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Abstract Efficient global optimization techniques such

as graph cut exist for energies corresponding to binary

image segmentation from low-level cues. However, in-

troducing a high-level prior such as a shape prior or

a color-distribution prior into the segmentation pro-

cess typically results in an energy that is much harder

to optimize. The main contribution of the paper is a

new global optimization framework for a wide class of

such energies. The framework is built upon two power-

ful techniques: graph cut and branch-and-bound. These

techniques are unified through the derivation of lower

bounds on the energies. Being computable via graph

cut, these bounds are used to prune branches within a

branch-and-bound search.

We demonstrate that the new framework can com-

pute globally optimal segmentations for a variety of seg-

mentation scenarios in a reasonable time on a modern

CPU. These scenarios include unsupervised segmenta-

tion of an object undergoing 3D pose change, category-

specific shape segmentation, and the segmentation un-

der intensity/color priors defined by Chan-Vese and

GrabCut functionals.
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1 Introduction

Binary image segmentation is often posed as a graph

partition problem. This is because efficient graph algo-

rithms such as st-mincut permit fast global optimiza-

tion of the functionals measuring the quality of the

segmentation. As a result, difficult image segmentation

problems can be solved efficiently, robustly, and inde-

pendently of initialization. Yet, while graphs can rep-

resent energies based on localized low-level cues, they

are much less suitable for representing non-local cues

and priors describing the foreground or the background

segment as a whole.

Consider, for example, the situation when the shape

of the foreground segment is known a priori to be sim-

ilar to a particular template (segmentation with shape
priors). Graph methods can incorporate such a prior for

a single pre-defined and pre-located shape template [20,

30]. However, once the pose of the template is allowed

to change, the relative position of each graph edge with

respect to the template becomes unknown, and the non-

local property of shape similarity becomes hard to ex-

press with local edge weights. Another example would

be the segmentation with non-local color priors, when

the color of the foreground and/or background is known

a priori to be described by some parametric distribu-

tion (e.g. a mixture of the Gaussians as in the case of

GrabCut [38]). If the parameters of these distributions

are allowed to change, such a non-local prior depend-

ing on the segment as a whole becomes very hard to

express with the local edge weights.

An easy way to circumvent the aforementioned dif-

ficulties is to alternate the graph partitioning with the

re-estimation of non-local parameters (such as the tem-

plate pose or the color distribution). A number of ap-

proaches [8,26,38,25] follow this path. Despite the use
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Fig. 1 Image segmentation with a shape prior is one of motivating applications for Branch-and-Mincut. Here, the image-specific

edge cues and cathegory-level shape prior can be combined within the same energy function. Edge cues are encoded by weighting the

edges in the image grid graph, while shape prior is given by a combinatorily large set of plausible shapes at all possible locations in
the image (four of them are shown in different colors in the image). By computing the global optimum of the resulting functional,

Branch-and-Mincut finds the binary segmentation, which is close to one of the plausible shapes and is consistent with the edge cues.

of the global graph cut optimization inside the loop,

local search over the prior parameters turns these ap-

proaches into local optimization techniques akin to vari-

ational segmentation [10,12,35,44]. As a result, these

approaches may get stuck in local optima, which in

many cases correspond to poor solutions.

The goal of this paper is to introduce a new frame-

work for computing globally optimal segmentations un-

der non-local priors. Such priors are expressed by re-

placing fixed-value edge weights with edge weights de-

pending on non-local parameters. The global minimum

of the resulting energy that depends on both the graph

partition and the non-local parameters is then found

using the branch-and-bound tree search. Within the

branch-and-bound, lower bounds over tree branches are

efficiently evaluated by computing minimal cuts on a

graph (hence the name Branch-and-Mincut).

The main advantage of the proposed framework is

that the globally optimal segmentation can be obtained

for a broad family of functionals depending on non-local

parameters. Although the worst case complexity of our

method is large (essentially, the same as the exhaus-

tive search over the space of non-local parameters), we

demonstrate that our framework can obtain globally

optimal image segmentation in a matter of seconds on

a modern CPU. Test scenarios include globally opti-

mal segmentation with shape priors where the template

shape is allowed to deform and to appear in various

poses as well as image segmentation by the optimization

of the Chan-Vese [10] and the GrabCut [38] functionals.

In all cases, bringing in high-level non-local knowledge

allows to solve difficult segmentation problems, where

local cues (considered by most current global optimiza-

tion approaches) were highly ambiguous.

2 Related Work

2.1 Related work: Optimization.

Our framework is built upon two powerful optimization

paradigms: graph cuts and branch-and-bound. Graph

cut optimization employs the fact that a submodular

quadratic function of boolean variables can be efficiently

minimized via minimum st-cut computation in the asso-

ciated graph [4,24,29]. This idea has been successfully

applied to binary image segmentation [5] and quickly

gained popularity. As discussed above, the approach [5]

still has significant limitations, as the high-level knowl-

edge such as shape or color priors are hard to express

with fixed local edge weights. These limitations are over-

come in our framework, which allows the edge weights

to vary according to a high-level prior.

In the restricted case, when unary energy poten-

tials are allowed to vary and depend on a single scalar

non-local parameter monotonically, efficient algorithms

known as parametric maxflow have been suggested [21],

and their use in computer vision have been recently

investigated in [28]. While the structure of the energy

function considered in our framework is related to those

optimized by parametric mincut/max-flow, our frame-

work is more general (at a price of having higher worst-

case complexity). Thus, it allows both unary and pair-

wise energy terms to depend non-monotonically on a

single or multiple non-local parameters. Such general-

ity gives our framework flexibility in incorporating vari-

ous high-level priors while retaining the globality of the

optimization.

On the other hand, branch-and-bound optimization

is a classical approach to non-convex optimization. Over

the recent years, it has found numerous applications in

the computer vision field. Its usage for solving structure-

and-motion problems [2] and in fast category-level ob-

ject detection [31] has proved particularly fruitful. Of

particular relevance here, are the works [22,19] that use
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tree search over shape hierarchies for the detection of

pedestrians [22] and general object tracking [19].

2.2 Related work: Segmentation with Priors.

Segmentation with shape priors has attracted a lot of

interest over the years. Historically, most approaches

use either local continuous optimization [44,10,35,12]

or iterated minimization alternating graph cut and search

over non-local parameter space [38,8,26]. Unfortunately,

both groups of methods are prone to getting stuck in

poor local minima. Therefore, in recent years, a num-

ber of global optimization algorithms have also been

suggested.

