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Abstract— KinectFusion is a method for real-time capture of
dense 3D geometry of the physical environment using a depth
sensor. The system allows capture of a large dataset of 3D
scene reconstructions at very low cost. In this paper we discuss
the properties of the generated data and evaluate in which
situations the method is accurate enough to provide ground
truth models for low-level image processing tasks like stereo
and optical flow estimation. The results suggest that the method
is suitable for the fast acquisition of medium scale scenes (a
few meters across), filling a gap between structured light and
LiDAR scanners. For these scenes e.g. ground truth optical
flow fields with accuracies of approximately 0.1 pixel can be
created. We reveal an initial, high-quality dataset consisting of
57 scenes which can be used by researchers today, as well as
a new, interactive tool implementing the KinectFusion method.
Such datasets can then also be used as training data, e.g. for
3D recognition and depth inpainting.

I. INTRODUCTION AND RELATED WORK

Ground truth acquisition for performance analysis of low-

level computer vision tasks such as optical flow or stereo

is mainly constrained by three properties: accuracy, cost and

content. Accuracy and content are limited by costs stemming

from manual labor as well as measurement device prices. For

example, highly accurate structured light 3D scanners are

very expensive (often more than ≈ 50ke), labor-intensive

(setup time, manual registration steps, postprocessing of

data) and and are often optimized for small (<< 1m) to

medium scale (≈ 1m) environments.

Computer vision algorithms have to deal with a number of

competing requirements such as speed, accuracy and reliabil-

ity. In real-world applications such as robotics, speed and re-

liability in hugely varying environments are most important.

Practitioners usually cannot rely on existing benchmarks:

They need to create large amounts of ground truth quickly

and specifically targeted on their application. The accuracy of

such a ground truth dataset needs to be one magnitude larger

than the accuracy of the method to be evaluated. Hence,

this paper does not focus on creating a new ground truth

dataset; we examine the accuracy of a fast and cheap method

to enable everyone to create his own, application-specific

datasets. In particular, we focus on capturing 3D datasets,
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using a commercially available Microsoft Kinect R©camera

(cost ≈100e) and previously published 3D reconstruction

system called KinectFusion [1], [2]. To this end, we obtained

a binary distribution of the original authors’ implementation.

As discussed later, this type of rich 3D data can be used for

a variety of vision-based algorithms, both as training and

ground truth test data.

We offer three contributions: First, we analyze the quality

of the KinectFusion 3D reconstruction method for data set

capture and compare it to high-end ground truth generation

techniques such as light detection and ranging (LiDAR)

and discuss under which circumstances the recorded data is

accurate enough to be called ground truth or training data.

Second, we offer an example set of 57 scenes for public

download as 3D meshes, volumetric data, and registered

raw and synthetic depth maps, recorded in a variety of

rooms, enabling researchers to train algorithms for 3D vision

tasks such as object detection or depth inpainting. Third,

we provide a new publicly available, interactive tool which

extends KinectFusion for recording sequences and exporting

3D meshes, enabling everyone to record his own datasets.

We now review the different methods employed for cre-

ating training/evaluation datasets for low-level vision prob-

lems. A straightforward way to generate training data is

via Computer Graphics [3]. Early approaches for generat-

ing evaluation datasets for problems such as optical flow

used short (< 14 frames) rendered sequences [4], [5], [6].

Although generation of synthetic images is easy, we need

to make sure that the resulting dataset represents the data

that the trained system will observe in the real world. This

is an extremely challenging problem and raises the question

of whether synthetic data can and should be used at all for

performance analysis [7]. In contrast, the first well-known

example using real data for evaluating vision algorithms is

the marbled block sequence [8]. Both types of sequences are

currently very limited in their number and do not represent

specific application scenarios.

More recently, several real and synthetic datasets for

stereo-based depth and optical flow estimation have been

published on the Middlebury benchmark website [9]. There,

the authors also encourage the publication of results obtained

with this data. While the accuracy of the ground truth data in

this benchmark is very high (about 1/60 pixel), its creation

was very labor-intensive. Generally more emphasis is put on

the sequences itself, not on the creation method.

