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Abstract. This supplementary document contains results that were
omitted from the main paper due to a lack of space. In particular, we
provide a closer look at the denoising quality of our method, as well as
several exemplary predictions by all of our systems and its competitors,
on the following tasks:

1. denoising (at all noise levels);

2. JPEG deblocking (at all quality settings);

3. structured noise/dust artefacts (small and large).

1 Denoising results

We compare Field-of-Experts (FoE) [1], BM3D [2], LSSC [3] and EPLL [4] to
our method.

1.1 Zoom-In

We first take a closer look at one particular image from the test set and compare
zoom-ins of the predictions by several systems.
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We next show an exhaustive set of predictions of all system configurations
on three images from the test set.

1.2 Results at σ = 20
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1.3 Results at σ = 30
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1.4 Results at σ = 40
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1.5 Results at σ = 50
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2 JPEG deblocking results

We compare SA-DCT [5] to all configurations of our system.

2.1 Results at quality 10
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2.2 Results at quality 20
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2.3 Results at quality 30
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2.4 Results at quality 40
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3 Results on the structured noise dataset

None of the other denoising methods described in this paper can handle the
structured noise present in the corrupted images. To illustrate this point, we
show the results achieved by BM3D [2]. When running BM3D, for each image,
we estimate the variance of the noise from the ground truth and the noisy input
image to give the method a fair chance. However, the additive white Gaussian
noise assumption is severly violated on this dataset, so BM3D fails to recover
the regions covered by “dust”. Moreover, it blurs the “good” regions .

In contrast, our system is highly capable of recovering the regions that were
corrupted by dust.
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3.1 Results at dust size 5
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3.2 Results at dust size 10
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