These global-optimization approaches solve the seg-

mentation under shape priors via different graph algo-

rithms, namely dynamic programming on a specially

constructed graphs [18,41,17], min-ratio cycle search

[40], and generalized graph spectral clustering [42]. Some

other works [15,17] incorporate shape priors into globally-

optimal segmentation by introducing multiple labels

corresponding to different object parts, and introducing

energy terms that ensure that pixels belonging to differ-

ent object parts are arranged in a particular way. Each

of these approaches is based on an elegant idea, and suc-

cessfully formulates the segmentation under shape prior

as an optimization task of polynomial (in graph size)

complexity. Thus, the worst-case complexity of these

methods is typically better than the complexity of our

method. However, these methods have less flexibility,

and the resulting shape priors that they impose are ei-

ther “unimodal” [18,40,41] (i.e. the target segmenta-

tion has to be similar to a single shape prototype), or,

on the opposite, they force the segmentation to belong

to a quite general shape class [15,17] (e.g. be approx-

imately rectangular-shaped [42]), which, depending on

application, may be less desirable.

In contrast to that, our method provides a great

flexibility in devising high-level priors. In the case of

shape priors one simply needs to provide an arbitrary

number of prototypical shapes, so that the branch-and-

bound procedure can be used to search over this set.

This flexibility is based on a generality of the proposed

approach. Based on similar motivation, another group

[13] presented (simultaneously and independently with

our conference paper [34]) a framework that also uti-

lizes branch-and-bound optimization for the segmen-

taion with shape-priors. While at the high level the two

approaches are similar (both are based on the fusion of

branch-and-bound and convex optimization), there are

significant dissimilarities. Thus, the approach [13] op-

erate with the relaxed notion of shape (while our seg-

mentations stay integer) and their bounds are based on

the Lipshitz-continuity (with sufficiently small Lipshitz

constant) of the shape manifold inside the prior, which

is not required in our case (as our prior may be given

by a discrete set of shapes). In the latter aspect, our

approach to formulating shape priors is more similar to

[12], which uses local optimization.

The generality of the proposed optimization frame-

work allowed us to attack image segmentation under

priors imposed by Chan-Vese [10] and GrabCut [38]

functionals (which are quite different from the shape

priors). Recent related work here includes [43], where

they proposed a highly-efficient branch-and-bound scheme

devised specifically for the Chan-Vese functional, and

[39], where they formulated a functional similar to Grab-

Cut that is amenable for global graph cut optimization.

The preliminary version of this work has appeared

in [34], and this paper extends it by providing more

experimental detail, more illustrations of the theoretical

part of the framework, and more detailed explanation

of the construction of the shape priors. It also provides

a new simpler version of our algorithm for a restricted

class of shape priors.

3 Optimization Framework

In this section, we discuss our global energy optimiza-

tion framework for obtaining image segmentations un-

der non-local priors1. In the next sections, we detail

how it can be used for the segmentation with non-local

shape priors (Section 4) and non-local intensity/color

priors (Section 5).

3.1 Energy Formulation

Firstly, we introduce notation and give the general form

of the energy that can be optimized in our framework.

Below, we consider the pixel-wise segmentation of the

image. We denote the pixel set as V and use letters p

and q to denote individual pixels. We also denote the

set of edges connecting adjacent pixels as E and refer

to individual edges as to the pairs of pixels (e.g. p, q).

In our experiments, the set of edges consisted of all 8-

connected pixel pairs in the raster.

The segmentation of the image is given by its 0−1

labeling x ∈ 2V , where individual pixel labels xp take

the values 1 for the pixels classified as the foreground

and 0 for the pixels classified as the background. Fi-

nally, we denote the non-local parameter as ω and al-

low it to vary over a discrete, possibly very large, set

1 The C++ code for this framework is available at the webpage

of the first author.
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Fig. 2 The fragment of the network graph realizing L(Ω) (edge
weights are shown in boxes). The traditional graph cut construc-

tion [5] is shown, where “t-links” and “n-links” are used.

Ω. The general form of the energy function that can be

handled within our framework is then given by:

E(x, ω) = C(ω) +
∑
p∈V

F p(ω)·xp+∑
p∈V

Bp(ω)·(1− xp) +
∑
p,q∈E

P pq(ω)·|xp − xq| (1)

Here, C(ω) is a constant potential, which does not

depend directly on the segmentation x; F p(ω) andBp(ω)

are the unary potentials defining the cost for assigning

the pixel p to the foreground and to the background re-

spectively; P pq(ω) is the pairwise potential defining the

cost of assigning adjacent pixels p and q to different seg-

ments. In our experiments, the pairwise potentials were

taken non-negative to ensure the tractability of E(x, ω)

as the function of x for graph cut optimization [29].

All potentials in our framework depend on the non-

local parameter ω ∈ Ω. In general, we assume that Ω

is a discrete set, which may be large (e.g. millions of

elements) and should have some structure (although,

it need not be linearly or partially ordered). For the

segmentation with shape priors, Ω will correspond to

the product space of various poses and deformations

of the template, while for the segmentation with color

priors Ω will correspond to the set of parametric color

distributions.

3.2 Lower Bound

Our approach optimizes the energy (1) exactly, finding

its global minimum using branch-and-bound tree search

[11], which utilizes the lower bound on (1) derived as

follows:

min
x∈2V ,ω∈Ω

E(x, ω) =

min
x∈2V

min
ω∈Ω

C(ω) +
∑
p∈V

F p(ω)·xp +
∑
p∈V

Bp(ω)·(1− xp)+

∑
p,q∈E

P pq(ω)·|xp − xq|

≥
min
x∈2V

min
ω∈Ω

C(ω) +
∑
p∈V

min
ω∈Ω

F p(ω)·xp+

∑
p∈V

min
ω∈Ω

Bp(ω)·(1− xp) +
∑
p,q∈E

min
ω∈Ω

P pq(ω)·|xp − xq|

 =

min
x∈2V

CΩ +
∑
p∈V

F pΩ ·xp+

∑
p∈V

BpΩ ·(1− xp) +
∑
p,q∈E

P pqΩ ·|xp − xq|

 = L(Ω) . (2)

Here, CΩ , F pΩ , BpΩ , P pqΩ denote the minima of C(ω),

F p(ω), Bp(ω), P pq(ω) over ω ∈ Ω referred below as

aggregated potentials. L(Ω) denotes the derived lower

bound for E(x, ω) over 2V ⊗ Ω. The inequality in (2)

is essentially the Jensen inequality for the minimum

operation.

The proposed lower bound possesses three proper-

ties crucial to the Branch-and-Mincut framework:

Monotonicity. For the nested domains of non-local

parameters Ω1 ⊂ Ω2 the inequality L(Ω1) ≥ L(Ω2)
holds (the proof is given in the Appendix).

