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a b s t r a c t

Visual categorization problems, such as object classification or action recognition, are increasingly
often approached using a detection strategy: a classifier function is first applied to candidate
subwindows of the image or the video, and then the maximum classifier score is used for class
decision. Traditionally, the subwindow classifiers are trained on a large collection of examples
manually annotated with masks or bounding boxes. The reliance on time-consuming human labeling
effectively limits the application of these methods to problems involving very few categories.
Furthermore, the human selection of the masks introduces arbitrary biases (e.g., in terms of window
size and location) which may be suboptimal for classification. We propose a novel method for
learning a discriminative subwindow classifier from examples annotated with binary labels indicat-
ing the presence of an object or action of interest, but not its location. During training, our approach
simultaneously localizes the instances of the positive class and learns a subwindow SVM to recognize
them. We extend our method to classification of time series by presenting an algorithm that localizes
the most discriminative set of temporal segments in the signal. We evaluate our approach on several
datasets for object and action recognition and show that it achieves results similar and in many cases
superior to those obtained with full supervision.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Object categorization systems aim at recognizing the classes of
the objects present in an image, independently of the background.
Early computer vision methods for object categorization
attempted to build robustness to background clutter by using
image segmentation as preprocessing. It was hoped that segmen-
tation methods could partition images into their high-level con-
stituent parts, and categorization could then be simply carried out
as recognition of the object classes corresponding to the segments.
This naive strategy to categorization floundered on the challenges
presented by bottom-up image segmentation. The difficulty of
partitioning an image into objects purely based on low-level cues
is now well understood and it has led in recent years to a
flourishing of methods where bottom-up segmentation is assisted
by concurrent top-down recognition [1–6]. However, the applica-
tion of these methods has been limited in practice by (a) the
challenges posed by the acquisition of detailed ground truth
segmentations needed to train these systems, and (b) the high
computational complexity of semantic segmentation, which

requires solving the classification problem at the pixel-level.
An efficient alternative is provided by object detection methods,
which can perform object localization without requiring pixel-
level segmentation. Object detection algorithms operate by eval-
uating a classifier function at many different subwindows of the
image and then predicting the object presence in subwindows
with high-score. This methodology has been applied with great
success to a wide variety of object classes [7–11]. Recent work [12]
has shown that efficient computation of classification maxima
over all possible subwindows of an image is even possible for
highly sophisticated classifiers, such as Support Vector Machines
(SVMs) with spatial pyramid kernels. Although great advances
have been made in terms of reducing the computational complex-
ity of object detection algorithms, their accuracy has remained
dependent on the amount of human-annotated data available to
train them. Subwindows (or bounding boxes) are obviously less-
time consuming to collect than detailed segmentations. However,
the dependence on human work for training inevitably limits the
scalability of these methods. Furthermore, not only the amount of
ground truth data but also the characteristics of the human
selections may affect the detection. For example, it has been
shown [8] that the specific size and location of the selections
may have a significant impact on performance. In some cases,
including a margin around the bounding box of the training
selections will lead to better detection because of statistical
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correlation between the appearance of the region surrounding the
object (often referred to as the “spatial context”) and the category
of the object (e.g., cars tend to appear on roads). However, it is
rather difficult to tune the amount ofcontext to include for optimal
classification. The problem is even more acute for the case of
categorization of time series. Consider the task of automatically
monitoring the behavior of an animal based on its body move-
ment. It is safe to believe that the intrinsic differences between the
distinct animal activities (e.g., drinking, exploring) do not appear
continuously in the examples but are rather associated with
specific movement patterns (e.g., the turning of the head, a short
fast-pace walk) possibly occurring multiple times in the
sequences. Thus, as for the case of object categorization, classifica-
tion based on comparisons of the whole signals is unlikely to yield
good performance. However, if we asked a person to localize the
most discriminative patterns in such sequences, we would obtain
highly subjective annotations, unlikely to be optimal for the
training of a classifier.

In this paper we propose a novel framework, based on
multiple-instance learning [13,14], that simultaneously localizes
the most discriminative subwindows in the data and learns a
classifier to distinguish them. Our algorithm requires only the
class labels as annotation for the training examples, and thus
eliminates the high cost and arbitrariness of human ground
truth selections. In the case of object categorization, our method
optimizes an SVM classification objective with respect to both
the classifier parameters and the subwindows containing the
object of interest in the positive image examples. In the case of
classification of time series, we relax the subwindow contiguity
constraint in order to discover discriminative patterns which
may occur discontinuously over the observation period. Specifi-
cally, we allow the discriminative patterns to occur in at most k
disjoint time-intervals, where k is a problem-dependent tunable
parameter of our system. The algorithm solves for the locations and
durations of these intervals while learning the SVM classifier. We
demonstrate our approach on several object and activity recognition
datasets and show that our weakly supervised classifiers consistently
match and often surpass the accuracy of SVMs trained under full
supervision.

2. Previous work

This section reviews related work on weakly supervised loca-
lization and multiple instance learning.

