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Abstract. This document accompanies the paper: “Extracting 3D Scene-
consistent Object Proposals and Depth from Stereo Images”. We provide
implementation details and results of a competing object segmentation
method [1]. We also show our results on the Middlebury Stereo Bench-
mark [2]. Note that information given in this document is not necessary
to understand the content of the main paper.

The Match Measure In the definition of the photo consistency term of sec. 2
(Model), we have described the match measure as being a weighted sum of
gradient and color differences. Let us now formulate this match measure. Note
that our photo consistency term (which includes the match measure) is identical
to that described in the Patch- Match Stereo paper [3] where the following
information can be found as well.

The function φ(q, q′) of eq. (3) computes the pixel dissimilarity between a
pixel q of the left and a pixel q′ of the right image as

φ(q, q′) = (1− α) ·min(||Iq − Iq′ ||, τcol) + α · (||∆Iq −∆Iq′ ||, τgrad). (1)

Here, ||Iq − Iq′ || denotes the L1-distance of colors of q and q′ in RGB space and
||∆Iq−∆Iq′ || represents the absolute difference of gray-value gradients. By using
the gradient we can handle small radiometric differences that occur in left and
right images (e.g., one image is slightly darker than the other). We truncate the
pixel dissimilarities using parameters τcol and τgrad. This truncation limits the
influence of occluded pixels in the cost aggregation procedure.The parameters
are set as described in [3], i.e., {α, τcol, τgrad} := {0.9, 10, 2}.
Depth Segmentation Algorithm In the Object Image Computation step of sec.
3 (Optimization), we have described a depth segmentation algorithm. We now
explain this method in more detail.

As described in the paper, we start by applying a meanshift color segmen-
tation algorithm [4] on the left input image. We then fit a disparity plane to
each color segment using our initial disparity map F ′. We now extract groups of
segments that can be well modeled using the same disparity plane via applying
an energy minimization approach that is explained as follows.

We first record all planes that have been computed in the plane fitting pro-
cess. Our goal is to assign each color segment to one of these planes such that an
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Fig. 1. Object segmentation result of “Blocks World” [1] on one of our images.

energy is minimized. This energy consists of a data term and a smoothness term.
For each pixel of the left image, the data term measures the absolute difference
between the point’s disparity according to its assigned plane and its disparity
in the initial disparity map F ′. The smoothness term puts a constant penalty
on spatial neighboring pixels assigned to different planes (Potts model). Note
that there is a parameter λ that balances data and smoothness terms. To ap-
proximate the energy minimum, we apply alpha-expansions of all planes present
in the original solution, i.e., the one obtained after plane fitting. Note that the
computational complexity of this step is relatively low, as the energy can be op-
timized on a segment level. (Nodes in the graph correspond to whole segments.)
After running three iterations of the alpha-expansion algorithm we obtain our
depth segments by grouping all color segments that are assigned to the same
disparity plane in the optimized solution. λ represents the parameter that we
vary to obtain depth segmentations of different granularities such as shown in
fig. 4 of the paper.

Results of “Blocks World” [1] As stated in the paper, “Blocks World” [1] can be
regarded as a competing object segmentation method, as this algorithm gives a
mapping of image pixels to one of seven different classes. We experienced that
the publicly available code of [1] gives only very coarse segmentations on our
test images, which are clearly inferior to our result. An example result for the
“Parade” test set is shown in fig. 1.

Middlebury Results We show the results on all four Middlebury images in fig. 2.
Fig. 3 shows our ranking in the Middlebury Online Table [2]. Our method takes
rank 13 out of 117 algorithms. It also performs better than our reimplementation
of [3] (see fig. 3).

Generality We train object stereo [5], our reimplementation of PatchMatch
stereo [3] as well as our algorithm on the Middlebury evaluation set shown in fig.
2. We then apply the parameters that gave the highest Middlebury ranking for
computation of the 2005 test set. Quantitative results are shown in tab. 1. Our
algorithm achieves the lowest error percentage on 3 of 6 images (bold numbers
in tab. 1). Fig. 4 shows the corresponding disparity and error maps.

Individual terms of the energy function Tab. 2 shows the contribution off indi-
vidual terms to the quality of disparity maps. Here, we test our method with
the same parameters as in the previous experiment (= “All Terms On” in tab.
2). “Gravity Off” means that we set λgravity := 0, while the other parameters
are set to the values of “All Terms On”. This disables the gravity constraint.
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Art Books Dolls Laundry Moebius Reindeer Avg. 
Error 

Object 
Stereo 6,71 13,14 11,37 15,50 11,54 7,17 10,90 
PM 
Stereo 9,11 9,31 5,16 12,53 9,51 4,79 8,40 
Ours 

8,36 7,68 5,17 11,76 9,25 5,16 7,90 

Tab. 1: Percentage of pixels having a disparity error > 1 pixel in unoccluded regions 
(black pixels on next slide). 

We have trained all methods on the 4 Middlebury evaluation pairs and then applied 
the parameters that gave the highest Middlebury ranking for computation of the 2005 

test set. 

Test for Generalization 

Table 1. Generality of our approach. We plot the percentage of pixels having a dispar-
ity error > 1 pixel in unoccluded regions (black pixels in fig. 4). Our method performs
better than object stereo [5] and PatchMatch stereo [3] on 3 of 6 images and achieves
the lowest average error percentage.

Art Books Dolls Laundry Moebius Reindeer Avg. Error 

All Terms 
On 8,36 7,68 5,17 11,76 9,25 5,16 7,90 
Gravity 
Off 8,30 8,20 5,20 11,84 9,51 5,70 8,30 
Intersecti
on Off 7,63 8,08 4,86 12,18 9,35 5,34 7,91 
Tightness 
Off 8,00 8,10 5,26 12,15 9,56 6,19 8,21 

Tab. 1: Error percentage in unoccluded regions (black pixels on previous slide). Red 
numbers indicate a lower error percentage in comparison to “All Terms On”. 

We now test our method with the same parameters as in the previous experiment (= 
“All Terms On”). “Gravity Off” means that we set λgravity := 0, while the other 

parameters are set to the values of “All Terms On”. This disables the gravity constraint. 
“Intersection Off” means that we set λintersect := 0 to disable the intersection constraint. 

All other parameters are set to the values of “All Terms On”. We finally disable the 
bounding box tightness constraint by setting λtight := 0 (= “Tightness Off”). Switching of 

individual terms leads to higher error percentages, in general. 

Contribution of Individual Terms 

Table 2. Influence of physics-based terms of our energy. We plot the error percentage
in unoccluded regions (black pixels in fig. 5). Red numbers indicate a lower error
percentage in comparison to “All Terms On”.

“Intersection Off” means that we set λintersect := 0 to disable the intersection
constraint. All other parameters are set to the values of “All Terms On”. We
finally disable the bounding box tightness constraint by setting λtight := 0 (=
“Tightness Off”). Switching off individual terms leads to higher error percent-
ages, in general. Corresponding disparity and error maps are shown in fig. 5.
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(a) 

(b) 

Fig. 2. Results on the Middlebury set. (a) Disparity maps. (b) Disparity errors > 1
pixel.

Fig. 3. The ranking of our method in the Middlebury table. Our algorithm takes ranks
1 and 2 on the complex Teddy and Cones images according to the error in non-occluded
pixels.

Object Stereo 

PatchMatch Stereo (Our Reimplementation) 

Ours 

Fig. 4. Corresponding disparity and error maps for the experiment of tab. 1.
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All Terms On 

Gravity Off 

Tightness Off 

Intersection Off 

Fig. 5. Corresponding disparity and error maps for the experiment of tab. 2.


