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Abstract. Most image labeling problems such as segmentation and im-
age reconstruction are fundamentally ill-posed and suffer from ambigu-
ities and noise. Higher-order image priors encode high-level structural
dependencies between pixels and are key to overcoming these problems.
However, in general these priors lead to computationally intractable mod-
els. This paper addresses the problem of discovering compact representa-
tions of higher-order priors which allow efficient inference. We propose a
framework for solving this problem that uses a recently proposed repre-
sentation of higher-order functions which are encoded as lower envelopes
of linear functions. Maximum a Posterior inference on our learned mod-
els reduces to minimizing a pairwise function of discrete variables. We
show that our framework can learn a compact representation that ap-
proximates a low curvature shape prior and demonstrate its effectiveness
in solving shape inpainting and image segmentation problems.

1 Introduction

A number of models encoding prior knowledge about scenes have been pro-
posed in computer vision. The most popular ones have been in the form of a
Markov Random Field (MRF). An important characteristic of an MRF is the
factorization of the distribution into a product of factors. Pairwise MRFs can be
written as a product of factors defined over two variables at a time. For discrete
variables, this enables non-parametric representation of factors and the use of
efficient optimization algorithms for approximate inference of the Maximum-a-
Posteriori (MAP) solution. However, because of their restricted pairwise form,
the model is not able to encode many types of powerful structural properties of
images. Curvature is one such property which is known to be extremely helpful
for inpainting (see figure 1), segmentation, and many other related problems.

Higher-order Priors There has been a lot of research into priors based on high-
level structural dependencies between pixels such as curvature. These priors can
be represented in the probabilistic model using factors which may depend on
more than two variables at a time. The largest number of variables in a factor
is called the order of the model. Higher-order factors defined on discrete vari-
ables are computationally expensive to represent. In fact, the memory and time
complexity for inferring the MAP solution with general inference algorithms
grows exponentially with the order, and thus has limited the use of such models.
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Fig. 1. (a) Input image (area for completion of starfish is shown in blue). (b) The
starfish was interactively segmented from the image. Then the three arms of the starfish,
which touch the image borders, were completed with an 8-connected pairwise MRF
which encodes a standard length prior. (c) Completion of the shape with our higher-
order curvature prior. (d) Finally, texture was added fully automatically using [2].
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Fig. 2. (a) A given cost function for curvature. (b) “Soft”patterns whose lower envelope
approximates the curvature cost of a binary labeling. A pattern fits well (has low cost)
if all fore-/background pixels match to blue/red pattern weights, where green pixels
can be assigned to both fore- and background. This lower envelope corresponds to
a higher-order factor covering 8×8 pixels in every pixel-location in the model. The
last two patterns are selected manually such that for interior and exterior pixels the
value of the lower envelope is always 0. (c) An example demonstrating the curvature
cost computed by our pattern-based approximation at different parts of the object
boundary. Circle radius correspond to the assigned cost.

The situation is a bit different for parametric models with continuous variables.
Higher-order prior models such as Product of Experts (PoE) [11] or Field of
Experts (FoE) [18] are differentiable in both parameters and hidden variables.
These models thus enable inference using local gradient descent, and have led
to impressive results for problems such as image restoration and optical flow.
Recent research on discrete higher-order models has focused on identifying fam-
ilies of higher-order factors which allow efficient inference. The factors can be
categorized into 3 broad categories: (a) Reducable factors, which allow MAP in-
ference to be reduced to the problem of minimizing a pairwise energy function
of discrete variables with the addition of some auxiliary variables [12–14, 17, 19],
(b) Message-enabled factors, which allow efficient message computation and thus
allow inference using message passing methods such as Belief Propagation (BP)
and Tree Reweighted message passing (TRW) [10, 15, 25], and (c) Constraint
factors, which impose global constraints that can be imposed efficiently in a
relaxation framework [16, 26].
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Pattern-based Representation Pattern and lower-envelope based representations
proposed in [12, 15, 19] can represent some families of Reducable factors. The
higher-order potentials of [15, 19] are defined by enumerating important config-
urations (patterns) in a local window. The model of [19] additionally enables de-
viations from encoded patterns, by using linear weighting functions. The above
models are generalized by the representation proposed in [12] which encodes
higher-order functions as lower (or upper) envelopes of linear (modular) func-
tions of the variables. The complexity of representing and performing inference
depends on the number of linear functions (or patterns) used for representing
the higher-order factor. A number of higher-order priors can be encoded using
few linear functions (or patterns) and thus allow efficient inference. However,
the use of a general higher-order prior would require exponential (in the order
of the factor) number of linear functions (or patterns).