2.1. Weakly supervised localization

Most prior work on weakly supervised object localization and
classification is based on the use of region or part-based gen-
erative models. Fergus et al. [15] represent objects as flexible
constellation of parts by learning probabilistic models of both the
appearance as well as the mutual position of the parts. Parts are
selected from points found by a feature detector. Classification of a
test image is performed in a Bayesian fashion by evaluating the
detected features using the learned model. The performance of
this system rests completely on the ability of the feature detector
to fire consistently at points corresponding to the learned parts of
the model. Russell et al. [16] instead propose an unsupervised
algorithm to discover objects and associated segments from a large
collection of images. Multiple segmentations are computed from
each image by varying the parameters of a segmentation method.
The key-assumption is that each object instance is correctly
segmented at least once and that the features of correct segments
form object-specific coherent clusters discoverable using latent
topic models from text analysis. Although the algorithm is shown

to be able to discover many different types of objects, its effec-
tiveness as a categorization technique is unclear. Another line
of research on unsupervised segmentation is the so-called
co-segmentation task [17], where the goal is to extract automati-
cally a common region of interest from a pair of (or multiple)
images, where the region of interest is a pixel-accurate segmenta-
tion. While recent work has shown quite good results, e.g., [18,19],
the utilized objective functions were mostly hand-crafted, and
furthermore these approaches have not been applied to object and
time series categorization. Cao and Fei-Fei [20] further extend the
latent topic model by assuming that a single topic model is
responsible for generating the image patches within each region
of the image, thus enforcing spatial coherence within each
segment. Todorovic and Ahuja [21] describe a system that learns
tree-based representations of multiscale image segmentations via
a subtree matching algorithm. A multitude of algorithms based on
Multiple Instance Learning (MIL) have been recently proposed for
training object classifiers with weakly supervised data (see
[13,14,22–26] for a sampling of these techniques). Most of these
methods view images as bags of segments, traditionally computed
using bottom-up segmentation or fixed partitioning of the image
into blocks. Then MIL trains a discriminative binary classifier
predicting the class of segments, under the assumption that each
positive training image contains at least one true-positive segment
(corresponding to the object of interest), while negative training
images contain none. However, these approaches incur the same
problem faced by the early segmentation-based recognition sys-
tems: segmentation from low-level cues is often unable to provide
semantically correct segments. Galleguillos et al. [27] attempt to
circumvent this problem by providing multiple segmentations to
the MIL learning algorithm in the hope that one of them is correct.
The approach we propose does not rely on unreliable segmenta-
tion methods as preprocessing. Instead, it performs localization
while training the classifier. This approach has also been adopted
in a number of recent works [28–30], proposed at the same time
or after our initial work was published [31]. However, these
methods require either more annotation (e.g., 10% of training
images is fully annotated [30]) or stronger starting points (e.g.,
object detectors of other classes [29]), and they use different
classifiers such as boosting [28], Conditional Random Fields [29],
Structure-Output SVM [30]. Our work can also be viewed as an
extension of feature selection methods, in which different features
are selected for each example. The idea of joint feature selection
and classifier optimization has been proposed before, but always
in combination with strongly labeled data. Schweitzer [32] pro-
poses a linear time algorithm to select jointly a subset of pixels and
a set of eigenvectors that minimize the Rayleigh quotient in Linear
Discriminant Analysis. Nguyen and De la Torre [33] propose a
convex formulation to simultaneously select the most discrimina-
tive pixels and optimize the SVM parameters. However, both
aforementioned methods require the training data to be well
aligned and the same set of pixels is selected for every image.
Felzenszwalb et al. [34] describe Latent SVM, a powerful classifica-
tion framework based on a deformable part model. However, also
this method requires knowing the bounding boxes of foreground
objects during training. Finally, Blaschko and Lampert [35] use
supervised structured learning to improve the localization accuracy
of SVMs.

The literature onweakly supervised or unsupervised localization
and categorization applied to time series is fairly limited compared
to the object recognition case. Buehler et al. [36] learn British sign
language using weakly aligned scripts. Zhong et al. [37] detect
unusual activities in videos by clustering equal-length segments
extracted from the video. The segments falling in isolated clusters
are classified as abnormal activities. Fanti et al. [38] describe
a system for unsupervised human motion recognition from videos.
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Appearance and motion cues derived from feature tracking are used
to learn graphical models of actions based on triangulated graphs.
Niebles et al. [39] tackle the same problem but represent each video
as a bag of video words, i.e., quantized descriptors computed at
spatial-temporal interest points. An EM algorithm for topic models
is then applied to discover the latent topics corresponding to the
distinct actions in the dataset. Localization is obtained by comput-
ing the MAP topic of each word.

2.2. Multiple instance SVMs

This section reviews Multiple-Instance SVMs (MI-SVMs) [14], a
particular type of multiple instance learning [13,22] which our
method is based on. MI-SVMs input a set of positive bags
fBþ

i ji¼ 1;…;nþ g and a set of negative bags fB�
j jj¼ 1;…;n� g

(see footnote 1 for an explanation of the notation).1 Each positive
bag contains at least one positive instance while no negative bag
contains positive instances. MI-SVMs learn an SVM for classifica-
tion by solving the following constraint optimization:

minimize
w;b

1
2 JwJ2; ð1Þ

s:t: max
xABþ

i

wTφðxÞþbZ1 8 i¼ 1;…;nþ ; ð2Þ

max
xAB�

j

wTφðxÞþbr�1 8 j¼ 1;…;n�: ð3Þ

here φðxÞ denotes the feature vector for the instance x. The
constraints appearing in this objective state that each positive
bag must contain at least one instance classified as positive, and
that all instances in each negative bag must be classified as
negative. The goal is then to maximize the margin subject to these
constraints. By optimizing this problem MI-SVMs obtain an SVM,
i.e., parameters ðw; bÞ. As in the traditional formulation of SVM, the
constraints are allowed to be violated by introducing slack vari-
ables:

minimize
w;b;fαig;fβjg

1
2
JwJ2þC ∑

nþ

i ¼ 1
αiþC ∑

n�

j ¼ 1
βj; ð4Þ

s:t: max
xABþ

i

wTφðxÞþbZ1�αi 8 i¼ 1;…;nþ ; ð5Þ

max
xAB�

j

wTφðxÞþbr�1þβj 8 j¼ 1;…;n�; ð6Þ

αiZ0 8 i¼ 1;…;nþ ;

βjZ0 8 j¼ 1;…;n�:

here C is the parameter controlling the trade-off between having a
large margin and less constraint violation.

