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Abstract. This work combines two active areas of research in computer
vision: unsupervised object extraction from a single image, and depth
estimation from a stereo image pair. A recent, successful trend in unsu-
pervised object extraction is to exploit so-called “3D scene-consistency”,
that is enforcing that objects obey underlying physical constraints of the
3D scene, such as occupancy of 3D space and gravity of objects. Our main
contribution is to introduce the concept of 3D scene-consistency into
stereo matching. We show that this concept is beneficial for both tasks,
object extraction and depth estimation. In particular, we demonstrate
that our approach is able to create a large set of 3D scene-consistent
object proposals, by varying e.g. the prior on the number of objects.
After automatically ranking the proposals we show experimentally that
our results are considerably closer to ground truth than state-of-the-art
techniques which either use stereo or monocular images. We envision
that our method will build the front-end of a future object recognition
system for stereo images.

1 Introduction

The use of cameras which can capture 3D information has increased tremen-
dously in the last years and enabled impressive systems in computer vision,
robotics, human computer interaction, e.g. [2], and other domains. In this work
we assume that we have as input a single shot from a passive-stereo camera,
such as the commercial FujiFilm FinePix 3D or the new LG Optimus mobile
phone. The goal of this work is to automatically extract jointly the scene depth
as well as all objects present in the scene. Such an output can then be fed into
other systems, e.g. for object recognition or augmented reality, as discussed later.
Furthermore, we do not assume that the images were captured in a certain en-
vironment, such as in- or outdoor1. Our only assumption is that the scene is
assembled of objects.

There is a large body of work which has tackled similar problems. If the object
class is known, e.g. pedestrians or cars, impressive detection systems have been
built. The performance of such systems improves further if prior knowledge of the
(approximate) 2D or 3D shape of the object, or object class, is known. For the

? This work was supported in part by the Vienna Science and Technology Fund
(WWTF) under project ICT08-019.

1 Passive stereo cameras, in contrast to active stereo or time-of-flight cameras, can
capture high quality RGB images and operate in- and outdoor.
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Fig. 1. Our approach. Given a stereo pair (a), our algorithm jointly estimates a 3D
reconstruction (b) and object maps (c,d) using physics-based reasoning. The result is
considerably closer to ground truth (e) than the one of object stereo [1] (f).

task of class independent object detection from stereo images, we are only aware
of a few works. The approach which is closest to ours is object stereo [1] and we
discuss it in detail later. Object stereo estimates jointly depth and objects, and
is to our knowledge the only work which has shown a synergy effect between
the two tasks. In this context, Lubor et al. [3] have shown a synergy between
depth estimation and object-class extraction, which however relies on a-priori
defined object classes. A different research direction is to solve the two tasks
separately, that is objects are extracted based on a pre-computed depth image.
For instance in [4], a system is developed for interactive foreground extraction in
stereo images. In robotics, Björkman and Kragic [5, 6] have recently presented
a system for automatic foreground extraction by combining color and stereo
cues. As in our work, they perform a certain amount of 3D reasoning, e.g. by
exploiting the knowledge of a flat 3D supporting surface and that objects are
of an approximate 3D size. While these systems are a good step towards “3D
reasoning”, we believe that they have not yet exploited the full potential of it.

The main inspiration of our work stems from recent progress for the task of
object extraction from a single image, e.g. [7–9]2. It has been shown that results
considerably improve when reasoning is not in 2D but in 3D, that is the objects
live in 3D space and have to obey the implicit physical constraints and forces. In
this work we call this concept “3D scene-consistency” and we formally define it
later. While there has been a considerable amount of work on object extraction
from a single image which exploits the concept of “3D scene-consistency”, there
have been rather few works, such as [5, 6, 1], with respect to stereo images. This
is surprising, since stereo images provide an approximate depth and hence are
an ideal input.