Our Contribution This paper addresses the problem of discovering a compact
representation of higher-order factors that encode a curvature prior for labelling
problems. Given a set of training examples of labeling and their corresponding
desired curvature-based costs, we find parameters of a linear-envelope represen-
tation that matches these costs. While the problem is difficult, we propose a
simple yet effective algorithm for parameter learning. Figure 2 illustrates our
discovered model. We applied the learned prior model to the problems of ob-
ject segmentation and completion. The experimental results demonstrate that
incorporation of this prior leads to much better results than those obtained us-
ing low-order (pairwise MRF) based models (see figure 1) and is comparable to
other state-of-the-art curvature formulations.

Related work on Curvature In this work we consider two closely related prob-
lems of shape inpainting and image segmentation with curvature prior. Given an
image region with a lack of observations, the goal of shape inpainting is to com-
plete the region from evidence outside of the region. This problem is related to
inpainting of binary images which has been approached in the continuous setting
with several curvature-related functionals [3, 6]1. Image labeling with curvature
regularization is an important topic of research, and both continuous and dis-
crete formulations for the problem have been studied. Continuous formulations
offer accurate models, however until recently, only local optimization methods
were applied. For instance, [8] works with discretized Euler-Lagrange equations
of the 4th order. Local optima found by such methods may be of poor quality
and several methods solving convex relaxations have already been proposed [5,
9]. Discrete methods for image labeling with curvature regularization build on
quantization and enumeration of boundary elements. Until recently, they were
applied only in restricted scenarios where it is possible to reduce the problem
to a search of the minimal path or minimum ratio cycle [23]. These cases en-
joy global optimality, however they do not allow for arbitrary regional terms or

1 There is a vast literature on the general image inpainting problem, however these
techniques, especially exemplar-based ones, do not extend to image segmentation
problem, and are not relevant in the context of this paper.
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impose severe constraints on possible shapes. A series of recent works [20, 24,
22, 21] developed a global minimization method for the general discrete setting,
where the regions, boundary segments and pairs of adjacent boundary segments
can have arbitrary associated costs. The problem is formulated as an ILP and
approached by a linear relaxation. It was shown that some image segmentation
problems with (approximate) curvature regularization can be solved optimally in
this model. For accurate approximation of the curvature, the discretization of the
space must form a fine cell complex. Quantization of directions leads to visible
artifacts of the segmentation (see section 4). Cell complexes with a finer quanti-
zation of directions and adaptive complexes are studied in [24]. A recent work [7]
claims to give fast optimal solution for curvature regularization. However, their
model is a crude approximation to the curvature functional. Its 4-neighborhood
variant essentially penalizes the number of “corners” in the segmentation.

2 Higher-order Model Representation and Optimization

We consider a set of pixels V = {1 . . . NX} × {1 . . . NY } and a binary set of
labels L = {0, 1}, where 1 means that a pixel belongs to the foreground (shape)
and 0 to the background. Let x : V → L be the labeling for all pixels with
individual components denoted by xv, v ∈ V. Furthermore, let V (h) ⊂ V denote
a square window of size K × K at location h, and U is the set of all window
locations. Windows are located densely in all pixels. More precisely, all possible
K ×K windows are considered which are fully inside the 2D-grid V (see fig. 3
for illustration). Let xV (h) : V (h) → L denote a restriction of labeling x to the
subset V (h). We consider distribution of the form p(x) ∝ exp{−E(x)} with the
following energy function:

E(x) =
∑
v∈V

θv(xv) +
∑
uv∈E

θuv(xu, xv) +
∑
h∈U

Eh(x), (1)

where notation uv stands for ordered pair (u, v), θv : L → R and θuv : L2 → R
are unary and pairwise terms, E ⊂ V × V is a set of pairwise terms and Eh are
higher-order terms. We consider the higher order terms Eh of the following form
(equivalent to [19])

Eh(x) = min
y∈P

(
〈wy,xV (h)〉+ cy

)
. (2)

This term is the minimum (lower envelope) of several modular functions of
xV (h)

2. We refer to individual linear functions 〈wy,xV (h)〉 + cy as “soft” pat-

terns. Here wy ∈ RK2

is a weight vector and cy ∈ R is a constant term for the
pattern. Vector wy is of the same size as the labeling patch xV (h) and it can be
visualized as an image (see fig. 2(b)). The variable y ∈ P is called a pattern-
switching variable. It is a discrete variable from the set P = {0, ..., NP }. We let
the pattern which corresponds to y = 0 have the associated weights w0 = 0.

2 This model has some similarities with a mixture model, as discussed in [1].
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This pattern assigns a constant value c0 to all labellings xV (h) and it ensures
that Eh(x) ≤ c0 for all x. (See [1] for detailed relation of this model to [19]
and [15]). In our model it is used to represents the maximal cost fmax of the
curvature cost function. The minimization problem of energy (1) expresses as

min
x

[
E0(x) +

∑
h∈U

min
y∈P

(
〈wy,xV (h)〉+ cy

)]
, (3)

where unary and pairwise terms are collected into E0. The problem can also be
written as a minimization of a pairwise energy

min
x∈LV

y∈PU

[
E0(x) +

∑
h

〈wyh ,xV (h)〉+ cyh
]
, (4)

where y : U → P is the concatenated vector of all pattern switching vari-
ables3. Clearly, problem (4) is a minimization of a pairwise energy function of
discrete variables x,y. The problem is NP-hard in general, however, a num-
ber of approximate MAP inference techniques for pairwise energies can be used
such as Block-ICM, TRW, BP, or Linear programming based relaxations. Here
we report results obtained by the memory-efficient adaptation of TRW-S with
post-processing by block-ICM (see details in [1]).

(a) (b)

 

(c)

 
Fig. 3. (a) Continuous shape and its discretization. Filled, small circles show bound-
ary locations. The large blue window illustrates V (h) at location h. (b,c) Fore- and
background patterns, which are active at none-boundary locations, with costs: green
wy,v = 0, red: wy,v = +B, blue: wy,v = −B, constant cy is −4B and +4B respectively.

3 Learning a Curvature Cost Model

Suppose we are given a shape S ⊂ R2 such that we can calculate the curvature
κ at every point of the boundary, ∂S. Let f(κ) ≥ 0 be a curvature cost function,
which defines a desired penalty on curvature, in this paper we consider f(κ) =
min(κ2, fmax). Let the total cost of the shape be

∫
∂S
f(κ)dl. Our goal is to

approximate this integral by the sum
∑
h∈U Eh(x), where functions Eh operate

over a discretized representation of the shape, x, and are of the form (2) with
weights w, c. Here w and c denote the concatenated vectors of all weights wy and
cy, respectively. The learning problem is to determine the pattern weights w, c
such that the approximation is most accurate. Since the mapping of continuous
to discrete curves is a many-to-one mapping, we further formalize our exact

