weights as in eq. (6) to the occluded pixels. The windows of
the median filter overlap the non-occluded regions thus can
propagate the flow vectors into the occluded image parts.
Subpixel precision: To find sub-pixel accurate flow vec-
tors, we follow [23] and simply upscale the input images
using bicubic interpolation. This increases the size of the
cost volume in the label dimension (but not in the x and
y dimensions) and hence raises the running time. In prac-
tice, we found that smoothing the final flow vectors with the
guided filter can compensate for a lower upscaling factor.6

We empirically found that an upscaling factor of 4 gives vi-
sually pleasing results, but in this paper we upscale by a
factor of 8 to demonstrate the best possible performance.

4.3. Interactive Image Segmentation

In interactive image segmentation the labels encode
whether a pixel belongs to the foreground F or the back-
ground B, thus L = {F,B}. For initialization, the user
assigns parts of the image to foreground and background.
Cost computation: From the user assignments, we build
fore- and background color histograms denoted as θF and
θB , which sum up to 1. Each histogram has K bins and we
denote the bin into which pixel i falls with b(i). We can
also use a bounding box as input, where the pixels outside
the box build θB and all pixels inside the box build θF as in
[27]. Then the cost volume is given by:

Ci,l = 1− θlb(i). (8)

For binary labeling problems we can reduce the cost vol-
ume Ci,l to a two-dimensional cost surface Ci which de-
notes the costs of a pixel to belong to foreground:

6An alternative to achieve subpixel precision is to upscale the final flow
vectors with the joint bilateral filter or the guided filter.

Ci = 1− θFb(i)/(θ
F
b(i) + θBb(i)). (9)

If a pixel i has been assigned to fore- or background by
the user, Ci is set to 0 or 1, respectively. After filtering the
cost surface, a pixel i is assigned to foreground if Ci < 0.5
and assigned to background otherwise. When using bound-
ing boxes, we iteratively update the color models as in [20].
In practice, we achieved good results with 5 iterations.

To account for semi-transparent pixels along the object
boundary in an efficient manner, we filter the computed bi-
nary mask with the guided filter. This has been shown [11]
to approximate an alpha matting method.

5. Experimental Results

We use the following, same constant parameter set-
tings for optical flow and stereo to generate all results:
{r, ε, α, σs, σc, rb, τ1} = {9, 0.012, 0.9, 9, 0.1, 19, 0.0028}.
This demonstrates the robustness of our method. The only
exception is the truncation value τ2 of the matching costs in
eq. (6) and (8). This value depends on the signal-to-noise
ratio of an image [21] as well as on the size of the occluded
regions. Thus we use τ2 = 0.008 for stereo and τ2 = 0.016
for optical flow.

Interactive image segmentation is a very different prob-
lem, hence we found different, constant parameter settings
(i.e. more smoothing) work well: {r, ε} = {11, 0.22}. Also,
we use K = 32 bins for the color-model histogram.

We implemented our method on the graphics card us-
ing CUDA. All experiments were conducted on a 2.4GHZ
processor and an NVIDIA GeForce GTX480 graphics card
with 1.5GB of memory. Our approach takes about 5ms to
filter a 1Mpix image. Thus we can process about 200 labels
per second in a 1Mpix image. Problem specific timings are
reported below (we report runtimes of the full methods, in-
cluding postprocessing). A Matlab implementation of our
stereo method is available on our project website 7.

5.1. Stereo Matching

We evaluated our approach on the Middlebury stereo
benchmark [2] and list the results in table 1. Our approach
gives excellent results (see figure 4 and supp. material)
ranking 9th out of over 90 methods at the time of submis-
sion. Even more importantly, we are the best performing
local stereo method outperforming even the original imple-
mentation of [31] (rank 32). To understand why our method
performs better than [31], we plugged their weights into our
method. Hence, we use the same matching costs and occlu-
sion handling as in our method. This approach is about 230
times slower than ours but ranks closely behind it on rank
15 (we tuned the parameters of this approach to give best

7http://www.ims.tuwien.ac.at/research/costFilter/
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Method Rank Avg. Avg. Runtime
Error (%) (ms)

Ours 9 5.55 65
GeoSup [12] 12 5.80 16000
Plane-fit BP 13 5.78 650

Ours using AdaptWeight [31] 15 5.86 15000
AdaptWeight [31] 32 6.67 8550
Real-time GPU 66 9.82 122.5
Reliability DP 69 10.7 187.8
DCB Grid [19] 76 10.9 95.4*

Table 1. Stereo evaluation on Middlebury. Rankings for selected
stereo methods. We are the best-performing local approach. *The
runtime in [19] was reported before left-right consistency check.
For fairness, we report the approx. total runtime here.