3. Localization–classification SVM

In this section we first propose an algorithm to simultaneously
localize objects of interest and train an SVM. We then extend it to
classification of time series by presenting an efficient algorithm to
identify in the signal an optimal set of discriminative segments,
which are not constrained to be contiguous.

3.1. The learning objective

Assume we are given a set of positive training images
fdþ

i ji¼ 1;…;nþ g and a set of negative training images
fd�

j jj¼ 1;…;n� g corresponding to weakly labeled data with labels
indicating for each example the presence or absence of an object
of interest. Let LSðdÞ denote the set of all possible subwindows of
image d. For a subwindow xALSðdÞ, let φðxÞ be the feature vector
computed from the image subwindow.

We use MI-SVM to learn an SVM for joint localization and
classification by setting Bþ

i ¼LSðdþ
i Þ; B�

j ¼LSðd�
j Þ. This reflects

the requirement that each positive image must contain at least one
subwindow classified as positive, and that all subwindows in each
negative image must be classified as negative. The goal is then to
maximize the margin subject to these constraints. By optimizing
this problem we obtain an SVM, i.e., parameters ðw;bÞ, that can be
used for localization and classification. Given a new testing image
d, localization and classification are done as follows. First, we find
the subwindow x̂ yielding the maximum SVM score:

x̂ ¼ argmax
xALSðdÞ

wTφðxÞ: ð7Þ

If the value of wTφðx̂Þþb is positive, we report x̂ as the detected
object for the test image. Otherwise, we report no detection.

Our objective is in general non-convex. We optimize this
objective using a coordinate descent approach that alternates
between optimizing the objective w.r.t. parameters ðw; b; fαig,
fβjgÞ and finding the subwindows of positive images fdþ

i g that
maximize the SVM scores. This alternating approach is guaranteed
to converge to a critical point. Every iteration of this alternating
approach requires optimizing the objective w.r.t. parameters
w; b; fαig; fβjg while fixing the subwindows of images fdþ

i g. This
sub-problem is convex, but the cardinality of the sets of all possible
subwindows of negative images may be very large. Therefore,
special treatment is required for constraints (6). We use constraint
generation (i.e., the cutting plane algorithm) to handle these
constraints [40]: LSðd�

j Þ is iteratively updated by adding the most
violated constraint at every step. Although constraint generation
has exponential running time in the worst case, it often works well
in practice. This optimization algorithm was also proposed by Yu
and Joachims [41], at the same time that this work was developed
[31]. We refer the reader to [41] for a detailed description of the
algorithm. A simple initialization approach is to use the entire
positive images as starting subwindows. This works sufficiently well
for the experiments described in Section 4, but better initialization
approaches can be used (e.g., [42]).

Our optimization algorithm requires at each iteration to loca-
lize the subwindow maximizing the SVM score in each image.
Thus, we need a very fast localization procedure. For this purpose,
we adopt the representation and algorithm described in [12].
Images are represented as bags of visual words obtained by
quantizing SIFT descriptors [43] computed at random locations
and scales. For quantization, we use a visual dictionary built by
applying K-means clustering to a set of descriptors extracted from
the training images [44]. The set of possible subwindows for an
image is taken to be the set of axis-aligned rectangles. The feature
vector φðxÞ is the histogram of visual words associated with
descriptors inside rectangle x. Lampert et al. [12] showed that,
when using this image representation, the search for the rectangle
maximizing the SVM score can be executed efficiently by means of
a branch-and-bound algorithm.

3.2. Extension to time series

As in the case of image categorization, even for time series the
global statistics computed from the entire signal may yield

1 Bold lowercase letters denote a column vector (e.g., d;α). di;αi represent the
ith entries of the column vectors d and α, respectively. Non-bold letters represent
scalar variables (e.g., C;αi).
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suboptimal classification. For example, the differences between
two classes of temporal signals may not be visible over the entire
observation period. However, unlike in the case of images where
objects often appear as fully connected regions, the patterns of
interest in temporal signals may not be contiguous. This raises a
technical challenge when extending the learning formulation of
(4) to time series classification: how to efficiently search for sets of
non-contiguous discriminative segments? In this section we
describe a representation of temporal signals and a novel efficient
algorithm to address this challenge.

3.2.1. Representation of time series
Time series can be represented by descriptors computed at

spatial-temporal interest points [45,46,39]. As in the case of
images, sample descriptors from training data can be clustered
to create a visual-temporal vocabulary [46]. Subsequently, each
descriptor is represented by the ID of the corresponding vocabu-
lary entry and the frame number at which the point is detected. In
this work, we define a k-segmentation of a time series as a set of k
disjoint time-intervals, where k is a tunable parameter of the
algorithm. Note that it is possible for some intervals of a k-
segmentation to be empty. Given a k-segmentation x, let φðxÞ
denote the histogram of visual-temporal words associated with
interest points in x. Let Ci denote the set of words occurring at
frame i. Let ai ¼∑cACi

wc if Ci is non-empty, and ai¼0 otherwise. ai
is the weighted sum of words occurring in frame i where word c is
weighted by SVM weight wc. From these definitions it follows that
wTφðxÞ ¼∑iAxai. For fast localization of discriminative patterns in
time series we need an algorithm to efficiently find the k-
segmentation maximizing the SVM score wTφðxÞ. Indeed, this
optimization can be solved globally in a very efficient way. The
following section describes the algorithm.

3.2.2. An efficient localization algorithm
Let n be the length of the time signal and I ¼ f½l;u� :

1r lrurng be the set of all subintervals of ½1;n�. For a subset
SDf1;…;ng, let f ðSÞ ¼∑iASai. Maximization of wTφðxÞ is equiva-
lent to

maximize
I1 ;…;Ik

∑
k

j ¼ 1
f ðIjÞ s:t: IiAI & Ii \ Ij ¼ | 8 ia j: ð8Þ

This problem can be optimized very efficiently using Algorithm 1
presented below.