3 We refer to components of y by yh, while y usually denotes an independent bound
variable.
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Fig. 4. Problem definition and motivation of large-sized windows. Examples
above show discrete labelings on a pixel grid with a corresponding red continuous
curve. Note, there are infinitely many continuous curves which give rise to the same
discrete labelling - two examples are given in (a) and (b). The red curve in (b) is
probably the one with lowest curvature given the discrete labelling. Our goal is to find
an energy function which maps every discrete labelling to the corresponding cost of
the continuous curvature with lowest curvature. (c) makes the important point that
larger sized windows have inherently a better chance of predicting well the curvature
at the center of the window. In (c) the green window is of size 3x3, while in (b) it
is of size 5x5. The underlying discrete labelling is identical in both cases and the red
curve is the optimal (lowest curvature) continuous curve given the window. The crucial
point is that the curvature of the continuous curve, at the center of the window, is very
different in (b) and (c). Note, this problem is to some extend mitigated by the fact
that the total cost of segmentation is the sum of costs along the boundary.

goal in figure 4. In the figure we also motivate the important aspect that larger
windows are potentially superior.

We first restrict the sum
∑
h∈U Eh(x) to take into account only boundary

locations. We call h a boundary location for shape x if the 2×2 window at h
contains some pixels which are labeled foreground as well as some pixels which
are labeled background, as illustrated in fig. 3. We constrain all soft patterns to
be non-negative (〈wy, x〉+ cy ≥ 0) and introduce two special patterns (fig. 3b,c),
which have cost 0 for locations where the 2×2 window at location h contains only
background or foreground pixels. These patterns make Eh(x) vanish over all non-
boundary locations, therefore such locations do not contribute to the sum. The
learning task is now to determine Eh(x), such that at each boundary location
the true cost f(κ) is approximated. In this way the discrete sum corresponds to
the desired integral if we were to neglect the fact that the number of boundary
locations does only approximate the true length of the boundary.

Point-wise learning procedure. Let us assume that in a local K×K window,
shapes of low curvature can be well-approximated by simple quadratic curves4.
The idea is to take many examples of such shapes and fit Eh(x) to approximate
their cost. We consider many quadratic shapes (Si)Ni=1 in the window K × K
and derive their corresponding discretization on the pixel grid (xi)Ni=1. Each
continuous shape has an associated curvature cost f i = f(κi) at the central
boundary location. We formulate the learning problem as minimization of the

4 Note, based on our definition in fig. 4 we select curves which are likely to be the
ones of lowest curvature (among all curves) for the corresponding discrete labelling.
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average approximation error:

arg min
w,c

∑
i

|Eh(xi)− f i|, s.t.

{
w0 = 0, c0 = fmax;

Eh(x) ≥ 0 ∀x,
(5)

where the first constraint represents the special implicit pattern (w0, c0 = fmax),
which ensures that Eh(x) ≤ fmax. The second constraint makes sure that cost
is non-negative. It is important for the following reason: the formulation of the
approximation problem does not explicitly take into account “negative samples”,
i.e. labellings which do not originate from smooth curves, and which must have
high cost in the model. However, requiring that all possible negative samples in
a K×K window have high cost would make the problem too constrained. The
introduced non-negativity constraint is tractable and not too restrictive. This
problem appears difficult, since Eh(xi) is itself a concave function in the param-
eters w, c. We approach (5) by a k-means like procedure:

Algorithm 1: Iterative Factor Discovery

repeat /* iteration */1

for i = 1 . . . N do2

yi = arg min
y

[〈wy,x
i〉+ cy] ; /* find matching patterns */

3

for y ∈ 1 . . . NP do /* refit patterns */4

(wy, cy) = arg min
wy,cy
ξ

∑
i|yi=y

|〈wy,x
i〉+cy−f i|, s.t.


ξv ≤ wy,v;
ξv ≤ 0;∑
v ξv+cy ≥ 0.5

until convergence or maximum iterations;6

The refitting step 5 is a linear optimization which can be solved exactly. The
constraint in step 5 is an equivalent representation of the constraint 〈wy,x〉 +
cy ≥ 0 ∀x, imposed by (5).

