Supplementary Material:

Loss-Specific Training of Non-Parametric Image Restoration Models: A New State of the Art

Jeremy Jancsary¹, Sebastian Nowozin², and Carsten Rother²

¹ Vienna University of Technology, Austria

² Microsoft Research Cambridge, United Kingdom

Abstract. This supplementary document contains results that were omitted from the main paper due to a lack of space. In particular, we provide a closer look at the denoising quality of our method, as well as several exemplary predictions by all of our systems and its competitors, on the following tasks:

- 1. denoising (at all noise levels);
- 2. JPEG deblocking (at all quality settings);
- 3. structured noise/dust artefacts (small and large).

1 Denoising results

We compare Field-of-Experts (FoE) [1], BM3D [2], LSSC [3] and EPLL [4] to our method.

1.1 Zoom-In

We first take a closer look at one particular image from the test set and compare zoom-ins of the predictions by several systems.

BM3D

Ground truth

EPLL

 $\mathrm{PsnrRTF}_{\mathrm{Plain}}$

 $N{\rm LPL}RTF_{\rm PLAIN}$

We next show an exhaustive set of predictions of all system configurations on three images from the test set.

1.2 Results at $\sigma = 20$

EPLL		
$PsnrRTF_{Plain}$		
$PsnrRTF_{Bm3d}$		
$PSNRRTF_{ALL}$		
$\mathrm{MAERTF}_{\mathrm{PLAIN}}$		
$\mathrm{MAERTF}_{\mathrm{BM3d}}$		
${ m MaeRTF}_{ m All}$		
$\rm SsimRTF_{\rm Plain}$		

$\rm SsimRTF_{Bm3d}$		
$\mathrm{SsimRTF}_{\mathrm{All}}$		
$\rm NlplRTF_{Plain}$		
$\mathrm{NLPLRTF}_{\mathrm{BM3D}}$		
$\mathrm{NlplRTF}_{\mathrm{All}}$		

1.3 Results at $\sigma = 30$

Ground truth

Noisy input

FoE	1	
BM3D		
LSSC		
EPLL		
$\mathrm{PsnrRTF}_{\mathrm{Plain}}$		
$\mathrm{PsnrRTF}_{\mathrm{BM3d}}$		
$PsnrRTF_{All}$		
$\mathrm{MAERTF}_{\mathrm{PLAIN}}$		

$\mathrm{MAERTF}_{\mathrm{Bm3d}}$		
$MAERTF_{ALL}$		
$\rm SsimRTF_{\rm Plain}$		
$\mathrm{SsimRTF}_{\mathrm{BM3d}}$	d.	
$\mathrm{SsimRTF}_{\mathrm{All}}$		
NLPLRTF _{Plain}	1	
$\mathrm{NLPLRTF}_{\mathrm{BM3d}}$		
$NlplRTF_{All}$	1	

Ground truth		
Noisy input	a la	A A A A A A A A A A A A A A A A A A A
FoE	e la	
BM3D		
LSSC		
EPLL		
$\mathrm{PsnrRTF}_{\mathrm{Plain}}$		
$\mathrm{PsnrRTF}_{\mathrm{Bm3d}}$		

1.4 Results at $\sigma = 40$

$\mathrm{PsnrRTF}_{\mathrm{All}}$		
$\mathrm{MAERTF}_{\mathrm{PLAIN}}$		
$\mathrm{MAERTF}_{\mathrm{Bm3d}}$		
$MAERTF_{ALL}$		
$\rm SsimRTF_{\rm Plain}$		
${ m Ssim}{ m RTF}_{ m Bm3d}$		
$\mathrm{SsimRTF}_{\mathrm{All}}$		
$\mathrm{NLPLRTF}_{\mathrm{Plain}}$		

1.5 Results at $\sigma = 50$

Ground truth	
Noisy input	
FoE	
BM3D	
LSSC	

EPLL		
$\mathrm{PsnrRTF}_{\mathrm{Plain}}$		
$\mathrm{PsnrRTF}_{\mathrm{BM3d}}$		
$PSNRRTF_{ALL}$		
$\mathrm{MAERTF}_{\mathrm{Plain}}$		
$\mathrm{MAERTF}_{\mathrm{BM3D}}$		
$MAERTF_{ALL}$	1	
$\rm SsimRTF_{\rm Plain}$		

2 JPEG deblocking results

We compare SA-DCT [5] to all configurations of our system.

2.1 Results at quality 10

Ground truth

Lossy input

SA-DCT		
$\mathrm{PsnrRTF}_{\mathrm{Plain}}$	R	
$PsnrRTF_{Sadct}$	R	
$\mathrm{MaeRTF}_{\mathrm{Plain}}$		
$\mathrm{MAERTF}_{\mathrm{SADCT}}$		
$\rm SsimRTF_{\rm Plain}$		
$\mathrm{SsimRTF}_{\mathrm{Sadct}}$		
NlplRTF _{Plain}		

 $\mathrm{NLPLRTF}_{\mathrm{SADCT}}$

2.2 Results at quality 20

$\mathrm{MAERTF}_{\mathrm{SADCT}}$		
$\mathrm{SsimRTF}_{\mathrm{Plain}}$		
$\mathrm{SsimRTF}_{\mathrm{Sadct}}$		
$\mathrm{NlplRTF}_{\mathrm{Plain}}$		
$\mathrm{NLPLRTF}_{\mathrm{SADCT}}$		

2.3 Results at quality 30

Ground truth

Lossy input

SA-DCT		
$\mathrm{PsnrRTF}_{\mathrm{Plain}}$		
$\mathrm{PsnrRTF}_{\mathrm{Sadct}}$		
$\mathrm{MAERTF}_{\mathrm{PLAIN}}$		
$\mathrm{MAERTF}_{\mathrm{SADCT}}$		
$\rm SsimRTF_{\rm Plain}$		
$\rm SSIMRTF_{SADCT}$		
$\rm NlplRTF_{Plain}$		

$\mathrm{NLPLRTF}_{\mathrm{SADCT}}$

2.4 Results at quality 40

3 Results on the structured noise dataset

None of the other denoising methods described in this paper can handle the structured noise present in the corrupted images. To illustrate this point, we show the results achieved by BM3D [2]. When running BM3D, for each image, we estimate the variance of the noise from the ground truth and the noisy input image to give the method a fair chance. However, the additive white Gaussian noise assumption is severly violated on this dataset, so BM3D fails to recover the regions covered by "dust". Moreover, it blurs the "good" regions .

In contrast, our system is highly capable of recovering the regions that were corrupted by dust.

3.1 Results at dust size 5

3.2 Results at dust size 10

Ground truth

Noisy input

References

- 1. Schmidt, U., Gao, Q., Roth, S.: A generative perspective on MRFs in low-level vision. In: CVPR. (2010)
- Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.O.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing 16 (2007) 2080–2095
- Mairal, J., Bach, F., Ponce, J., Shapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: ICCV. (2009)
- 4. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. In: ICCV. (2011)
- Foi, A., Katkovnik, V., Egiazarian, K.: Pointwise shape-adaptive DCT for highquality denoising and deblocking of grayscale and color images. IEEE Transactions on Image Processing 16 (2007) 1395–1411