In the following, we review in detail the relationship to object stereo [1],
which is closest to our work. Note that the focus in [1] was to show that depth
estimation can be improved by introducing the notion of objects. In contrast, the

2 See also ICCV’09/’11 workshop on 3D representation and recognition.
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main focus of this work is on the extraction of objects. Given this focus, one has
to ask the question: what will the retrieved objects be used for? We are inspired
by the work of [10] which is the front-end of a system which won the PASCAL
recognition and segmentation challenge in the last three years, see also [11, 8].
This work, and the companion work [12], propose the following 3-step pipeline:
1) generate a large pool of object proposals; 2) rank the proposals according
to a learned objectness score; 3) perform object recognition on the top ranked
object proposals. Our idea is to follow this line of research, but to build a new
step 1) of their pipeline which takes stereo images as input, instead of a single
image. Consider fig. 1. Given a stereo image (a) the goal is to estimate a pool of
so-called “scene proposals”. A scene proposal consists of (1) a disparity map
and (2) an object map that assigns each pixel to an object. Figs. 1(c) and (d)
visualize two example object maps. A corresponding depth map for the object
map in (c) is shown in (b). (To show the depth map we render the scene from a
novel viewpoint, and the recovered objects are marked by 3D bounding boxes.)
As in [10] we do not make a hard decision on what is the best solution, but we
return a pool of scene proposals, which can then can be used for other tasks,
such as object recognition. In fact we applied the automatic ranking technique
(step 2) of [10] to all objects extracted from our scene proposals, and observed
that we considerably outperform all state-of-the art techniques which use either
monocular or stereo images in terms of segmentation accuracy.

Let us return to the comparison to object stereo [1]. A result of [1] is shown in
fig. 1(f). Note that [1] did not introduce the concept of computing a pool of object
maps. The key difference to our work is that objects in [1] were approximated
by flat 2D planes, without any 3D extent. In contrast, we give objects a 3rd
dimension by using an enclosing 3D bounding box. By doing so we can introduce
and exploit physical constraints which are not possible in the flat “billboard”
world of [1]. Note that this is analog to the case of 2D images, where [7] argues
that it is important to change the typical surface-based representation to a 3D
representation. Figure 1(b) illustrates our recovered 3D bounding boxes for the
object map in (c). Let us discuss particular objects in more detail. The water
kettle (as well as the toaster behind it) in fig. 1(f; left arrow) cannot be expressed
by a flat 2D plane. Hence [1] cannot detect it as one object, in contrast to
our result (c,d). An important physical constraint we add is to reason about
occupancy in 3D space, i.e. bounding boxes should not (considerably) overlap in
3D space. Consider fig. 1(f, right arrow), where object stereo assigns the top and
bottom part of the can to the same object, while the middle part is assigned to a
different object. This volume intersection is physically very unlikely. Our results
(c,d) are physically plausible. Another physical constraint we add is gravity
which cannot be realized with a surface based representation [1].

2 Model

We now describe our model for jointly computing a disparity map and an object
map. Let I denote all pixel coordinates of the left image. To estimate disparity
we assign each pixel p ∈ I to a 3D plane. We compute a mapping F : I → F
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where F denotes the set of all possible 3D planes. Once F is known, we can
compute a pixel p’s disparity dp using its plane fp as dp := afppx + bfppy + cfp ,
where px and py are p’s x- and y-coordinates and afp , bfp and cfp are three
parameters defining plane fp. Hence, we also refer to F as the disparity map.
Note that as an alternative to planes one could directly assign each pixel to a
disparity. We opted for planes since this enables the application of a powerful
local stereo algorithm, i.e., PatchMatch Stereo [13] that gives excellent results
for highly slanted surfaces and sub-pixel disparities via the use of slanted planar
support windows. As described below, our planes are used to model such slanted
support windows. Note that our algorithm operates in metric space. To convert
from disparity to metric measures the stereo system needs to be calibrated.3

Let us now discuss the object level that is used to compute an object seg-
mentation and enables modeling physics-based constraints. We compute a second
mapping O : I → O where O denotes the set of all objects. We refer to a map-
ping O as an object map. Here, an object is defined by two parameters: (1) an
oriented 3D bounding box that is used as a proxy for the object’s spatial extent
in 3D space and (2) a color model for the object.4