Algorithm 1. Find best k disjoint intervals that optimize (8).

Input: a1;…; an, kZ1.
Output: a set Xk of best k disjoint intervals.
1: X0≔|.
2: for m¼0 to k�1 do
3: J1≔arg maxJAI f ðJÞ s.t. J \ S¼ | 8SAXm:

4: J2≔arg maxJAI � f ðJÞ s.t. J � SAXm.
5: if f ðJ1ÞZ� f ðJ2Þ then
6: Xmþ1≔Xm [ fJ1g
7: else
8: Let SAXm : J2 � S. S is divided into three disjoint

intervals: S¼ S� [ J2 [ Sþ .
9: Xmþ1≔ðXm�fSgÞ [ fS� ; Sþ g
10: end if
11: end for

This algorithm progressively finds the set of m intervals
(possibly empty) that maximize (8) for m¼ 1;…; k. Given the
optimal set of m intervals, the optimal set of mþ1 intervals is

obtained as follows. First, find the interval J1 that has maximum
score f ðJ1Þ among the intervals that do not overlap with any
currently selected interval (line 3). Second, locate J2, the worst
subinterval of all currently selected intervals, i.e., the subinterval
with lowest score f ðJ2Þ (line 4). Finally, the optimal set of mþ1
intervals is constructed by executing either of the following two
operations, depending on which one leads to the higher objective:

1. Add J1 to the optimal set of m intervals (line 6).
2. Break the interval of which J2 is a subinterval into three

intervals and remove J2 (line 9).

Algorithm 1 assumes J1 and J2 can be found efficiently. This is
indeed the case. We now describe the procedure for finding J1.
The procedure for finding J2 is similar.

Let Xm denote the relative complement of Xm in ½1;n�, i.e., Xm

is the set of intervals such that the “union” of the intervals in Xm

and Xm is the interval ½1;n�. Since Xm has at most m elements, Xm

has at most mþ1 elements. Since J1 does not intersect with any
interval in Xm, it must be a subinterval of an interval of Xm .
Thus, we can find J1 as J1 ¼ arg maxSAXm f ðJSÞ where

JS ¼ arg max
JDS

f ðJÞ: ð9Þ

Eq. (9) is a basic operation that is needed to be performed
repeatedly: finding a subinterval of an interval that maximizes
the sum of elements in that subinterval. This operation can be
performed by Algorithm 2 belowwith running time complexity OðnÞ.

Algorithm 2. Find the best subinterval.

Input: a1;…; an, an interval ½l;u� � ½1;n�.
Output: ½sl; su� � ½l;u� with maximum sum of elements.
1: b0≔0.
2: for m¼1 to n do
3: bm≔bm�1þam. //compute integral image
4: end for
5: ½sl; su�≔½0;0�; val≔0: //empty subinterval
6: bm≔l�1: //index for minimum element so far
7: for m¼ l to u do
8: if bm�bbm 4val then

9: ½sl; su�≔½ bmþ1;m�; val≔bm�bbm
10: else if bmobbm
11: bm≔m: //keep track of the minimum element
12: end if
13: end for

Note that the result of executing (9) can be cached; we do not need
to recompute JS for many S at each iteration of Algorithm 1. Thus
the total running complexity of Algorithm 1 is OðnkÞ. Algorithm 1
guarantees to produce a globally optimal solution for (8), as
proved in the following section.

3.2.3. Global optimality of Algorithm 1
Algorithm 1 guarantees to produce a globally optimal solution

for (8). Even stronger, the set Xm ¼ fIm1 ;…; Immg produced by the
algorithm is the set of best m intervals that maximize (8). This
section sketches a proof by induction. A reader who is not
interested in the proof can skip this section.

(þ) m¼1, this can be easily verified.
(þ) Suppose Xm is the set of best m intervals that maximize (8).

We now prove that Xmþ1 is optimal for mþ1 intervals. Assume the
contrary, Xmþ1 is not optimal for mþ1 intervals. There exist disjoint
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intervals T1;…; Tmþ1 such that

∑
mþ1

i ¼ 1
f ðTiÞ4 ∑

mþ1

i ¼ 1
f ðImþ1

i Þ: ð10Þ

Because the way we construct Xmþ1 from Xm, we have

∑
mþ1

i ¼ 1
f ðImþ1

i Þ ¼ ∑
m

i ¼ 1
f ðImi Þþmaxff ðJ1Þ; � f ðJ2Þg;

where J1 ¼ arg max
JAI

f ðJÞ s:t: J \ Imi ¼ | 8 i; ð11Þ

J2 ¼ arg max
JAI

� f ðJÞ s:t: J � Imi for an i: ð12Þ

This, together with (10), leads to

maxff ðJ1Þ; � f ðJ2Þgo ∑
mþ1

i ¼ 1
f ðTiÞ� ∑

m

i ¼ 1
f ðImi Þ: ð13Þ

Consider the overlapping between T1;…; Tmþ1 and Im1 ;…; Imm, there
are two cases.

� Case1: ( j : Tj \ Imi ¼ | 8 i. In this case, we have

f ðTjÞr f ðJ1Þo ∑
mþ1

i ¼ 1
f ðTiÞ� ∑

m

i ¼ 1
f ðImi Þ; ð14Þ

) ∑
m

i ¼ 1
f ðImi Þo ∑

i ¼ 1;mþ1 ;ia j

f ðTiÞ: ð15Þ

This contradicts with the assumption that fIm1 ;…; Immg is the set of
best m intervals that maximize (8).