Computability. The key property of the derived lower

bound is the ease of its evaluation. Indeed, this bound

equals the minimum of a submodular quadratic pseudo-

boolean function. Such function can be realized on a

network graph such that each configuration of the bi-

nary variables is in one-to-one correspondence with an

st-cut of the graph having the weight equal to the value

of the function (plus a constant CΩ) [4,24,29] (see Fig. 2).

The minimal st-cut corresponding to the minimum of

L(Ω) then can be computed in a low-polynomial of |V|
time e.g. with the popular algorithm [7].

Tightness. For a singletonΩ the bound is tight: L({ω}) =

minx∈2V E(x, ω). In such case, the minimal st-cut also

yields the segmentation x optimal for this ω (thus, we

set xp = 0 iff the respective vertex belongs to the

s-component of the minimal cut found as a result of

maxflow).

Note, that the fact that the lower bound (2) may

be evaluated via st-mincut gives rise to a whole family



5

Fig. 3 Best-first branch-and-bound optimization on the tree of

nested regions finds the globally-optimal ω by the top-down prop-
agation of the active front (see text for details). At the moment

when the lowest lower bound of the front is observed at leaf node,

the process terminates with the global minimum found without
traversing the whole tree.

of looser, but cheaper, lower bounds. Indeed, the mini-

mal cut on a network graph is often found by pushing

flows until the flow becomes maximal (and equal to

the weight of the mincut) [7]. Thus, the sequence of

intermediate flows provides a sequence of the increas-

ing lower bounds on (1) converging to the bound (2)

(flow bounds). If some upper bound on the minimum

value is imposed, the process may be terminated earlier

without computing the full maxflow/mincut. This hap-

pens when the new flow bound exceeds the given upper

bound. In this case it may be concluded that the value

of the global minimum is greater than the imposed up-

per bound and a branch can be pruned without com-

pleting the maxflow computation.

3.3 Branch-and-Bound Optimization

Finding the global minimum of (1) is, in general, a very

difficult problem. Indeed, since the potentials can de-

pend arbitrarily on the non-local parameter spanning

arbitrary discrete set Ω, in the worst-case any opti-

mization has to search exhaustively over Ω. In practice,

however, any segmentation problem would have some

specifically-structured space Ω. This structure can be

efficiently exploited by the branch-and-bound search

detailed below.

We assume that the discrete domain Ω can be hier-

archically clustered and the binary tree of its subregions

TΩ = {Ω = Ω0, Ω1, . . . ΩN} can be constructed (bina-

rity of the tree is not essential). Each non-leaf node cor-

responding to the subregion Ωk then has two children

corresponding to the subregions Ωch1(k) and Ωch2(k)

such that Ωch1(k) ⊂ Ωk, Ωch2(k) ⊂ Ωk. Here, ch1(·) and

ch2(·) map the index of the node to the indices of its

children. Also, leaf nodes of the tree are in one-to-one

correspondence with singleton subsets Ωl = {ωt}.
Given such tree, the global minimum of (1) can be

efficiently found using the best-first branch-and-bound

search [11] (Fig. 4). This algorithm propagates a front

of nodes in the top-down direction (Fig. 3). During the

search, the front contains a set of tree nodes, such that

each top-down path from the root to a leaf contains

exactly one active vertex. In the beginning, the front

contains the tree root Ω0. At each step the active node

with the smallest lower bound (2) is removed from the

active front, while two of its children are added to the

active front (by monotonicity property they have higher

or equal lower bounds). Thus, an active front moves to-

wards the leaves making local steps that increase the

lowest lower bound of all active nodes. Note, that at

each moment, this lowest lower bound of the front con-

stitutes a lower bound on the global optimum of (1)

over the whole domain.

At some moment of time, the active node with the

smallest lower bound turns out to be a leaf {ω′}. Let

x′ be the optimal segmentation for ω′ (found via mini-

mum st-cut). Then, E(x′, ω′) = L(ω′) (tightness prop-

erty) is by assumption the lowest bound of the front and

hence a lower bound on the global optimum over the

whole domain. Consequently, (x′, ω′) is a global mini-

mum of (1) and the search terminates without travers-

ing the whole tree. In our experiments, the number of

the traversed nodes was typically very small (two-three

orders of magnitude smaller then the size of the full

tree). Therefore, the algorithm was able to find global

minima much faster than exhaustive search over Ω.

In order to further accelerate the search, we exploit

the coherency between the mincut problems solved at

different nodes. Indeed, the maximum flow as well as

auxiliary structures such as shortest path trees com-

puted for one graph may be “reused” in order to ac-

celerate the computation of the minimal st-cut on an-

other similar graph [5,27]. For some applications, this

trick may give an order of magnitude speed-up for the

evaluation of lower bounds.

In addition to the best-first branch-and-bound search

we also tried the depth-first branch-and-bound [11]. When

problem-specific heuristics are available that give good

initial solutions, this variant may lead to moderate (up

to a factor of 2) time savings. Interestingly, the depth-

first variant of the search, which maintains upper bounds

on the global optimum, may benefit significantly from

the use of flow bounds discussed above. Nevertheless,

we stick with the best-first branch-and-bound for the

final experiments due to its relative simplicity (no need

for initialization heuristics).

In the rest of the paper we detail how the general

framework developed above may be used within differ-

ent segmentation scenarios.
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Algorithm 1 Branch-And-Mincut
Require: domain Ω0,

problem-specific function GetAggregPotentials,

problem-specific function GetChildrenSubdomains

Ensure: (x, ω) = global minimum of the functional
defined by GetAggregPotentials

1: Front = ∅ // initializing the priority queue

2:
[
C0, {F p0 }, {B

p
0}, {P

pq
0 }

]
= GetAggregPotentials(Ω0)

3: LB0 = GetMaxFlowValue
(
{F p0 }, {B

p
0}, {P

pq
0 }

)
+ C0

4: Front . InsertWithPriority(Ω0,−LB0)

5: loop // advancing front

6: Ω =Front . PullHighestPriorityElement()

7: if IsSingleton(Ω) then // global minimum found

8: ω = Ω
9: [C, {F p}, {Bp}, {P pq}] = GetAggregPotentials(ω)

10: x = FindMinimumViaMincut ({F p}, {Bp}, {P pq})
11: return (x, ω)

12: end if

13: [Ω1, Ω2] = GetChildrenSubdomains(Ω)
14:

[
C1, {F p1 }, {B

p
1}, {P

pq
1 }

]
= GetAggregPotentials(Ω1)

15: LB1 = GetMaxFlowValue
(
{F p1 }, {B

p
1}, {P

pq
1 }

)
+ C1

16: Front . InsertWithPriority(Ω1,−LB1)
17:

[
C2, {F p2 }, {B

p
2}, {P

pq
2 }

]
= GetAggregPotentials(Ω2)

18: LB2 = GetMaxFlowValue
(
{F p2 }, {B

p
2}, {P

pq
2 }

)
+ C2

19: Front . InsertWithPriority(Ω2,−LB2)
20: end loop

Fig. 4 The pseudocode for the Branch-and-Mincut algorithm

(the version based on best-first branch-and-bound search). The

way to compute the aggregated potentials are determined by a
problem-specific function GetAggregPotentials, which for a sin-

gleton Ω = {ω} should return the set of potentials defining the
functional itself (for that ω). The hierarchical clustering of the do-

main is determined by another problem-specific function GetChil-

drenSubdomains.