A pair 〈F,O〉 forms a so-called scene proposal. To measure the quality of a
scene proposal, we define an energy, that is subject to minimization, as

E(F,O) = Epc(F ) + Ecol(O) + Eol(O,F )+

Etight(O) + Eis(O) + Egravity(O) + Emdl(O).
(1)

The individual terms are explained next.
Photo Consistency Term Epc The photo consistency term measures the quality
of a disparity map by computing pixel dissimilarities of corresponding points in
left and right images and is defined as in [13]:

Epc(F ) =
∑
p∈I

m(p, fp). (2)

Here, the function m() computes aggregated matching costs, i.e., it performs the
aggregation step that is the core of local stereo algorithms:

m(p, fp) =
∑
q∈Wp

w(p, q) · ρ(q, q − (afpqx + bfpqy + cfp)), (3)

where Wp is a squared window centered at pixel p. The function w() assigns a
support weight to each pixel within a support window, which implements the
adaptive support weight idea [14] and considerably improves disparity results at

depth discontinuities. It is defined as w(p, q) = exp{− ||Ip−Iq||γ }. Here, γ repre-

sents a parameter, ||Ip− Iq|| denotes the L1-distance of p and q’s colors in RGB

3 We use images for which the calibration parameters are unknown and approximate
their values such that the 3D reconstruction looks reasonable.

4 Note, pixels are assigned to the same object identity if they map to the same object
bounding box and to the same object color model.
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space. The function ρ(q, q′) computes the pixel dissimilarity between a pixel q
of the left and a pixel q′ of the right image. Our match measure computes a
weighted sum of gradient and color differences, which is described in the supple-
mentary material. All parameters of this term are set as in [13], i.e., the size of
Wp is 35× 35 pixels and γ = 10.
Color Term Ecol As in [1], we prefer objects that are compact in color over those
that are not. We model the color of an object using a Gaussian Mixture Model
(GMM). Function π(c, o) returns the probability that color c belongs to object
o. We define the color term as

Ecol(O) =
∑
p∈I

∑
q∈Wp

w(p, q) · − log(π(cq, op)) · λcolor (4)

where λcolor is a penalty for color inconsistency.
Note that we aggregate the color costs over a small local window Wp centered

at p. This means that the costs are averaged locally which acts as a local smooth-
ness constraint. Similar to the photo-consistency term in eq. (3) this averaging
is weighted according to function w() such that we do not smooth over object
boundaries. As shown in [15] such a local edge-preserving smoothing operation
on the data costs gives results comparable to global edge-preserving smoothness
terms, which are more difficult to optimize.
Bounding Box Outlier Term Eol An object contains a 3D bounding box that
is defined in metric 3D space. Our bounding boxes are oriented in order to
compactly capture the spatial extent of arbitrarily oriented objects. A bounding
box represents an approximation of an object’s spatial extent and forms the basis
for modeling physical constraints. The outlier term enforces 3D compactness of
an object, i.e., the reconstructed 3D coordinates of all pixels assigned to an object
have to lie within the object’s bounding box. The object map O and disparity
map F influence each other via this term. Formally, the term is defined as

Eol(O,F ) =
∑
p∈I

outsideBB(2D3D(p, fp), op) · λoutlier (5)

where 2D3D() is a function that maps pixel p to metric 3D space given its
disparity plane fp. The function outsideBB(P, op) returns 1 if the 3D point
P lies outside of object op’s bounding box and 0 otherwise. (λoutlier should
ideally be set to infinity, however, this is difficult to enforce in our optimization
procedure. We therefore use a high constant value instead.)
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Fig. 2. Checking the rela-
tionship “on top of each
other”.