� Case2: 8 j; ( i : Tj \ Imi a|. Since there are mþ1 Tj's, and there
are only m Imi 's, there must exist one i s.t. Imi intersects with at least
two of Tj's. Suppose l; l1; l2 are indices s.t. Tl1 \ Iml a| and
Tl2 \ Iml a|. Furthermore, suppose Tl1 ; Tl2 are consecutive intervals
of Tj's (Tl1 precedes Tl2 and there is no Tj in between). Let
Tl1 ¼ ½t�l1 ; t

þ
l1
�, Tl2 ¼ ½t�l2 ; t

þ
l2
�. Consider the interval

T ¼ ½tþl1 þ1; t�l2 �1�. Because Tl1 \ Iml a| and Tl2 \ Iml a|, T must
be a subinterval of Iml , i.e., T � Iml . Hence

� f ðTÞr� f ðJ2Þo ∑
mþ1

i ¼ 1
f ðTiÞ� ∑

m

i ¼ 1
f ðImi Þ; ð16Þ

) ∑
m

i ¼ 1
f ðImi Þo f ðTÞþ ∑

mþ1

i ¼ 1
f ðTiÞ; ð17Þ

) ∑
m

i ¼ 1
f ðImi Þo f ðTl1 [ T [ Tl2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

an interval

Þþ ∑
ia l1 ;l2

f ðTiÞ: ð18Þ

This contradicts with the assumption that fIm1 ;…; Immg is the best set
of m intervals that maximize (8).

Since both cases lead to a contradiction, Xmþ1 must be the best
set of mþ1 intervals that maximize (8). This completes the proof.

3.3. Multi-class categorization

The formulation presented in Section 3.1 can be extended to
handle multiple classes, by replacing binary SVMs with multi-class
SVMs [47]. Previous work for multi-class multiple instance learn-
ing exists [48,49], but has not been used for discriminative
localization.

Assume we are given a set of training images (or time series)
fdiji¼ 1;…;ng with corresponding class labels fliji¼ 1;…;ng.
The label liAf1;…;mg indicates that the image di contains an
object instance of category li. We learn an SVM for joint locali-
zation and classification by solving the following constrained
optimization:

minimize
fwjg;fξig

1
2m

∑
m

j ¼ 1
Jwj J2þC ∑

n

i ¼ 1
ξi ð19Þ

s:t: max
xALSðdiÞ

wT
li
φðxÞZ max

xALSðdiÞ
wT

j φðxÞþ1�ξi

8 iAf1;…;ng; 8 jAf1;…;mg\flig;
ξiZ0 8 iAf1;…;ng:

The constraints appearing in this objective state that for each
image di, the detector of the correct class (li) should output a
classification score higher than those produced by detectors of
the other classes. Here, fξig are slack variables, and C is the
parameter controlling the trade-off between having a large
margin and less constraint violation. The goal is then to

Fig. 1. A unified framework for image categorization and time series classification
from weakly labeled data. Our method simultaneously localizes the regions of
interest in the examples and learns a region-based classifier, thus building
robustness to background and uninformative signal.

Fig. 2. Examples taken from (a) the CMU Face Images and (b) the street scene
dataset.

Table 1
Comparison results on the CMU Face and car datasets. BoW: bag of words approach
[50]. SVM: SVM using global statistics. SVM-FS [12] requires bounding boxes of
foreground objects during training. Our method is significantly better than the
others, and it outperforms even the algorithm using strongly labeled data.

Dataset Measure BoW SVM SVM-FS Ours

Faces Acc. (%) 80.11 82.97 86.79 90.0
ROC area n/a 0.90 0.94 0.96

Cars Acc. (%) 77.5 80.75 81.44 84.0
ROC area n/a 0.86 0.88 0.90
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maximize the margin subject to these constraints. By optimiz-
ing this problem we obtain a multi-class SVM, i.e., parameters
ðw1;…;wmÞ, that can be used for localization and categorization.
Given a new testing image d, localization and categorization are
done as follows. First, we find the category ĵ and subwindow x̂
yielding the maximum SVM score:

ĵ; x̂ ¼ argmax
j;xALSðdÞ

wT
j φðxÞ: ð20Þ

We report x̂ as the detected object of category ĵ for the
test image.

4. Experiments

This section describes experiments on several datasets for
object categorization and time series classification (Fig. 1).

4.1. Object localization and categorization

4.1.1. Experiments on car and face datasets
This subsection presents evaluations on two image collec-

tions. The first experiment was performed on CMU Face Images,

a publicly available dataset from the UCI machine learning
repository.2 This database contains 624 face images of 20 people
with different expressions and poses. The subjects wear sun-
glasses in roughly half of the images. Our classification task was
to distinguish between the faces with sunglasses and the faces
without sunglasses. Some image examples from the database are
given in Fig. 2(a). We divided this image collection into disjoint
training and testing subsets. Images of the first 8 people were
used for training while images of the last 12 people were
reserved for testing. Altogether, we had 254 training images
(126 with glasses and 128 without glasses) and 370 testing
images (185 examples for both the positive and the negative
class).

The second experiment was performed on a dataset col-
lected by us. Our collection contains 400 images of street
scenes. Half of the images contain cars and half of them do
not. This is a challenging dataset because the appearance of the
cars in the images varies in shape, size, grayscale intensity, and
location. Furthermore, the cars occupy only a small portion of
the images and may be partially occluded by other objects.

Fig. 3. Localization of sunglasses on test images.

Fig. 4. Localization of cars on test images. Note how the road below the cars is partially included in the detection output. This indicates that the appearance of road serves as
a contextual indication for the presence of cars.