4 Experiments

We applied Algorithm 1 to learn a prior model with 96 patterns of size 8×8
pixels from 10000 randomly, synthetically generated smooth curves and their
discretization. We initialize the curvature potential in the learning process by
clustering the 10000 patches in 32 groups based on the orientation of the bound-
ary at the patch center. Then each orientation group is further subdivided into 3
bins based on the curvature. To measure the accuracy of our curvature potential
approximation, we sampled large shapes for which the true curvature cost can be
computed and then compared it with our approximated cost which is obtained
by summing the response of our curvature cost potential along the boundary.
Further details of the learning procedure are given in [1].

Shape Inpainting We now demonstrate the learned prior model on the problem
of shape inpainting. The goal is to reconstruct the full shape, while only some
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parts of the shape are visible to the algorithm. This is a useful test to inspect our
shape prior. Let F ⊂ V be the set of pixels restricted to foreground (shape) and
B ⊂ V pixels restricted to background. The unary terms of (1), θv(xv), are set
to ∞ if label xv contradicts with the constrains and 0 otherwise. This ensures
that the correct segmentation is inferred in the region F ∪B.

5 10 20

Fig. 5. Left. Inpainting of a corner and a circle. The green boxes show the area to be
inpainted, where the size in pixels of the length of the green boxes is below the images.
Pixels in gray show the estimated solution. Note, the boundary conditions are different:
right-angle boundary condition (top) and circle boundary condition (bottom). Right.
Two example for automatic shape completions of an occluded object. In both cases
the left result is with a pure curvature prior and the right result with a pure length
prior (8-connected). Note, the yellow curve (and a part of the green curve) indicate
the original user-defined segmentation. Then the user defines the green area. Inside the
green area, the method automatically finds the shape completion (blue curve).

(a) (b) (c)

Fig. 6. Combining length and curvature for inpainting: (a) pure curvature, (b) curva-
ture and length, (c) curvature and length (with high weight).

In the unknown region V\(F ∪B) all unaries are exactly 0. Fig.5(Left) shows
examples of inpainting of corners and circles of varying size. Fig.5(Right) demon-
strates inpainting with real-world shapes and compares against a naive length
regularization. It can be seen that the higher-order model which encodes curva-
ture produces shape completions with smooth boundaries. An example of com-
bining curvature prior with length prior is shown in fig. 6.

Image Segmentation We use a simple model for the task of interactive fore- and
background segmentation, as in [4]. Based on the user brush strokes (fig. 7(a))
we compute likelihoods using a Gaussian mixture model (GMM) with 10 compo-
nents. The difference of the unaries θv(1)−θv(0) correspond to the negative log-
likelihood ratio of foreground and background. Results for our curvature model
for various strengths of the prior are shown in fig.7(e). Increasing the strength of
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(a) (b) (c) (d)

(e)

2 10 100 >1000

Fig. 7. Image segmentation. (a) Image with foreground (green) and background
(blue) seeds; (b) Color based unary potential costs (red for foreground, and blue for
background). (c) Result from [20] (d) Zoom-in from [20] (top) and our result (e,100).
(e) Our model with various strength for curvature prior.

the prior above some limit (1000) has almost no effect on the smoothness of the
solution, because each local 8×8 window is already maximally smooth according
to the model. Note, that segmentation of this instance with length regulariza-
tion cannot segment the legs of the giraffe correctly for arbitrary regularization
strength (see [1]). Our result is visually superior to [20], see fig. 7(d), despite
the fact that we use a grid with much coarser resolution than a fine cell-complex
used in [20]. Further results and a detailed comparison to [20] is in [1].

5 Conclusions and Discussion

This paper has shown how to compute compact representations of higher-order
priors which enable the use of standard algorithms for MAP inference. We pre-
sented results on the problem of learning a curvature-based shape prior for image
inpainting and segmentation. Our higher-order shape prior operates on a large
set of pixels and is therefore robust to discretization artifacts. In the future, it
would be interesting to extend the approach to incorporate other types of local
shape properties, not necessarily defined by an analytic function but for instance
by exemplars. Such a generalization would likely require a more general learning
technique.
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