Bounding Box Tightness Term Etight This term
ensures tightness of bounding boxes. It prevents
bounding boxes from unnecessarily filling free space
between objects. We impose a penalty on the volume
of the bounding box:

Etight(O) =
∑
o∈O

volume(o) · λtight (6)

where the function volume(o) returns the volume of
object o’s bounding box in m3 and λtight is a penalty.
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Bounding Box Intersection Term Eis This term is based on the observation
that objects do usually not intersect each other. As stated above, we use a 3D
bounding box as a proxy for the 3D spatial extent of an object. This term imposes
a penalty if two bounding boxes intersect:

Eis(O) =
∑
o1∈O

∑
o2∈O−{o1}

intersection(o1, o2) · λintersect. (7)

Here, the function intersection() returns the bounding box intersection volume
in m3 and λintersect is a penalty.
Gravity Term Egravity This term encodes the observation that objects usually
do not float in the air. Due to gravity, objects typically stand on top of each
other or on top of a ground plane. We implement this observation by encouraging
bounding boxes to stand on top of each other:

Egravity(O) =
∑
o1∈O

∑
o2∈O−{o1}

ontop(o1, o2) · λgravity, (8)

where λgravity is a negative constant. The function ontop(o1, o2) returns 1 if
object o1 stands on top of object o2 and 0 otherwise and is explained as follows
(also see fig. 2). We first extract the bottom surface B of o1’s bounding box and
the top surface T of o2’s bounding box. We now project the bottom surface B

onto the top surface T in direction of the normal vector
→
n of B. The corner points

of this projection are denoted as {I1, . . . , I4}. We then check if the distances
between the corner points {P1, . . . , P4} of surface B and their corresponding
projections {I1, . . . , I4} are below a small threshold. If at least one of these
checks fails ontop() returns 0. Otherwise we additionally check if at least two
of the projected corner points {I1, . . . , I4} lie within the bounds of surface T .
If this is the case, ontop() returns 1 and 0 otherwise. Note that ideally all four
projected points should lie within the bounds of surface T . However, we use a
less conservative check because the back part of an object is usually occluded
and hence it is difficult to estimate the real spatial extent of o2’s bounding box.
Object-MDL Term Emdl The object minimum description length (MDL) [16]
term encodes the assumption that a simple explanation of the scene, i.e., by a
small number of objects, is better than an unnecessarily complex one, consisting
of a large number of objects. Hence, it puts a penalty on the number of objects
present in the object map O:

Emdl(O) =
∑
o∈O

T [∃p ∈ I : op = o] · λmdl, (9)

where T [] is the indicator function that returns 1 if its argument is true and 0
otherwise. λmdl is a constant penalty.

3 Optimization

The goal is to find a scene proposal 〈F,O〉 that minimizes energy (1). Fig. 3
shows the steps of our optimization procedure that is described next.
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Fig. 3. Steps of our optimization algorithm.

Fig. 4. Object maps. We show 12 object maps generated for the Teapot scene. Pixel
colors represent object identities.

Initial Disparity Map Computation We compute an initial disparity map using
our re-implementation of PatchMatch Stereo [13]. PatchMatch Stereo optimizes
the photo consistency term (eq. (2)) of our energy and returns an initial mapping
F ′ of pixels to 3D planes. The disparity map F ′ is now kept fixed and refined in
the last step of our pipeline, see fig. 3.

Object Map Generation This step generates n different object maps O1, · · · , On
(see fig. 3). To obtain one object map Oi, we first apply depth segmentation on
the left input view. Our depth segmentation algorithm first divides the image
into color segments using mean shift segmentation [17]. A disparity plane is fitted
to each color segment using the disparity map F ′. We then group segments of
similar disparity planes.5 Each group now forms a single depth segment. For
each depth segment, we generate one 3D object. The 2D spatial extent of this
object is defined by the pixels of the depth segment. The 3D extent of the object
is approximated by fitting the tightest possible 3D bounding box with arbitrary
orientation to the metric 3D coordinates6 of the object’s pixels. The parameters
of the object’s GMM (color model) are inferred from its pixels’ color values.

The goal of the object map generation step is to generate n different object
maps. This is accomplished by varying the parameters of the mean shift color
segmentation algorithm (using two different settings) and the parameter of the
disparity plane grouping method (six different settings). In total, this leads to
n = 2 · 6 = 12 different object maps. Object maps for the “Teapot” scene are
shown in fig. 4.