For the creation of ground truth depth maps from mul-

tiple views, usually photogrammetric techniques of higher

accuracy such as LiDAR and high-precision structured light



Fig. 1. Some representative rendered depth maps obtained from the 3D
model generated using KinectFusion.These images give a general impression
about the scenes in the dataset

scanning methods are employed. Well-known datasets have

e.g. been published in [10].

Finally, in cases where ground truth is far too expensive

or difficult to obtain, reference datasets containing difficult

scenes can be recorded. The authors of such datasets assume

that experts are able to qualitatively evaluate the results. For

automotive scenarios, three large representative datasets have

been published, two of them with partial ground truth [11],

[12] and one without [13].

Our approach is closely related to multi-view 3D re-

construction. The fundamental difference to these previous

approaches is that we want to enable everyone to create

large sets of 3D surface reconstructions in real-time with

the KinectFusion system, using a low cost Kinect sensor

as capturing device. (An evaluation of the Kinect sensor

accuracy itself has been performed by [14].)

II. CAPTURING 3D MODELS WITH KINECTFUSION

In the KinectFusion system [2] depth data from a con-

sumer Kinect depth camera (and possibly other depth cam-

eras) is integrated into a regular voxel grid structure stored

on the graphics card (GPU) to produce a 3D volumetric re-

construction of the scene. Surface data is encoded implicitly

into voxels as signed distances, truncated to a predefined

region around the surface, with new values integrated using

a weighted running average. The global pose of the moving

depth camera is predicted using a point-plane iterative closest

point (ICP) algorithm while drift is mitigated by aligning

the current raw depth map with the accumulated model. For

evaluation, we obtained a binary distribution of the original

authors’ implementation. As an extension of our system we

have added capabilities to extract a geometric isosurface

from the volumetric data using a GPU-based implementation

of the marching cubes algorithm [15]. For each voxel, the

signed distance value at its eight corners is computed. The

algorithm uses these computed signed distances as a lookup

(into a table stored as a 1D texture on the GPU) to produce

the correct polygon at the specific voxel. This results in an

exported mesh in a common format that can be used in 3D

modeling applications such as MeshLab1.

To deal with large scale capture of 3D datasets, we have

created a simple data recorder and player which is made

available as download. The application works as follows:

We first capture the 3D scene using a process similar to

the standard KinectFusion reconstruction process. Once the

user has achieved a high quality of reconstruction the ap-

plication saves the voxel volume and marching cubes mesh.

A synchronized sequence of raw depth maps, synthetically

generated depth maps (via raycasting) and 6 degrees-of-

freedom camera poses (containing a 3x3 rotation and 3x1

translation vector) are then written to disk.

To test the effectiveness of the KinectFusion approach,

we collected a dataset comprising each depth and color

sequences in a variety of different locations such as offices,

living rooms, kitchens, bedrooms, study rooms etc. Repre-

sentative examples of all the sequences are shown in Figure

II. During acquisition we explicitly avoided moving objects

or people in the depth maps. 55 sequences consist of 900

frames each; two have 500 frames.

The entirety of these datasets, consisting of 3D meshes,

voxel volumes, synthetic and raw depth maps, RGB images

as well as camera poses (location + orientation) can be used

for various vision-based tasks: First of all, the 3D models

with known accuracy can be used to evaluate other recon-

struction algorithms such as multiple view techniques based

on color images. The high quality synthetic and raw depth

maps can be compared, e.g. to evaluate denoising as well as

depth inpainting algorithms. Together with the acquired RGB

information and camera poses, each real color image can be

augmented with synthetic depth ground truth. With each two

of such color-depth-pairs and based on the known camera

transformation, optical flow fields (as defined in [9]) can

be generated by projecting the resulting 3D motion vectors

into image space. Furthermore, to circumvent the limited

accuracy of any real measurement device, fully synthetic

sequences with ground truth can be rendered for scenes

utilizing the known, realistic geometrical complexity. In this

context, experiments with different lighting and materials can

be carried out. All of these various datasets can also be used

in machine learning based approaches to train a system to

automatically enhance depth data or 3D models based on

application-specific knowledge.