2 http://archive.ics.uci.edu/ml/datasets/CMUþFaceþ Images
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Some examples of images from this dataset are shown in
Fig. 2(b). Given the limited amount of examples available, we
applied 4-fold cross validation to obtain an estimate of the
performance.

Each image was represented by a set of 10,000 local SIFT
descriptors [43] selected at random locations and scales. The
descriptors were quantized using a dictionary of 1000 visual
words obtained by applying hierarchical K-means [50] to
100,000 training descriptors.

In order to speed up the learning, we reduce the space of
subwindows by imposing an upper constraint on the rectangle
size. In the first experiment, as the image size is 120�128 and
the sizes of sunglasses are relative small, we restricted the height
and width of permissible rectangles to not exceed 30 and 50
pixels, respectively. Similarly, for the second experiment, we
constrained permissible rectangles to have height and width no
larger than 300 and 500 pixels, respectively (c.f. image size of
600�800). We also notice that these upper constraints prevent
the optimization algorithm from making aggressive updates
(which often lead to early termination at a local minimum).
Notably, the imposing upper size is relatively large, compared
with the sizes of the foreground objects.

We compared our approach to several competing methods.
SVM denotes a traditional SVM approach in which each image
is represented by the histogram of the words in the whole
image. BoW is the bag-of-words method [51,44,50] in the
implementation of [52]. It uses a 10-nearest neighbor classifier.
We also benchmarked our method against SVM-FS [12], a
fully supervised method requiring ground truth subwindows
during training (FS stands for fully supervised). SVM-FS trains an
SVM using ground truth bounding boxes as positive examples
and ten random rectangles from each negative image for
negative data.

Table 1 shows the classification performance measured using
both the accuracy rates and the areas under the ROCs. Note that
our approach outperforms not only SVM and BoW (which are
based on global statistics), but also SVM-FS, which is a fully
supervised method requiring the bounding boxes of the objects
during training. This suggests that the boxes tightly enclosing
the objects of interest are not always the most discriminative
regions.

Our method automatically localizes the subwindows that are
most discriminative for classification. Fig. 3 shows discriminative
detection on a few face testing examples. Sunglasses are the
distinguishing elements between positive and negative classes.
Our algorithm successfully discovers such regions and exploits
them to improve the classification performance. Fig. 4 shows some
examples of car localization. Parts of the road below the cars tend
to be included in the detection output. This suggests that the
appearance of roads is a contextual indication for the presence of
cars. Fig. 5 displays several difficult cases where our method does
not provide good localization of the objects.

SVM , SVM-FS, and our proposed method require tuning of a
single parameter, C, controlling the trade-off between a large
margin and less constraint violation. This parameter was tuned
using 4-fold cross validation on training data. The parameter
sweeping was done exactly in the same fashion for all algorithms.
Optimizing (4) was an iterative procedure, where each iteration
involved solving a convex quadratic programming problem. Our
implementation3 used CVX, a package for specifying and solving
convex programs [53,54]. We also used Ilog Cplex4 for quadratic
programming. We found that our algorithm generally converged
within 100 iterations of coordinate descent.

4.1.2. Experiments on Caltech-4
This subsection describes an experiment on the publicly avail-

able5 Caltech-4 dataset. This collection contains images of differ-
ent categories: airplanes_side, cars_brad, faces, motorbikes_side,
and background clutter. We consider binary classification tasks
where the goal is to distinguish one of the four object classes
(airplanes_side, cars_brad, faces, and motorbikes_side) from the
background clutter class. In this experiment, we randomly
sampled a set of 100 images from each class for training. The set
of the remaining images was split into equal-size testing and
validation sets. The validation data was used for parameter tuning.

Table 2 shows the results of this experiment. As shown, SVM-FS,
a method that requires bounding boxes of the foreground objects
for training, does not perform as well as SVM which is based on
global statistics from the whole image. This result suggests that
contextual information is very important for classification tasks on

Table 2
Results of binary classification between each of the four classes of Caltech-4 and the
background clutter class. BoW: bag of word approach [50]. SVM: traditional SVM
using global statistics. SVM-FS [12] is the SVM method that requires strongly
labeled data during training. SVM-FSþþ is similar to SVM-FS, but the manually
provided bounding boxes are extended to contain some background; the extended
height and width is 1.5 the original height and width. Results of SVM-FS and SVM-
FSþþ for the Cars class is displayed as n/a because of the unavailability of ground
truth annotation.

Class Measure BoW SVM SVM-FS SVM-FSþþ Ours

Airplanes Acc. (%) 89.74 96.05 89.40 93.91 96.05
ROC area n/a 0.99 0.95 0.98 0.99

Cars Acc. (%) 94.93 98.17 n/a n/a 98.28
ROC area n/a 1.00 n/a n/a 1.00

Faces Acc. (%) 59.83 88.70 86.78 85.04 89.57
ROC area n/a 0.95 0.91 0.90 0.95

Motorbikes Acc. (%) 76.80 88.99 84.67 84.80 87.81
ROC area n/a 0.95 0.92 0.91 0.94

Fig. 5. Difficult cases for localization. (a, b) Sunglasses are not clearly visible in the images. (c) The foreground object is very small. (d) Misdetection due to the presence of the
trailer wheel.

3 www.robots.ox.ac.uk/�minhhoai/downloads.html
4 www-01.ibm.com/software/integration/optimization/cplex-optimizer/
5 http://www.robots.ox.ac.uk/�vgg/data3.html
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this dataset. Indeed, it is easy to verify by visual inspection that the
image backgrounds here often provide very strong categorization
cues (see e.g., the almost constant background of the face images).
As a result our method cannot provide any significant advantage
on this dataset. However note that, unlike SVM-FS, our joint
localization and classification does not harm the classification
performance as our algorithm automatically learns the importance
of contextual information and uses large subwindows for recogni-
tion. Having realized the importance of contextual information, we
perform an additional experiment where the manually annotated
object bounding boxes are uniformly extended to contain some
background. This method is referred to as SVM-FSþþ in Table 2,
and it yields mixed results. It increases the performance of SVM-FS
on Airplanes but decreases the performance or gains little
improvement on the other datasets.