4 Segmentation with Shape Priors

4.1 The Framework for Shape Priors

We start with the segmentation with shape priors. The

success of such segmentation crucially depends on the

way shape prior is defined. Earlier works have often de-

fined this prior as a Gaussian distribution of some ge-

ometrical shape statistics (e.g. control point positions

or level set functions) [44,35]. In reality, however, pose

variance and deformations specific to the object of in-

terest typically lead to highly non-Gaussian, multi-modal

prior distributions. For better modeling of prior distri-

butions, [12] suggested the use of non-parametric kernel

densities. Our approach to shape modeling (Fig. 5) is

similar in spirit, as it also uses exemplar-based prior.

Arguably, it is more direct, since it involves the dis-

tances between the binary segmentations themselves,

rather than their level set functions. Our approach to

shape modeling is also closely related to [22] that used

Fig. 5 Cartoonish visualization of the hierarchy tree in the case

of the segmentation with shape priors. Each node in the tree

corresponds to a set of shapes. The set of leaves correspond to a
set of binary masks defining the shape prior. The bitmaps show

the potentials BΩ and FΩ corresponding to each node (black
= BΩ(·) = 0, FΩ(·) = 1, white = BΩ(·) = 1, FΩ(·) = 0, gray

= BΩ(·) = 0, FΩ(·) = 0). Note that the amount of gray pixels

(corresponding to looseness of the mask defined below increases
from leaves towards the root. A hierarchical clustering should

then cluster together leaves with similar masks.

shape hierarchies to detect or track objects in image

edge maps.

We assume that the prior is defined by the set of

exemplar binary segmentations {yω|ω ∈ Ω}, where Ω

is a discrete set indexing the exemplar segmentations.

Then the following term introduces a joint prior over

the segmentation and the non-local parameter into the

segmentation process:

Eprior(x, ω) = ρ(x,yω) =
∑
p∈V

(1−yωp )·xp+
∑
p∈V

yωp ·(1−xp) ,

(3)

where ρ denotes the Hamming distance between seg-

mentations. This term clearly has the form (1) and

therefore its combinations with other terms of this form

can be optimized within our framework. Being opti-

mized over the domain 2V⊗Ω, this term would encour-

age the segmentation x to be close in the Hamming

distance to one of the exemplar shapes. Note, that the

Hamming distance in the continuous limit may be in-

terpreted as the L1-distance between shapes. It is rela-

tively straightforward to modify the term (3) to replace

the Hamming distance with discrete approximations of

other distances (L2, truncated L1 or L2, data-driven

Mahalonobis distance, etc.).

The full segmentation energy then may be defined

by adding a standard contrast-sensitive edge term [5]:

Eshape(x, ω) = Eprior(x, ω)+
∑
p,q∈E

λ
e−
||Kp−Kq||

σ

|p− q|
·|xp−xq| ,

(4)
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where ||Kp − Kq|| denote the SAD (L1) distance be-

tween RGB colors of the pixels p and q in the image (λ

and σ were fixed throughout the experiments described

in this section), |p−q| denotes the distance between the

centers of the pixels p and q (being either 1 or
√

2 for the

8-connected grid). The functional (4) thus incorporates

the shape prior with edge-contrast cues.

Note the three properties of our approach to seg-

mentation with shape priors. Firstly, since any shapes

can be included in Ωshape, general 3D pose transfor-

mations and deformations can be handled. Secondly,

the segmentations can have general varying topology

not restricted to segments with single-connected bound-

aries. Thirdly, our framework is general enough to in-

troduce other terms in the segmentation process (e.g.

regional terms used in a standard graph cut segmenta-

tion [5]). These properties of our approach are demon-

strated within the experiments below.

4.2 Constructing the Shape Prior

In this subsection we discuss the practical implemen-

tation of the framework introduced above. The main

challenge here is that the set Ωshape in the framework

introduced above could be huge, e.g. tens of millions

exemplars. Therefore, representation and hierarchical

clustering of the exemplar segmentations yω, ω ∈ Ω

can be challenging. Fortunately, this is accomplishable

in many cases when the translation invariance is ex-

ploited. Below, we consider two cases: a more general

one, when the set Ωshape can be defined as a set of seg-

mentations produced by translating multiple template
shapes, and a more specific case, when Ωshape is pro-

duced by translating a single template.

Multiple templates + translation. We start with

a more general case when the shape prior is given by

a set of multiple templates, whereas each template can

be located anywhere within the image.

In this case, the aggregated potentials for each node

of the tree should be precomputed and stored in mem-

ory; translation invariance of the aggregated potentials

should be exploited to make this feasible. We assume

that the set Ωshape is factorized into the Cartesian prod-

uct of two sets Ωshape = ∆⊗Θ. The factor set ∆ indexes

the set of all exemplar segmentations yδ centered at the

origin (this set would typically correspond to the varia-

tions in scale, orientation as well as non-rigid deforma-

tions). The factor set Θ then corresponds to the shift

transformations and ensures the translation invariance

of the prior. Any exemplar segmentation yω, ω = δ ⊗ θ
is then defined as some exemplar segmentation yδ cen-

tered at the origin and then translated by the shift θ.

Being much smaller than Ωshape, both factor sets

can be clustered in hierarchy trees. For the factor set

∆ we used agglomerative bottom-up clustering [36] (a

complete linkeage algorithm as available in Matlab that

uses the Hamming distance between the exemplar seg-

mentations). In accordance with the notations above,

we consider the resulting clustering tree T∆:

T∆ = {∆ = ∆0, ∆1, . . . ∆N} . (5)

Each non-leaf node corresponding to the subtree ∆k

then has two children corresponding to the subtree∆ch1(k)

and ∆ch2(k) such that ∆ch1(k) ⊂ ∆k, ∆ch2(k) ⊂ ∆k.