Object Map Refinement We now process each object map Oi separately (see fig.
3). Our goal is to optimize the bounding boxes of objects in Oi so that energy
(1) is minimized. Our optimization is based on hypotheses testing.

We go through all objects present in Oi starting with those that have the
lowest bounding box volume. We align the current object’s bounding box so that
it stands on top of another bounding box that is spatially close in 3D space. If this
aligned bounding box leads to a lower energy for Oi (which is likely due to the

5 Details of the grouping algorithm are given in the sup. material.
6 The 3D coordinates are reconstructed using disparity map F ′.
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gravity constraint of eq. (8)), it is immediately accepted as the current object’s
new bounding box. We then loop through the set of objects a second time. We
check whether changing the spatial extent of the current object’s bounding box
leads to an object map of lower energy. We therefore shift the border planes of
the bounding box by a random offset and accept this modified bounding box if
energy (1) is reduced. This random test is repeated 100 times per object.

Object Map Fusion The goal is to select objects from object maps O1, · · · , On.
The selected objects then form a new (fused) object map O′ that minimizes our
energy. Using the example of fig. 4, we can obtain O′ by copying the teapot from
O3, the statue from O2 and so on. We use simulated annealing to find an optimal
selection of objects, i.e. starting from our current object map we apply a move
to obtain a new one. If the new object map leads to a lower energy, we always
accept it as our new solution. If not, we occasionally accept it depending on the
amount of energy increase and the temperature in the annealing process.

Let us now discuss our method for making a move in the simulated annealing
algorithm. We delete a random number of objects from our current object map.
All objects that are not present in the resulting object map are inserted into a
candidate set. We now iterate the following procedure until the candidate set
is empty. A random object is selected and removed from the candidate set. We
check whether inclusion of the selected object decreases the energy of our object
map. If this is the case, we accept it as a new object in our object map.

To avoid a trivial optimum of energy (1) where no objects are selected, we
impose a relatively high penalty λincomplete for pixels that are not assigned to
an object. Nevertheless, due to the different spatial extents of objects (see fig.
4) unassigned pixels may still be present in the final fused object map O′ and
there may also be pixels that are covered by two or more objects.7 The joint
object / disparity map refinement step, discussed next, ensures that each pixel
is assigned to exactly one object.

Joint Object / Disparity Map Refinement We now extract all objects present in
the fused object map O′. Our goal is to find a refined mapping O of pixels to
the extracted objects and a refined disparity map F that is consistent with the
objects’ bounding boxes. We jointly estimate object labels and disparities that
optimize our energy (1).

For accomplishing this joint optimization, we extend PatchMatch Stereo [13]
so that it does not only assign each pixel to a plane, but also to an object label.
To our knowledge, using the PatchMatch framework to perform such a joint
optimization task is new and works as follows. In the initialization step of our
extended PatchMatch algorithm we assign each pixel to a random plane and a
random object label.8 For each pixel, we can now compute the costs of its labeling

7 We do not need an explicit term that penalizes cases where the spatial extent of two
objects overlap, since for overlapping pixels the color penalty in eq. (4) is imposed
multiple times, which leads to high energy solutions.

8 This is the general perspective for solving a joint optimization task. For faster con-
vergence, we do not perform random initialization, but assign the pixel to the values
of F ′ and O′.
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by evaluating the photo consistency, the color and the bounding box outlier terms
of our energy.9 After random initialization, the plane and object label of a pixel
are propagated to its neighbors. A neighbor accepts the propagated label pair if
it leads to lower costs than its current label pair. We also modify the refinement
step of PatchMatch Stereo so that in addition to modifying the current plane,
modification of the current object label is also allowed.