4.2. Classification of time series

This section describes our classification experiments on time
series datasets.

4.2.1. A synthetic example
The data in this evaluation consists of 800 artificially generated

examples of binary time series (400 positive and 400 negative).
Some examples are shown in Fig. 6. Each positive example
contains three long segments of fixed length with value 1. We
refer to these as the foreground segments. Note that the end of a
foreground segment may meet the beginning of another one, thus
creating a longer foreground segment (see e.g., the bottom left
signal of Fig. 6). The locations of the foreground segments are
randomly distributed. Each negative example contains fewer than

three foreground segments. Both positive and negative data
are artificially degraded to simulate measurement noise: with
a certain probability, zero energy values are flipped to have
value 1. The temporal length of each signal is 100 and the length
of each foreground segment is 10. We split the data into separate
training and testing sets, each containing 400 examples (200
positive, 200 negative).

We evaluated the ability of our algorithm to discover auto-
matically the discriminative segments in these weakly labeled
examples. We trained our localization–classification SVM by learn-
ing k-segmentations for values of k ranging from 1 to 20. Note that
the algorithm has no knowledge of the length or the type of the
pattern distinguishing the two classes. Table 3 summarizes the
performance of our approach. Traditional SVM, based on the
statistics of the whole signals, yields an accuracy rate of 66.5%
and an area under the ROC of 0.577. Thus, our approach provides
much better accuracy than SVM. Note that the performance of our
method is relatively insensitive to the choice of k, the number of
discriminative time-intervals used for classification. It achieves
100% accuracy when the number of intervals are in the range 3–7;
it works relatively well even for other settings. In practice, one can
use cross validation to choose the appropriate number of seg-
ments. Furthermore, Table 3 reaffirms the need for using multiple
intervals: our classifier built with only one interval achieves only
an accuracy rate of 77%.

4.2.2. Mouse behavior
We now describe an experiment of mouse behavior recognition

performed on a publicly available dataset.6 This collection contains
videos corresponding to five distinct mouse behaviors: drinking,
eating, exploring, grooming, and sleeping. There are seven groups
of videos, corresponding to seven distinct recording sessions.
Because of the limited amount of data, performance is estimated
using leave-one-group-out cross validation. This is the same
evaluation methodology used by Dollár et al. [46]. Fig. 7 shows
some representative frames of the clips. Refer to [46] for further
details about this dataset.

We represented each video clip as a set of cuboids [46] which
were spatial–temporal local descriptors. From each video we
extracted cuboids at interest points computed using the cuboid

Table 3
Classification performance on temporal data using our approach. We show the
accuracy rates and the ROC areas obtained using different values of k, the number
of discriminative time intervals used by the algorithm. Here traditional SVM, based
on the global statistics of the signals, yields an accuracy rate of 66.5% and an area
under the ROC of 0.577.

k 1 2 3–7 8 12 16 20

Acc.(%) 77.0 93.0 100 98.5 91.5 77.5 67.25
ROC area 0.843 0.980 1.00 0.998 0.933 0.793 0.613
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Fig. 6. What distinguishes the time series on the left from the ones on the right? Left: Positive examples, each containing three long segments with value 1 at random
locations. Right: Negative examples, each containing fewer than three long segments with value 1. All signals are perturbed with measurement noise corresponding to spikes
with value 1 at random locations.

6 http://vision.ucsd.edu/�pdollar/research/research.html
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detector [46]. To these descriptors we added cuboids computed at
random locations in order to yield a total of 2500 points for each
video (this augmentation of points was done to cancel out effects
due to differing sequence lengths). A library of 50 cuboid proto-
types was created by clustering cuboids sampled from training
data using K-means. Subsequently, each cuboid was represented
by the ID of the closest prototype and the frame number at which
the cuboid was extracted. We trained our algorithm with values of
k varying from 1 to 3. Here we report the performance obtained
with the best setting for each class.

A performance comparison is shown in Table 4. The second
column shows the result reported by Dollár et al. [46] using a
1-nearest neighbor classifier on histograms containing only words
computed at spatial–temporal interest points. 1-NN is the result
obtained with the same method applied to histograms also
including random points. SVM is the traditional SVM approach in
which each video is represented by the histogram of words over
the entire clip. The performance is measured using the F1 score
which is defined as

F1¼ 2 � Recall � Precision
RecallþPrecision

; ð21Þ

here we use this measure of performance instead of the ROC
metric because the latter is designed for binary classification
rather than detection tasks [55]. Our method achieves the best
F1 score on all but one action.

4.2.3. Discriminative localization in human motion
For a qualitative evaluation of the ability to discover discri-

minative patterns in time series, we collected some acceler-
ometer readings of human walking activity. A 40 Hz 3-axis
accelerometer was attached to the left arm of a subject, and
we collected a training set of 10 negative and 15 positive time
series, respectively. The negative samples recorded the normal
walking activity of the subject, while in each positive sample, the
subject walked but fell twice during the course the activity. Each
time series contains 2000 frames; at 40 Hz, this corresponds to
50 s. Some examples of the time series in this dataset are shown
in Fig. 8.

We obtained a temporal codebook of 20 clusters using K-means
on frame-level accelerometer vectors. Subsequently, each frame
was represented by the ID of the cluster that it belonged to. We
trained our algorithm and localized k-segmentations with values

of k varying from 1 to 10. In Fig. 9, we show the qualitative results
for discriminative localization in several time series that were not
used in training. The proposed method correctly discovered the
discriminative segments (falling events) for a wide range of k
values.