Here, ch1(·) and ch2(·) map the index of the node to

the indices of its children. Also, leaf nodes of the tree

are in one-to-one correspondence with singleton subsets

∆l = {δt}.
Hierarchical clustering for the set of shifts is eas-

ier, as a simple top-down subdivision may be used. We

assume that overall set of shifts is a rectangle rang-

ing from (0, 0)-shift to a (2K1 − 1, 2K2 − 1). To build

the clustering tree, we then recursively split along the

“longer” dimension. This leads to a tree TΘ:

TΘ = {Θ = Θ0, Θ1, . . . ΘN} , (6)

with the same operators ch1(·) and ch2(·) as above. Im-

portantly, each nodeset Θt is essentially a 2D rectangle

of shifts with the width and height uniquely determined

by the level of Θt in the tree TΘ.

Our goal is then to merge the two resulting trees T∆
and TΘ into a combined tree TΩ . Each nodeset Ωt in

the combined tree is defined by a pair ∆p(t)⊗Θq(t), i.e.

by all shapes contained in the subtree ∆p(t) translated

by all shifts in the subtree Θq(t) (here, p(t) and q(t)
denote the mappings from the nodeset indices in TΩ to

the nodeset indices in T∆ and TΘ). We can then define

the looseness of a nodeset Ωt as the number of pixels

that change their mask value under different shapes in

Ωt:

Λ(Ωt) = | {p | ∃ δ1, θ1 :

yδ1⊗θ1p = 0 ∧ ∃ δ2, θ2 : yδ2⊗θ2p = 1
}
| (7)

In other words, if we consider the two aggregated masks

FΩt = {F pΩt} and BΩt = {BpΩt} (derived from (3)),

then the looseness is defined as the number of pixels p

that are zero in both masks (F pΩt = 0 and BpΩt = 0).

Given this definition of looseness the combined tree

is built in a recursive top-down fashion. We start by

creating a root nodeset Ω0 = ∆0⊗Θ0. Given a nodeset

Ωt = ∆p(t)⊗Θq(t), we then consider two possible splits:

– Split along the shape dimension into ∆ch1(p(t)) ⊗
Θq(t) and ∆ch2(p(t)) ⊗Θq(t).
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Exemplars yω (30,000,000 total)

Non-local shape prior+Edge cues (Branch-and-Mincut) Intensity+Edge cues

Fig. 6 Using the shape prior constructed from the set of exemplars (left column) our approach can accomplish segmentation of

an object undergoing general 3D pose changes within two differently illuminated sequences (two middle columns). Note the varying
topology of the segmentations. For comparison, we give the results of a standard graph cut segmentation (right column): even with

parameters tuned specifically to the test images, separation is very inaccurate.

– Split along the shift dimension into ∆p(t)⊗Θch1(q(t))

and ∆p(t) ⊗Θch2(q(t)).

Then the split that minimizes the sum of loosenesses

is preferred, the resulting two nodesets are added into

the combined tree and the recursion proceeds. At some

point, splitting along one of the dimensions becomes

impossible as the respective leaf is reached in one of

the two factor trees. In this case, we naturally split

along the other dimension. The recursion stops when

the leaf level is reached within both the shape and the

shift trees.

The algorithm described above is still inefficient as

it needs to visit each of the many million nodes in the

combined tree during the preprocessing stage. One may

notice however, that the translational invariance of the

shift tree TΘ may be exploited. Indeed, consider the

two shift nodesets Θm and Θn on the same level of the

TΘ tree (e.g. the siblings of the same parent). Being on

the same level, they represent the same set of transla-

tions just shifted with respect to each other. Therefore,

given any shape nodeset ∆t from the shape tree T∆,

the product sets ∆t ⊗ Θm and ∆t ⊗ Θn will have the

same looseness measure and their aggregated masks will

differ only by a global translation.

Consequently, when one splits along the shift di-

mension, there is no need to track both subtrees ∆p(t)⊗
Θch1(q(t)) and ∆p(t)⊗Θch2(q(t)) in the recursion, as they

will be identical in terms of the aggregated masks (up

to a global translation) as well as in terms of loose-

ness and the order of further splits along different di-

mensions. Thus, the practical implementation of the

tree construction algorithm does not follow the second

branch when the split is performed along the shift di-

mension. As such, only the shift sets with the top-left

corners at zero will be considered during the pass.

Thus, the algorithm essentially makes a top-down

pass over the shape tree T∆ and augments each node-

set ∆t there with the information about which range

of layers of the shift tree TΘ are paired with this shape

node. In other words, the rule recorded at the shape

nodeset ∆t is “if the level lev(∆t) of the shift tree is not

reached, split along the shift dimension, otherwise split

along the shape dimension (and recurse down the shape

tree)”, where lev(∆t) is a “critical” level for this partic-

ular shape nodeset. During the top-down construction

pass, the algorithm also precomputes and stores the re-

spective aggregated masks FΩs and BΩs . Once again,

only the masks corresponding to the products with the

shift sets with the top-left corner at zero are precom-

puted and stored.

At runtime the constructed trees and shape masks

are loaded to memory. Then, the full product tree TΩ
is traversed. Consider some point of the branch-and-

bound process, when each element of the front Ωt cor-

responds to a pair ∆p(t)⊗Θq(t). To evaluate the bound

(2) at the node, the aggregated potentials are retrieved

as the precomputed masks based on the shape compo-
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nent ∆p(t) and the size (tree level) of the shift compo-

nent Θq(t). The retrieved mask is then shifted according

to the top-left point of Θq(t). Likewise, when there is a

need to propagate the front at node ∆p(t)⊗Θq(t), then

one of the two splits is performed according to the in-

formation precomputed and stored at ∆p(t) (if the level

lev(∆p(t)) in the shift tree is reached then split along

the shape dimension, otherwise split along the shift di-

mension).

Single template + translation. In the case when

the set ∆ contains a single shape δ0 with the corre-

sponding shape mask y0, it is possible to avoid the

precomputation and storage of multiple templates. In-

stead, only an integral image of y0 has to be precom-

puted and stored in memory. Consider a sub-tree t de-

fined by a set of shifts Θt (note that the mapping q(·)
in the case of single object is identity). Consider then

a pixel p of the image and the task of computing the

value F pΩt . Denote with R(p,Θt) a rectangle defined by

shifting pixel p by all shifts d, where −d ∈ Θt. In other

words, R(p,Θt) is a “backprojection” of p under shifts

in Θt. Then F pΩt can be computed as:

F pΩt =

{
1, if R(p,Θt) ∩ y0 = ∅
0, otherwise

(8)

Likewise, BpΩt can be computed as:

BpΩt =

{
1, if R(p,Θt) ∩ y0 = R(p,Θt)

0, otherwise
(9)

Expressions (8) and (9) can be evaluated in a con-

stant number of operations independent of the size ofΘt
using the integral image computed on the shape mask

y0. Thus, it is enough to check whether the sum over

R(p,Θt) is equal 0 (in the case of (8)) or whether this

sum is equal to the size of R(p,Θt) (in the case of (9)).