4 Results

Scene Proposal Generation As described above, our algorithm generates a scene
proposal 〈F,O〉 as output. To create a large pool of scene proposals we run our
method multiple times and vary the prior on color compactness (color term, eq.
(4)) as well as the prior on the number of objects (object-MDL term, eq. (9)). By
doing so we create a rich set of scene proposals that accounts for scenes of varying
texture and different complexity. In detail, we run our method with parameters
λcolor and λmdl in the range {0.001, . . . , 0.01} and {25, . . . , 500}, respectively,
to generate 34 scene proposals per stereo pair. We rank each scene proposal
according to the similarity of its parameter settings to a default parameter set.
The default parameters {λcolor, λmdl} = {0.005, 30} were chosen such that they
give a visually pleasing scene proposal10 (i.e. object map and disparity map) for
the “Parade” test image (fig. 6 left). The remaining parameters are set to the
following fixed values {λtight, λintersect, λgravity, λoutlier} = {0.005, 0.3, 20, 0.1}.

Quality of Object Map Pool We assessed the quality of our scene proposals on
10 stereo images shown in figs. 1(a), 7(top row) and 8(a). The dataset contains
4 Middlebury images and 6 self-recorded ones that show in- and outdoor scenes
with a variety of different objects (e.g. cars and office equipment). To obtain
ground truth segmentations for these images (fig. 7 middle row), we manually
assigned each pixel in the image to an object, with in total 124 labeled objects.
Note that we labeled both, things and stuff.

As quality measure for the proposal pool we use the accuracy score of [18]
that is close to a Pascal VOC challenge score.11 Given an object map O and
a ground truth object map O∗, the accuracy score is defined as C(O∗, O) =
1
N

∑
o∗∈O∗ |o∗| ·maxo∈O sim(o∗, o), where N is the number of labeled pixels of

the ground truth, |o∗| is the number of pixels comprising object o∗ and sim is a
similarity function for the overlap of objects o and o′: sim(o, o′) = |o∩o′|/|o∪o′|.

9 The values of the other terms of our energy are not affected by the joint object
/ disparity refinement step. There are also no pairwise smoothness terms in our
energy. Hence the overall energy can be computed by summing up the costs of photo
consistency, color and outlier terms over all pixels and adding the values of the other
terms.

10 Ideally the default parameters should be learned from a set of training images, which
we leave for future work.

11 Note that [18] uses the same score, but calls it “covering score”. We use the term
“accuracy score” since it penalizes both under- and over-segmentations. Hence, a
proposal covering the whole image would be heavily penalized by the score.
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Fig. 7 (bottom row) shows the object maps of our pool with the highest accuracy
score. They correspond well to the ground truth.12

We follow the protocol of [10] to further process the scene proposal pool.
First, we remove very small objects and near duplicate ones. We then rank the
remaining objects according to the learned objectness measure of [10] which
returns a probability for each 2D region of being a real-world object.

0 50 100 150 200 250
0.3

0.4

0.5

0.6

0.7

0.8

Number of objects

A
cc

ur
ac

y 
sc

or
e

 

 

CPMC

Object Stereo

Our simple method

Our scene proposals

Our scene proposals (ranked)

Fig. 5. Average accuracy score on
our dataset for different methods.

The curves in fig. 5 show the accu-
racy score averaged over all 10 test im-
ages. For each method, the extracted ob-
jects are sorted along the x-axis according
to their rank. The solid pink curve and
the red dashed curve show the accuracy
score of the objects from our scene pro-
posal pool. These two curves are clearly
superior to the curves of the competitors,
they achieve a high accuracy score faster.
The difference between the pink and the
red dashed curve is as follows. For plot-
ting the red curve, we sort along the x-axis
only according to the rank of the individual objects (defined by the objectness
of [10]). For generating the pink curve, we first sort the objects according to the
rank of the scene proposal (defined by the similarity to a default parameter set
- see above) from which the objects originate.13 This means that objects origi-
nating from a highly ranked scene proposal are plotted more towards the left of
the x-axis. The two curves show that our sorting method (pink curve) performs
better than solely sorting by objectness (red dashed curve), because fewer object
hypothesis are necessary to reach the same accuracy.