4.3. Multi-class categorization of cooking activity

This section explores the use of accelerometers for activity
classification in the context of cooking and preparing recipes in
an unstructured environment. We performed our experiments
on the Carnegie Mellon University Multimodal Activity (CMU-
MMAC) database [56]. This collection contains multimodal
measures of human subjects performing tasks involved in cook-
ing five different recipes: brownies, scrambled eggs, pizza, salad,
and sandwich. Fig. 10(a) shows an example of the data collection
process, a subject is cooking scrambled eggs in a fully operable
kitchen. Although the database contains multimodal measures
(video, audio, motion capture, bodymedia, RFID, eWatch, IMUs),
we only used the accelerometer readings from the five wired
Inertial Measurement Units (IMUs). These 125 Hz accelerometers
are triaxial and attached to the waist and the limbs of the
subjects as shown in Fig. 10(b). We used the main dataset7

which contains data of 39 subjects. We arbitrarily divided the
data into disjoint training and testing subsets: subjects with odd
IDs were used for training and subjects with even IDs were
reserved for testing. The training and testing subsets contained
89 and 80 samples, respectively.

Previous work in the literature [57] has achieved high
accuracy using acceleration data for classifying repetitive
human activities such as walking, running, and bicycling. How-
ever, CMU-MMAC dataset is far more challenging because it was
captured in an unstructured environment and the subjects were
minimally instructed. As a consequence, how a recipe was
cooked varied greatly from one subject to another. Moreover,
the course of food preparation and recipe cooking contains a
series of actions, and most of them are not repetitive. Many
actions such as walking, opening the fridge, and turning on the
oven are common for most recipes. More discriminative actions
such as opening a brownie bag or cracking an egg are often
buried in a long chain of actions.

We adopted the same feature representation as [57]. In
particular, we computed a feature vector every second. To
compute the feature vector at a specific time, we obtained a
surrounding window of 1000 frames; at 125 Hz, this corresponds
to 8 s. Mean, frequency-domain energy, frequency-domain
entropy, and correlation features were extracted from this sup-
porting window, as described in [57]. Every second of a time
series was therefore associated with a feature vector of 150
dimensions. The attributes of these feature vectors were scale-
normalized to have maximum magnitude of 1. These normalized

Table 4
F1 scores: detection performance of several algorithms. Higher F1 scores indicate
better performance.

Action [46] 1-NN SVM Ours

Drink 0.63 0.58 0.63 0.67
Eat 0.92 0.87 0.91 0.91
Explore 0.80 0.79 0.85 0.85
Groom 0.37 0.23 0.44 0.54
Sleep 0.88 0.95 0.99 0.99

Fig. 7. Example frames from the mouse videos.

7 http://kitchen.cs.cmu.edu/main.php
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Fig. 8. Examples of accelerometer readings of human activity. Red, green, blue correspond to three channels of a triaxial accelerometer. Negative samples (c, d) recorded
normal walking activity while positive samples (a, b) included the falling events. (For interpretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)

Fig. 9. Discriminative localization in human motion analysis. This figure shows two examples of testing time series and the results for different values of k, the number of
segments in k-segmentations. The left sub-figures (a, c, e, g, i) show the same time series, while the right sub-figures (b, d, f, h, j) depict another time series. k is 1, 2, 3, 5, 10
for (a, b), (c, d), (e, f), (g, h), and (i, j), respectively. Our method successfully discovers the discriminative patterns (falling events) for a wide range of k values.

(a) (b)

Fig. 10. CMU-MMAC dataset. (a) Data collection in action, a subject is cooking scrambled egg in a fully operable kitchen. (b) Locations of five wired Inertial Measurement
Units (IMUs); the accelerometer readings of these IMUs are used for experiments in Section 4.3.
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feature vectors were clustered using K-means to obtain a code-
book of 50 temporal words. Subsequently, each second of the
accelerometer data was represented by the ID of the closest
temporal word. Because the amount of time to prepare and cook
different recipes might differ, the histogram feature vector for a
time series (either computed globally or on the foreground
segments) was normalized by the length of the time series.

We implemented the multi-class categorization approach
described in Section 3.3 combining with the multi-segment
localization method of Section 3.2. In our implementation, k, the
number of segments of k-segmentations, was set to 5. Table 5
displays the confusion matrix of this proposed method for cate-
gorizing five different recipes using accelerometer data. The mean
accuracy is 52.2%. This is significantly higher than the mean
accuracy of traditional SVM which is 42.4%. The expected accuracy
of a random classifier is 20%.

5. Conclusions and future work

This paper proposed a novel framework for discriminative
localization and classification from weakly labeled images or time
series. We showed that the joint learning of the discriminative
regions and of the region-based classifiers led to categorization
accuracy superior to the performance obtained with supervised
methods relying on costly human ground truth data. In future
work we plan to investigate an unsupervised version of our
approach for automatic discovery of object classes and actions
from unlabeled collections of images and videos. Furthermore, we
would like to extend our k-segmentation model to images in order
to improve the recognition of objects having complex shapes.
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Results on CMU-MMAC dataset: confusion matrix of the proposed method for five
different recipes. The mean accuracy is 52.2%, compared with 42.4% from the
traditional SVM. A random classifier would yield an expected accuracy of 20%.

Brownie Egg Pizza Salad Sandwich

Brownie 68.8 6.2 6.2 0.0 18.8
Egg 25.0 31.2 12.5 12.5 18.8
Pizza 11.8 5.9 47.1 17.6 17.6
Salad 5.9 11.8 23.5 35.3 23.5
Sandwich 0.0 7.1 0.0 14.3 78.6
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