Note that similar integral-image-based approach can be

employed when the set Ω can be defined as a single

shape δ0 under a range of translations as well as scal-

ings (it is possible to have different scaling factors along

horizontal and vertical image dimensions). This is be-

cause in this more general case, the “back-projection”

of a pixel into y0 is still a rectangle.

4.3 Experiments with Shape Priors

The experiments below demonstrate the capability of

branch-and-mincut to compute globally optimal seg-

mentations under shape priors. In all cases, we used the

more general implementation of the framework (multi-

ple templates + translation).

Single object+3D pose changes. In our first ex-

periment, we constructed a shape prior for a single ob-

ject (a coffee cup) undergoing 3D pose changes. We ob-

tained a set of outlines using “blue-screening”. We then

normalized these outlines (by centering at the origin, re-

sizing to a unit scale and orienting the principle axes

with the coordinate axes). After that we clustered the

normalized outlines using k-means. A representative of

each cluster was then taken into the exemplar set. After

that we added scale variations, in-plane rotations, and

translations. As a result, we got a set {yω|ω ∈ Ωshape}
containing about 30,000,000 exemplar shapes (while the

set ∆ contained about 1900 shapes).

The results of the global optimization of the func-

tional (4) for the frames from the two sequences con-

taining clutter and camouflage are shown in Fig. 6. On

average, we observed that segmenting 312x272 image

took about 30 seconds of an Intel-2.40 GHz CPU and

less than 1 Gb of RAM. The proportion of the nodes

of the tree traversed by the active front was on aver-

age about 1 : 5000 (computed on the frames of two

videos with 500 frames). Thus, branch-and-bound tree

search used in our framework improved very consider-

ably over exhaustive search, which would have to tra-

verse all leaves (1 : 2 of the tree).

As a baseline algorithm, we considered the segmen-

tation with a “standard” graph cut functional, replac-

ing non-local shape prior term with a local intensity-

based term
∑
p∈V(I − Ip)·xp, adjusting the constant I

for each frame so that it gives the best results. How-

ever, since the intensity distributions of the cup and

the backgrounds overlapped significantly, the segmen-

tations were grossly erroneous (Fig. 6 – right column).

Object class+translation invariance. In the sec-

ond experiment, we performed the segmentation with

shape priors on UIUC car dataset [1] (the version with-

out scale variations), containing 170 images with cars in

uncontrolled environment (city streets). The prior set ∆

was built by manual segmentation of 60 training images

coming with the dataset. The set of shifts Θ was defined

by the varying size of test images. While the test image

sizes varied from 110x75 to 360x176, the size of Ωshape

varied from 18,666 to 2,132,865. We computed the glob-

ally optimal segmentations under the constructed prior

using the energy (4).

Using the bounding boxes of the cars provided with

the dataset, we found that in 6.5% of the images the

global minima corresponded to clutter rather than cars.

To provide a baseline for localization accuracy based on

edge cues and a set of shape templates, we considered

Chamfer matching (as e.g. in [22]). For the comparison

we used the same set of templates, which were matched

against truncated Canny-based chamfer distance (with
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Fig. 7 Results of the global optimization of (10) on some of the 170 UIUC car images including 1 of the 2 cases where localization

failed (bottom left). In the case of the bottom right image, the global minimum of (4) (yellow) and the result of our feature-based
car detector (blue) gave erroneous localization, while the global minimum of their combination (10) (red) represented an accurate

segmentation.

optimally tuned truncation and Canny sensitivity pa-

rameters). In this way, the optimal localization failed

(i.e. corresponded to clutter rather than a car) in 12.4%

of the images.

Clearly, segmenting images using (4) takes into ac-

count the shape prior and edge-contrast cues, but ig-

nores the appearance typical for the object category

under consideration. At the same time, there exists a

large number of algorithms working with image appear-

ance cues and performing object detection based on

these cues (see e.g. [32] and references therein). Typi-

cally, such algorithms produce the likelihood of the ob-

ject presence either as a a function of a bounding box

or even in the form of per-pixel “soft segmentation”

masks. Both types of the outputs can be added into

the functional (1) either via constant potential C(Ω)

or via unary potentials. In this way, such appearance-

based detectors can be integrated with shape prior and

edge-contrast cues.

As an example of such integration, we devised a sim-

ple detector similar in spirit to [32]. The detector looked

for the appearance features typical for cars (wheels)

using normalized cross-correlation. Each pixel in the

image then “voted” for the location of the car center

depending on the strength of the response to the de-

tector and the relative position of the wheels with re-

spect to the car center observed on the training dataset.

We then added an additional term Cvote(ω) in our en-

ergy (1) that for each ω equaled minus the accumulated

strength of the votes for the center of yω:

Eshape&detect(x, ω) = Cvote(ω) + Eprior(x, ω)+∑
p,q∈E

λ
e−
||Kp−Kq||

σ

|p− q|
·|xp − xq| , (10)

Adding the appearance-based term improved the ro-

bustness of the segmentation, as the global optima of

(10) corresponded to clutter only in 1.2% of the images.

The global minima found for some of the images are

shown in Fig. 7. Note, that for our simple detector on

its own the most probable bounding box corresponded

to clutter on as much as 14.7% of the images.

In terms of the performance, on average (over the

170 test images in the UIUC car dataset), for the func-

tional (10) the segmentation took 1.8 seconds and the

proportion of the tree traversed by the active front was

1 : 441. For the functional (4), the segmentation took

6.6 seconds and the proportion of the tree traversed

by the active front was 1 : 131. This difference in per-

formance is natural to branch-and-bound methods: the

more difficult and ambiguous is the optimization prob-

lem, the larger is the portion of the tree that has to be

investigated.

5 Segmentation with Color/Intensity Priors

Our framework can also be used to impose non-local

priors on the intensity or color distributions of the fore-

ground and background segments, as the examples be-

low demonstrate.