In the following Section we compare a few test datasets

to high-accuracy, high-cost scans to evaluate the absolute

quality of this dataset, with special emphasis being put on

the geometric accuracies.

III. QUALITY ANALYSIS

To analyze the accuracy of the KinectFusion method in

different scales we created three test scenes with highly

accurate ground truth. (In this section, we use the term

ground truth for the expensive, slow 3D scan with accuracies

typically at least one order of magnitude higher than the

kinect.) Although the KinectFusion system is able to work

1Meshlab software, http://meshlab.sourceforge.net/



Fig. 2. Photos of the three test scenes: statue, targetbox and office.

with different depth data sources, we limited the experiments

to the original Kinect sensor.

For each scene we aligned the mesh generated by Kinect-

Fusion to the ground truth data using a standard ICP im-

plementation (Meshlab). We then computed several error

measures to quantify the differences between the datasets:

First, for each vertex of the KinectFusion generated point

cloud we computed the minimal distance to the next face

of the ground truth mesh. (In the case of the office point

cloud scene where no mesh was available we computed the

distance to the KinectFusion mesh for each 3D point in the

ground truth.) We call this the per vertex euclidean error.

Second, for each vertex of the KinectFusion point cloud

we calculated the difference between its normal and the

normal of the closest vertex in the ground truth point cloud.

This we call the per vertex angle error, which is more

sensitive to corners and depth discontinuities and allows

evaluation of sections which are critical to some image

processing algorithms.

If not mentioned otherwise, the values in all images are

linearly scaled according to the displayed colorbar. Mini-

mum(blue) and maximum(red) are each mentioned in the

figure captions.

Statue Scene:: Most depth cameras and 3D scanners have

optics with a fixed focal length as well as a minimal and

maximal acquisition depth. This is a limiting factor for

the size and resolution of the scenes or objects one wants

to scan using these devices. The first scene is composed

of an approximately 40cm high wooden statue. Our aim

with this statue is to evaluate the lower limit of resolution

KinectFusion can provide (cf. Figures 2, 3). Ground truth for

this scene was generated by scanning the statue with a high

precision structured light-scanner2.

To achieve maximum KinectFusion accuracy, we chose the

implicit voxel volume to be as small as possible ((0.8m)3

2Breuckmann smartSCAN-HE, resolution of down to 10 microns depend-
ing on field of view

Fig. 3. Left: ground truth renderings. Right: mesh generated by Kinect-
Fusion.

in this case). The resolution of 5123 voxels is close to

the maximum (6003) our graphic card3 could handle and

accounts for voxel side lengths of ≈ 1.6mm. (Memory

requirements do scale with the third power of the volume

resolution). The camera/object distance was approximately

1 meter in this case.

Figure 3 shows that the general shape of the statue could

be retrieved by KinectFusion but finer surface detail is

lost. The histogram in Figure 4 shows that at least half

of all estimated surface points are closer than 5mm to the

correct value. Additional 75% of all points have an error

smaller than 10mm. Hence, the system can be used for tasks

where 10mm resolution in the absolute world coordinates

is sufficient. The error of the surface normals is widely

distributed, mainly due to concave sections such as the folds

in the garment. From this result we conclude that highly

curved and concave details below the scale of around 10mm

cannot be resolved well with the current Kinect system,

although the voxels are small enough.

3nvidia GTX 480 with 1.5 GB Ram
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mean: 6.567567

1/4 quantile: 2.034071

median: 4.529580

3/4 quantile: 9.254760

Fig. 4. Statue. euclidean error (0-8mm, > 8mm is gray), histogram of
euclidean error.

Targetbox Scene:: The second test object is a target box

especially designed for the evaluation of depth cameras. It

is 1 x 1 x 0.5 meter in size and contains several geometric

objects made of styrofoam, as well as many regions with

slanted surfaces, curvature or sharp 90 degree corners which

are typically problematic for any depth acquisition system.