Figure 4. Stereo results on Middlebury. Disparity maps for the
“Tsukuba” and “Cones” scenes using constant parameters.

possible results). This suggests that the guided filter and the
bilateral filter are both well suited for stereo matching.

The average runtime (we report times of the full method
including e.g. left-right post-processing) of our method and
its competitors are shown in table 1. Our approach works in
real-time (approx. 23fps on average) and is the fastest on
the Middlebury test set. Runtimes of the competing meth-
ods are taken from [19].8

5.2. Optical Flow

We evaluate our approach on the Middlebury flow bench-
mark [1] and report the results in table 2. Overall, our ap-
proach ranks on the 4th and 6th rank with respect to the
angle error and endpoint error out of almost 40 methods at
the time of submission. This performance is comparable
to the method of Werlberger et al. (NL-TV-NCC) [28] that
uses adaptive support weights in a variational method. Our
method has several advantages over its competitors. First,
our approach outperforms most other methods on scenes
with fine details and strong motion discontinuities such as
“Schefflera”, “Grove” and “Teddy”, where we achieve an
average rank of 2.2 and rank 1st on the “Teddy” scene (see
details in table 2 and figure 5). Second, our approach (using
identical parameter settings) can handle scenes with large
displacements, which is more difficult for approaches like
[28] that are restricted by their coarse-to-fine framework.

8Times were measured on different machines but still give a good indi-
cation of the computational complexity.

(a) Input images (b) Steinbrücker et al. [23] (c) LDOF [5]

(d) ACK-Prior [14] (e) Ours (f) Our flow

Figure 6. Large displacement flow (Beanbags). (b-e) Motion
magnitude for different methods. (f) Flow vectors with the color
coding as in [1]. Our method nicely recovers the shape of the hand.

Finally, the simplicity of our method is another advantage
over many approaches that require a large number of pa-
rameters to be tuned (e.g. number of pyramid levels and in-
terpolation strategy).

Our approach performs less well on the “Wooden” and
“Yosemite” sequence. This is because in the “Wooden” se-
quence our algorithm assigns wrong flow values to a shad-
owed region. Although the difference to the top perform-
ers in terms of error appears to be small, it has a larger
effect in the ranking. In the future, other matching cost
functions could be used to overcome this problem. The ar-
tificial “Yosemite” sequence contains many untextured re-
gions where the data term is unreliable. Variational methods
smoothly interpolate over these regions while our method
misinterprets them as motion discontinuities. We observed
that this is less of a problem in natural high-resolution im-
ages where the data term gives useful information even in
regions that appear homogeneous at a first glance.

The total runtime of our method for the 640 × 480 “Ur-
ban” sequence (about 30, 000 labels when using a subsam-
pling factor of 8) was about 90 seconds. In practice we
found that much smaller subampling factors give visually
comparable results at considerably lower runtimes.
Large displacement flow results: An important advantage
of our method is that it also handles large displacements
without changing any parameters (see figures 6 and 7 for
a comparison). Our approach generates results that are vi-
sually comparable or better than methods which are mostly
specialized on large displacement flow and do not perform
best for small displacements (exceptions are [30, 14]).

5.3. Interactive Image Segmentation

To show that our approach also performs well for im-
age segmentation, we visually compare it to GrabCut [20]
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Method Angle Error Endpoint Error Time
Rank Schefflera Grove Teddy Rank Schefflera Grove Teddy (sec)

Layers++ 1 (1,1,9) (1,1,1) (2,1,3) 1 (1,1,6) (1,1,2) (1,1,6) 18206
Classic+NL [24] 2 (6,5,12) (3,3,3) (3,3,6) 2 (7,7,10) (3,3,4) (3,2,7) 972
MDP-Flow [30] 3 (4,4,15) (4,4,9) (19,20,23) 3 (3,4,11) (5,5,8) (20,22,19) 188

Ours 4 (2,2,3) (2,2,2) (1,2,1) 6 (2,2,6) (2,2,1) (1,3,3) 90
OFH 5 (15,16,4) (6,6,14) (6,10,4) 4 (13,16,3) (11,10,14) (6,10,7) 620

NL-TV-NCC [28] 6 (11,11,1) (18,21,6) (5,7,5) 5 (11,11,1) (7,8,5) (5,5,2) 20
DPOF [15] 9 (3,3,10) (8,9,13) (4,4,2) 9 (3,3,11) (4,4,3) (4,3,1) 287

ACK-Prior [14] 10 (5,6,2) (12,7,18) (12,6,9) 12 (5,5,1) (8,7,11) (18,11,16) 5872
Table 2. Optical flow evaluation on Middlebury. Our approach works well for the challenging “Schefflera”, “Grove” and “Teddy”
sequences. The fine structures and strong motion discontinuities cannot be handled by many competitors. We report the ranks for these
sequences in brackets (all, disc, untext). Runtime is given for the “Urban” sequence (as requested by [1]), which has the largest label space.