5.1 Segmenting Grayscale Images: Chan-Vese

Functional

In [10] Chan and Vese have proposed the following pop-

ular functional for the variational image segmentation

problem:

E(S, cf , cb) = µ

∫
∂S

dl + ν

∫
S

dp+

λ1

∫
S

(
I(p)− cf

)2

dp+ λ2

∫
S̄

(
I(p)− cb

)2

dp ,

(11)

where S denotes the foreground segment, S̄ denotes the

background segment, and I(p) is a grayscale image. The

first two terms measure the length of the boundary and

the area, the third and the forth terms are the inte-

grals over the fore- and background of the difference

between image intensity and the two intensity values
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183x162, time=3s,

proportion=1:115

300x250, time=4s,

proportion=1:103

385x264, time=16s,

proportion=1:56

371x255, time=21s,

proportion=1:98

Fig. 8 The global minima of the Chan-Vese functional for medical and aerial images. These global minima were found using our

framework in the specified amount of time; specified proportion of the tree was traversed.

cf and cb, which correspond to the average intensities

of the respective regions. Traditionally, this functional

is optimized using level set framework [37] converging

to one of its local minima.

Below, we show that the discretized version of this

functional can be optimized globally within our frame-

work. Indeed, the discrete version of (11) can be written

[45,14,34,23,3,16] as (using notation as before):

E(x, (cf , cb)) =
∑
p,q∈E

µ

|p− q|
·|xp − xq|+

∑
p∈V

(
ν + λ1(I(p)− cf )2

)
·xp+

∑
p∈V

λ2

(
I(p)− cb

)2

·(1− xp) .

(12)

Here, the first term approximates the first term of (11)

multiplied by a constant (the accuracy of the approxi-

mation and the constant depend on the size of the pixel

neighborhood [6]), and the last two terms express the

last three terms of (11) in a discrete setting.

The functional (12) clearly has the form (1) with

non-local parameter ω = {cf , cb}. Discretizing intensi-

ties cfand cb into 255 levels and building a quad-tree

over their joint domain, we can apply our framework to

find the global minima of (11). Example globally opti-

mal segmentations are shown on Fig. 8.

Measuring the efficiency of Branch-and-Mincut.

For the particular case of the Chan-Vese functional, it is

easy to measure the efficiency of our branch-and-bound

procedure for the varying size of the non-local parame-

ter set. To do that, we varied the number of discretiza-

tion levels, setting it to both higher and lower values

than 256. For one of the examples (Fig. 8-left), we then

measured the number of calls to the bound made by our

procedure as a function of |Ω|. The result (in Fig. 9)

verifies the clear sublinear growth of this quantity, thus

demonstrating the efficacy of the branch-and-bound in

our case.

Does global optimality matter for the Chan-

Vese case? The recent graph-based algorithms [45,23,

Fig. 9 As the size of the the non-local parameter set |Ω| (x-axes)

grows, the plots demonstrate the number of calls to the mincut
(left) and the ratio between the size of Ω to the number of mincut

call (speed-up – right). Both plots demonstrate that the branch-

and-mincut scales sublinearly (verified by a sublinear growth on
the left and monotonic growth on the right) with the size of Ω.

This experiment was performed for the Chan-Vese segmentation
of one of the images.

16] developed efficient schemes based on the EM-style

iterations that alternate the graph cut step with the

reestimation of cf and cb. While these approaches lack

the global optimality guarantees provided by our ap-

proach (as well as [14,3,9]), the alternation-based ap-

proach provides a huge speed advantage. We have im-
plemented the alternation-based scheme for the energy

(12) and found out that over several dozens of examples

the alternation scheme always converged to the global

optimum (centered rectangle half the size of the im-

age was used for the initialization). Needless to say, the

global optima did not always correspond to the accurate

or meaningful segmentations. One may therefore con-

clude 1) that the lack of global optimality guarantees

for alternation-based schemes do not have any practi-

cal significance in the case of the (two-phase) Chan-

Vese functional and 2) that the functional itself (not

the optimization schemes) is not suitable for some of

the segmentation tasks that we have considered.

5.2 Segmenting Color Images: GrabCut functional

In [38], the GrabCut framework for the interactive color

image segmentation based on Gaussian mixtures was

proposed. In GrabCut, the segmentation is driven by



12

the following energy:

EGrabCut(x, (GM
f , GM b)) =∑

p∈V
− log(P(Kp|GMf ))·xp+∑

p∈V
− log(P(Kp|GM b))·(1− xp)+

∑
p,q∈E

λ1 + λ2·e−
||Kp−Kq||2

β

|p− q|
·|xp − xq| .

(13)

Here, GMf and GM b are Gaussian mixtures in RGB

color space and the first two terms of the energy mea-

sure how well these mixtures explain colors Kp of pixels

attributed to foreground and background respectively.

The third term is the contrast sensitive edge term, en-

suring that the segmentation boundary is compact and

tends to stick to color region boundaries in the image.

In addition to this energy, the user provides supervi-

sion in the form of a bounding rectangle and brush

strokes, specifying which parts of the image should be

attributed to the foreground and to the background.

The original method [38] minimizes the energy within

EM-style process, alternating between (i) the minimiza-

tion of (13) over x given GMf and GM b and (ii) refit-

ting the mixtures GMf and GM b given x. Despite the

use of the global graph cut optimization within the seg-

mentation update step, the whole process yields only

a local minimum of (13). In [38], the segmentation is

initialized to the provided bounding box and then typ-

ically shrinks to one of the local minima.

The energy (13) has the form (1) and therefore can

be optimized within Branch-and-Mincut framework, pro-

vided that the space of non-local parameters (which in

this case is the joint space of the Gaussian mixtures for

the foreground and for the background) is discretized

and the tree of the subregions is built. In this scenario,

however, the dense discretization of the non-local pa-

rameter space is infeasible (if the mixtures contain n

Gaussians then the space is described by 20n−2 contin-

uous parameters)2. It is possible, nevertheless, to choose

a much smaller discrete subset Ω that is still likely to

contain a pair of mixtures corresponding to the lower-

energy bassin of attraction and better segmentation.