Therefore, we manually measured the box with an accuracy

higher than 1mm.

Fitting the box size, we set the implicit voxel volume to

(1.6m)3 with 6003 voxels, yielding a voxel side length of

≈ 2.7mm. We only scanned the interior of the box and

therefore ignore its outside in the evaluation, visualized in

gray as can be seen in Figure 5 (scan distance was again ca.

1 meter).

Angle errors > 90◦ are mostly caused by vertices whose

nearest neighbor was matched to one vertex on the other side

of the surface (e.g. the inside and outside walls). Such errors

should be either ignored or handled as if they were flipped by

180◦ (marked gray in Figure 5). Generally, surfaces which

are flat or have high curvature radii (like the styrofoam sphere

or cylinder) are reconstructed well with minimal angular

error. Sharp corners on the other hand are partly smoothed

out. We found slightly higher histogram densities for 45◦

angle errors which suggests that for a sharp 90◦ edge at least

one additional face with 45◦ is generated by the marching

cubes algorithm. The euclidean errors are generally low and

in the same range (5-10mm) as in the previous statue scene.

Only the higher error on the styrofoam sphere suggests that

the algorithm underestimates the volume of curved regions.

We can conclude that the voxel size of ≈ 2.7mm was

sufficiently small for this experiment and that the accuracy of

around 10mm is also valid for such a medium scale scene.

Office Scene:: The third scene is a small office room (6 x 4

x 2.5m) and represents one additional example of the dataset
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mean: 9.272530

1/4 quantile: 2.179000

median: 5.588000

3/4 quantile: 14.526000

Fig. 5. Targetbox: euclidean error (0-15mm, higher errors in gray),
histogram of euclidean errors.

described in Section II. Ground truth data was acquired

by terrestrial LiDAR using a Riegl VZ-400 time-of-flight

scanner. Its accuracy is stated with 5mm. The manufacturer

also documents a precision of 3mm. Inside the office overall

six scan positions were necessary for a sufficient coverage.

This equals to about one day of labor for acquisition and

postprocessing.

In order to fit the whole room into the 5123-voxel volume

we had to choose a voxel side length of about ≈ 13.7mm

while keeping a scan distance of 1 to 2 meters. This means

that the actual accuracy of the Kinect system of about

5-10mm can no longer be fully exploited. Given current

graphics hardware, the office scene represents the maximum

size which can be scanned by the KinectFusion system.

ICP alignment of the KinectFusion mesh and the ground

truth mesh are here not perfectly accurate as a small scaling

along the object axes was necessary. This is caused by

three reasons: first, the scene is heavily cluttered containing

many regions were any 3D scanning devices fails. Second,

the increased voxel sizes create a coarser mesh which is

more difficult to align to the LiDAR results. Third, the

LiDAR scan itself is more inaccurate in regions with small

scale detail and contains some holes and regions of low

point cloud density. The euclidean error is therefore about

one magnitude larger than for the other scenes. Yet, most

vertices with errors > 100mm are actually on the outside of

the room as the marching cubes algorithm produces walls

which are not flat faces but have a certain volume. As

Figure 6 shows, the error is well below 80mm for most

vertices. These high errors are caused by regions were both

methods fail. Future work should focus on detecting such

regions of low certainty in order to mask them out in the

resulting benchmark datasets. To get an idea of the accuracy

in more confident regions, a robust statistical measure such



0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

9

10
x 10

4

 

 

mean: 54.167214

1/4 quantile: 14.685700

median: 36.356050

3/4 quantile: 79.905100

Fig. 6. Office: euclidean error (0-100mm, higher errors are also red),
euclidean error(0-50mm, higher errors are transparent), histogram of eu-
clidean error.

as the median error can be used whose value is just below

three voxel sizes (36mm). This indicates that even if the

number of voxels were increased, the measurement volume

of the current KinectFusion system (using Kinect depths as

input) should not be much larger than 7x7x7m to achieve

maximum accuracy. Yet, more accurate depth sensors and

larger amounts of graphics card memory might soon alleviate

this limit. For now we conclude that very careful acquisition

of all concave regions in the office is very challenging with

both 3D scanning methods.