As a simple competitor we use the object maps generated in the object map
generation step of sec. 3 (black dashed curve, denoted as “our simple method”).
These objects are not necessarily 3D scene-consistent and this is presumably
the reason why this curve rises less steeply than those generated by our scene
proposals that are scene-consistent. Note that the black curve is longer and
reaches about the same average score as the pink one.14 The solid cyan line
was generated using scene proposals obtained from object stereo [1]. Although
object stereo was designed to return only a single scene proposal we generated a
set of 34 scene proposals per stereo pair by running object stereo with multiple
different parameter settings. The curve of object stereo rises less steep than

12 Note that some objects are split into multiple parts if they are separated by an
occluding object, because the correct solution has not been generated by the object
map generation step of sec. 3. The final refinement step can overcome this problem,
see puppets in fig. 8(b), however, it is not guaranteed. We may leave an explicit
“merging” step as future work.

13 Objects of the same scene proposal are sorted according to objectness.
14 This is due to the fact that our object pool is a (scene-consistent) subset of the

initial object maps. This suggests that our energy selects those object hypotheses
which correspond well to real-world objects.
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those obtained by our method and reaches a lower average accuracy score. As
a baseline (blue dotted curve), we plot the results of the CPMC approach [10]
that uses no depth information and is clearly inferior.

To understand why our approach outperforms competitors, consider fig. 6. It
shows those objects, in the pool of scene proposals, that give the highest accuracy
score for three selected objects marked in fig. 6. Our approach gives results which
are close to the ground truth, while CPMC [10] cannot obtain good results in the
presence of color ambiguity. A typical failure case of object stereo can be seen
in fig. 6(blue box). By grouping pixels of similar color and depth, object stereo
assigns the elephant (lower left corner) to the same object as the frog (lower right
corner). Such a configuration is unlikely with our model because the bounding
box of this configuration is likely to intersect with the bounding boxes of other
objects. Another competitor is “Blocks World” [7] that gives a mapping of image
pixels to one out of seven classes. Though this result is not directly comparable
to our method the class labeling can be regarded as object segmentation result.
The publicly available code of [7] gives very coarse segmentations on our test
images, which are inferior to our result (see sup. material).

Physical Reasoning for Stereo Matching We now show that our physical model
also helps to improve stereo matching. Fig. 8 shows our results on the “Parade
image” that is difficult due to its low-textured background. Fig. 8(b) shows our
best object map. Fig. 8(e) shows our 3D reconstruction and bounding boxes that
are aligned with the slanted ground plane due to the gravity term. The overlap
of the bounding boxes is small due to the bounding box intersection term.

To see why the bounding boxes improve the disparity result, let us first look
at the disparity map of our re-implementation of PatchMatch Stereo [13] fig.
8(c).15. Due to the low textured background, PatchMatch Stereo generates wrong
matches that lead to 3D points floating in the air (left arrow) and erroneously
assign the small background region between the two puppets to the foreground
disparity (right arrows). Our physical model can overcome these problems, fig.
8(d). In the first case (left arrow), there is no bounding box that would support
the wrongly reconstructed floating 3D points (see fig. 8(e)). (Floating bounding
boxes are discouraged by the gravity term of our energy.) The correct recon-
struction is accomplished due to the bounding box outlier term, which forces
the reconstructed 3D points to lie inside a bounding box, here that of the back-
ground object. The second case (right arrow) is slightly different in that a re-
construction of the untextured background at the foreground disparity would lie
inside a bounding box, i.e. that of the puppets. Hence, the outlier term would
not impose a penalty. The color term of our energy resolves the matching ambi-
guity by looking at the pixels’ colors. Since their colors better fit the color model
of the background, the reconstruction is biased to lie inside the bounding box of
the background. Figs. 8(f,g) show a similar example in 3D. The reconstruction
of [13] produces floating pixels and attaches 3D points of the background to
the foreground object “Dog” (fig. 8(f)). Our method overcomes these problems,
which leads to a visually improved 3D view (fig. 8(g)).

15 Pixels that fail the left-right consistency check are shown in black.
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Fig. 6. Qualitative comparison of the object pool. The object hypotheses with the
largest accuracy score with respect to three selected ground truth objects (i.e. “pig”,
“elephant”, “puppets”) are shown for different methods (CPMC [10] and object stereo
[1]).