To construct such Ω, we fit a mixture of M = 8

GaussiansG1, G2, ...GM with the support areas a1, a2, ...aM
to the whole image. The support area ai here counts the

2 In fact, the global minimum of the GrabCut functional over

the set of all Gaussian mixtures is not well defined, because fitting
Gaussian mixture to data without additional regularization can

achieve arbitrarily high likelihood/low energy. Restricting the set

of all mixtures to a large discrete subset done in our case can thus
be regarded as a variant of a necessary regularization on mixture

parameters.

number of pixels p such as ∀j P(Kp|Gi) ≥ P(Kp|Gj).
We assume that the components are ordered such that

the support areas decrease (ai > ai+1). Then, the Gaus-

sian mixtures we consider are defined by the binary

vector β = {β1, β2 . . . βM} ∈ {0, 1}M specifying which

Gaussians should be included into the mixture, so that:

P(K|GM(β)) =
∑
i

βiaiP(K|Gi) /
∑
i

βiai . (14)

The overall set Ω is then defined as {0, 1}2M , where

odd bits correspond to the foreground mixture vector

βf and even bits correspond to the background mixture

vector βb. Vectors with all even bits and/or all odd bits

equal to zero do not correspond to meaningful mixtures

and are therefore assigned an infinite cost. The hierar-

chy tree is naturally defined by the bit-ordering (the

first bit corresponding to subdivision into the first two

branches etc.).

Depending on the image and the value of M , the

solutions found by Branch-and-Mincut framework may

have larger or smaller energy (13) than the solutions

found by the original EM-style method [38]. This is

because Branch-and-Mincut here finds the global op-

timum over the subset of the domain of (13) while

[38] searches locally but within the continuous domain.

However, for all 15 images in our experiments, improv-

ing Branch-and-Mincut solutions with a few EM-style

iterations [38] gave lower energy than the original so-

lution of [38]. In most cases, these additional iterations

simply refit the Gaussians properly and change very few

pixels near boundary (see Fig. 10).

In terms of performance, for M = 8 the segmenta-

tion takes on average a few dozen seconds (10s and 40s

for the images in Fig. 10) for 300x225 image. The pro-

portion of the tree traversed by an active front is one

to several hundred (1:963 and 1:283 for the images in

Fig. 10).

This experiment suggests the usefulness of Branch-

and-Mincut framework as a mean of obtaining good

initial point for local methods, when the domain space

is too large for an exact branch-and-bound search.

6 Discussion

The Branch-and-Mincut framework presented in this

paper finds global optima of a wide class of energies

dependent on the image segmentation mask and non-

local parameters. The joint use of branch-and-bound

and graph cut allows efficient traversal of the solution

space. The developed framework is useful within a va-

riety of image segmentation scenarios, including seg-

mentation with non-local shape priors and non-local

color/intensity priors.
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Image+input GrabCut[38](−618) Branch&Mincut(−624) Combined(−628)

Image+input GrabCut[38](−593) Branch&Mincut(−584) Combined(−607)

Fig. 10 Being initialized with the user-provided bounding rectangle (shown in green in the first column) as suggested in [38], EM-

style process [38] converges to a local minimum (the second column). Branch-and-Mincut result (the third column) escapes that local
minimum and after EM-style improvement lead to the solution with much smaller energy and better segmentation accuracy (the forth

column). Energy values are shown in brackets.

One notable characteristic of the presented opti-

mization framework is that it is derivative-free. This

makes it applicable to the situations when the deriva-

tives (variations) of the functionals cannot be easily

computed (e.g. this allows our method to use shape

priors represented as a mere collection of segmenta-

tion exemplars). The ignorance about derivatives, of

course, mean that in some situations, when the deriva-

tives (variation) of the functionals can be computed,

the speed of the proposed framework would be inferior

to other optimization methods that use derivatives.

When the speed of Branch-and-Mincut is not suffi-

cient for its practical deployment, it can still be useful

to improve and to get insight into the performance of

segmentation methods. In general, in the case of poor

segmentation results obtained with methods based on

local optimization, it is not possible to tell for sure

whether the failure is because of inappropriate func-

tional or inappropriate optimization method. In such

cases, obtaining global minima with branch-and-mincut

allows to find out which of the two reasons really mat-

ters. Towards this end, our experiments demonstrate

that failures of Chan-Vese functional are always caused

by the properties of the functional itself (not the opti-

mization), while for the case of GrabCut, improving the

optimization might bring improvement in segmentation

accuracy in many situations.

Finally, it is worth noting that the branch-and-bound

approach presented in this paper can be extended to

other combinatorial optimization methods that are pop-

ular in structural image processing, such as multilabel

MRF inference or minimum ratio cycles, in a way that

the power of the corresponding combinatorial algorithm

is exploited “along” the low- (e.g. pixel)-level variables

in the energy, while branch-and-bound is used to search

“along” the dimensions corresponding to non-local pa-

rameter. For the case of tree-based multi-label inference

(pictorial structures), we provide such an example in

[33].
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Appendix

Corollary. The bound (2) is monotonic, i.e. if Ω1 ⊂ Ω2

then L(Ω1) ≥ L(Ω2).

Proof. Let us denote with A(x, Ω) the expression

within the outer minimum of (2):

A(x, Ω) =

min
ω∈Ω

C(ω) +
∑
p∈V

min
ω∈Ω

F p(ω)·xp+

∑
p∈V

min
ω∈Ω

Bp(ω)·(1− xp) +
∑
p,q∈E

min
ω∈Ω

P pq(ω)·|xp − xq|

 .

(15)

Then, (2) reformulates as:

L(Ω) = min
x∈2V

A(x, Ω) . (16)

Assume Ω1 ⊂ Ω2. Then, for any fixed x, for all

pixels p and edges p, q ∈ E , the following inequalities
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hold:

min
ω∈Ω1

C(ω) ≥ min
ω∈Ω2

C(ω) (17)

min
ω∈Ω1

F p(ω)·xp ≥ min
ω∈Ω2

F p(ω)·xp (18)

min
ω∈Ω1

Bp(ω)·(1− xp) ≥ min
ω∈Ω2

Bp(ω)·(1− xp) (19)

min
ω∈Ω1

P pq(ω)·|xp − xq| ≥ min
ω∈Ω2

P pq(ω)·|xp − xq|. (20)

This is because, firstly, all values xp, 1−xp, and |xp−xq|
are non-negative (recall that all xp takes the value of

0 or 1) and, secondly, all minima on the left side are

taken over a subset of the domain of the same minima

on the right side.

Summing up inequalities (17)–(20) over all pixels p

and edges p, q and taking into account the definition

(15), we get:

∀x A(x, Ω1) ≥ A(x, Ω2) , (21)

i.e. monotonicity holds for any fixed x.

Let x1 be the segmentation delivering the global

optimum of A(x, Ω1): x1 = arg minx∈2V A(x, Ω1). Let

x2 be the segmentation delivering the global optimum

of A(x, Ω2): x2 = arg minx∈2V A(x, Ω2). Then, from the

definition (15) and the monotonicity (21), one gets:

L(Ω1) = A(x1, Ω1) ≥ A(x1, Ω2) ≥ A(x2, Ω2) = L(Ω2) ,

(22)

which concludes the proof.