Layers++ Classic+NL [24] DPOF [15] MDP Flow [30]NL TV NCC [28]GT OursOurs

Layers++ MDP Flow [30] DPOF [15] NL TV NCC [28]ACK Prior [14]Ours OursGT

Figure 5. Detailed flow results. Comparison for two fine structured sequences (upper part: “Schefflera” scene; lower part: “Grove” scene),
where many competitors fail to preserve flow discontinuities. (We boosted the colors in the second upper row for better visualization.)

in figure 8. As user input we either use coarse scribbles or
a single bounding box. The results are visually comparable
at lower runtimes (5ms vs. about 300ms (425ms) using the
graph cut implementation of [7] ([3]) on a 1Mpixel image).
Furthermore, our method gives comparable results to Grab-
Cut [20] on a ground truth database of 50 images [20]. The
error (percentage of misclassified pixels in the regions not
marked by the user) using trimap input is 5.3% for GrabCut
and 6.2% for our method. This shows the potential of our
approach to be successfully applied to other vision applica-
tions. A video of our real-time segmentation tool is shown
in the supplementary material.

6. Discussion and Future Work

This paper presented a simple, yet powerful filter-
ing approach for solving discrete labeling problems. As
mentioned in the introduction, the relationship between
filtering-based operations and energy-based optimization
schema for continuous and discrete models, such as be-
lief propagation are, to the best of our knowledge, not fully

known. One relationship, given in [11], is that the guided
filter is one step of a conjugate gradient solver of a particu-
lar linear system. We believe that a better understanding can
lead to fast and even better (iterative) filtering approaches.
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et al. [23]

(h) MDP-Flow
[30]

(i) Ours (j) Our flow

Figure 7. Large displacement flow (HumanEva) [22]. (b-e)
Backward warping results using flow of different methods. The
tip of the foot is correctly recovered by our method. Note that the
occluded portions cannot be correctly recovered by any method.
(f-i) The motion magnitude of different methods. (j) Flow vectors
with the color coding as in [1].

(a) Input image with
user interaction

(b) Our cutout (c) Cutout using Graph Cuts

Figure 8. Segmentation results. (b) Binary segmentation from
user input in (a). (c) Result corresponding to a single iteration of
GrabCut [20]. For the “Bunny” image (last row), we additionally
filtered the cutout masks in (b,c) with the guided filter to obtain a
soft alpha matte.

[8] A. Criminisi, T. Sharp, and C. Rother. Geodesic image and
video editing. ACM Trans. Graphics, 2010.

[9] F. Crow. Summed-area tables for texture mapping. SIG-
GRAPH, 1984.

[10] P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. We-
ickert. A highly efficient GPU implementation for varia-

tional optic flow based on the euler-lagrange framework. In
CVGPU Workshop, 2010.

[11] K. He, J. Sun, and X. Tang. Guided image filtering. In ECCV,
2010.

[12] A. Hosni, M. Bleyer, M. Gelautz, and C. Rhemann. Local
stereo matching using geodesic support weights. In ICIP,
2009.

[13] M. Klodt, T. Schoenemann, K. Kolev, M. Schikora, and
D. Cremers. An experimental comparison of discrete and
continuous shape optimization methods. In ECCV, 2008.

[14] K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow esti-
mation with adaptive convolution kernel prior on discrete
framework. In CVPR, 2008.

[15] C. Lei and Y. Yang. Optical flow estimation on coarse-to-fine
region-trees using discrete optimization. In ICCV ’09.

[16] V. Lempitsky, C. Rother, and A. Blake. Logcut - efficient
graph cut optimization for markov random fields. In ICCV,
2007.

[17] T. Pock, T. Schoenemann, G. Graber, H. Bischof, and D. Cre-
mers. A convex formulation of continuous multi-label prob-
lems. In CVPR, 2008.

[18] C. Rhemann, C. Rother, J. Wang, M. Gelautz, P. Kohli, and
P. Rott. A perceptually motivated online benchmark for im-
age matting. In CVPR, 2009.

[19] C. Richardt, D. Orr, I. Davies, A. Criminisi, and N. Dodg-
son. Real-time spatiotemporal stereo matching using the
dual-cross-bilateral grid. In ECCV’10.

[20] C. Rother, V. Kolmogorov, and A. Blake. Grabcut - inter-
active foreground extraction using iterated graph cuts. SIG-
GRAPH, 2004.

[21] D. Scharstein and R. Szeliski. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. IJCV,
2002.

[22] L. Sigal, A. Balan, and M. Black. HumanEva: Synchronized
video and motion capture dataset for evaluation of articulated
human motion. IJCV, 2010.
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