Fig. 7. Our best object maps for all test images. From top to bottom: Left image of
stereo input pair; Ground truth; Our object map that gives highest accuracy score with
respect to the ground truth.

(a)

(b)

(c)

(d)

(e)

(f) (g)

Fig. 8. The Parade stereo pair. (a) Left input image. (b) Our best object map. (c)
Disparity Map produced by our re-implementation of PatchMatch Stereo [13]. Note,
disparity errors marked by the arrows. (d) Our final disparity map. In contrast to [13]
we can correctly reconstruct the disparity for regions marked by the arrows using our
physical model (see text for an explanation). (e) 3D view generated using our disparity
map in (d). We also show the computed bounding boxes. (f) 3D reconstruction results
using the disparity map of [13] in (c). (g) Our reconstruction using the disparity map
of (d). Red arrows in (f) mark artifacts which were corrected in (g).
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Fig. 9. Results of our method on the Middlebury Cones and Teddy sets. Our method
takes ranks 1 (Teddy) and 2 (Cones) in the Middlebury table.

Middlebury Benchmark Results We have tested our method using the Middle-
bury benchmark [19] where it currently takes rank 13 out of 117 algorithms16,
which is in the ballpark of good methods.17 Our method performs particularly
well on the challenging Teddy and Cones images (see fig. 9) where it ranks 1st
and 2nd (according to the error percentage in non-occluded regions). It also per-
forms better than our reimplementation of [13], which ranks 17th (also see table
in the sup. material). Please note that in contrast to almost all other methods
in the table (except [1]), our method also provides a segmentation of the input
images into objects.

Generality To test the generality of our approach, we did a proper train/test
experiment, i.e., we only looked at the test data once. We train [1], our reim-
plementation of [13] and our algorithm on the 4 Middlebury evaluation images,
i.e., the parameter setting that has led to the highest Middlebury ranking for
each method is selected. We use these parameter settings to compute disparity
maps for the Middlebury 2005 data set (Art, Books, Dolls, Laundry, Moebius,
Reindeer). This set is more challenging than the evaluation set, i.e., error rates
are typically higher. The average error percentage (in unoccluded regions) com-
puted over all 6 sets is 7.90 for our method, while it is 8.40 for [13] and 10.90
for [1]. We achieve the lowest error percentage for 3 pairs. [13] is the winner for
2 pairs and [1] for 1 pair. Overall, our method outperforms [1] and [13] on this
more difficult data. Exact numbers are found in tab. 1 of the sup. material.

Individual terms of the energy function We now use the same parameter setting
for our method as in the previous experiment. To demonstrate that our “physics-
based constraints” contribute to the quality of disparity maps, we disable the
gravity, intersection and tightness terms, one after the other. For example, when
switching off the gravity constraint we set λgravity := 0, while the other parame-
ters are set to the values used in the previous experiment. Disabling the gravity
constraint increases the average error on the 2005 data set from 7.90% to 8.30%,
while disabling the intersection and tightness terms leads to errors of 7.91% and
8.21%, respectively. Note that apart from the Art set, disabling any of the 3
terms always leads to increased error percentages on the individual images. (An
exception is Dolls where the intersection term seems to have a negative effect.)
More information about this experiment is found in tab. 2 of the sup. material.
16 Note that three methods take the same rank 13.
17 The corresponding table and results on all four Middlebury images are found in the

supplementary material.
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5 Conclusions
We have presented an algorithm that jointly infers an object labeling as well as
a disparity map. Our key contribution is to introduce physical constraints into
this process. We have demonstrated that our approach can be used to generate a
variety of physically plausible object hypotheses and outperforms state-of-the-art
methods in this domain. The object hypotheses may serve as a valuable input for
object recognition systems. For stereo matching, we have shown that our method
is state-of-the art for some complex scenes in the Middlebury benchmark. In
future work we plan to leverage further ideas, presented in [7], such as stability
or merging of bounding boxes to better handle disconnected objects.
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