A. Ground Truth Accuracy for Optical Flow and Stereo

In optical flow, real frames at two successive time steps of

a video can be augmented with synthetic depth maps based

on known camera poses. As our KinectFusion scenes are

static, the depth maps can be reprojected to flow fields using

the camera transformation between both views. Although op-

tical flow is only induced by camera movement, challenging

flow fields can be created (similar to the yosemite, grove

and urban scenes in [9]). For stereo, the second color image

should be aligned with respect to the epipoles. In order to use

real color images, for a given single view, a nearby view can

be found which is then rectified based on the known camera

poses and previously measured internal camera parameters.

In realtime computer vision applications a sufficient ac-

curacy often is about one pixel in motion or disparities.

Hence, to achieve ground truth quality, the KinectFusion

system should record data which is one order of magnitude

more accurate. We synthesized a stereo disparity map and

an optical flow field from two virtual views of the targetbox

scene (camera distance ≈ 1.3m, field of view 40◦, maximum

flow magnitude ≈ 25 pixel). We then compared the flows and

disparities for both the high-accuracy scans as well as the

KinectFusion scans. Figure 7 shows the per pixel endpoint

error, a widely used error measure for optical flow evaluation

[9]. The mean endpoint error for this scene was 0.06 pixel

with a median of 0.02 pixel. Most errors occurred on depth

discontinuities. To evaluate stereo disparity accuracies we

transformed the depths to disparity values (focal length 1100

pixel, 7.5cm eye separation). The mean disparity error was

Fig. 7. Left: rendering with optical flow as hsv color overlay; Middle:
optical flow endpoint error (0-0.2 pixel, higher errors are white) between
ground truth and KinectFusion based scene; Right: stereo disparity error
(0-1 pixel, higher errors are white) between ground truth and KinectFusion
based scene.

0.25 pixel with a median of 0.11 pixel.

We conclude that KinectFusion based geometry data can

indeed be used to generate ground truth optical flow and

stereo information in case the application requires accuracies

in the order of magnitude of around one pixel. Optical

Flow evaluation is hereby limited to static scenes but still

useful e.g. for simultaneous location and mapping (SLAM)

problems. With these results, we would like to encourage

practitioners to create their own ground truth datasets with

content specifically designed to sample the space of chal-

lenges within a given application.



IV. CONCLUSION AND FUTURE RESEARCH

We have compared 3D reconstructions produced by the

KinectFusion algorithm with ground truth data obtained

from high-precision 3D scanners. The Kinect sensor has

several advantages over such systems: The setup is fast as

no calibration is needed, scanning is fast, meshed results

are available within minutes and in contrast to LiDAR or

structured light scanners, no extensive manual postprocessing

is needed. The Kinect sensor also is also more portable and

small compared to other devices, facilitating the acquisition

of additional viewpoints in highly complex scenes. Finally,

the effective field of measurement is quite large, closing

the gap between portable structured light scanners which

are typically restricted to volumes < (1m)3 and LiDAR

equipment for larger outdoor scenes. We offer an exemplary

set of sequences in this scale range for download.

We found that the system can resolve object details

with a minimum size of approximately 10mm. This also

represents the minimum radius of curvature for slanted or

curved surfaces which can be reconstructed reliably. Sharp

(depth) edges or highly concave scenes are as problematic for

KinectFusion as for many other 3D scanning technologies.

For indoor scenes with a volume of (7m)3 this accuracy

drops to ≈ 80mm with GPU memory and the Kinects

minimum object distance as the limiting factors. Optical

flow and stereo ground truth can be created with average

accuracies in the range of better than 0.1 pixel.

Future work will focus on the quantification and detection

of missing or incorrect geometry. Furthermore, we are going

to investigate other cheap depth sensors for more accurate

KinectFusion input data.
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