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Abstract

Many methods have been proposed to solve the problems of recovering intrinsic
scene properties such as shape, reflectance and illumination from a single image,
and object class segmentation separately. While these two problems are mutually
informative, in the past not many papers have addressed this topic. In this work we
explore such joint estimation of intrinsic scene properties recovered from an im-
age, together with the estimation of the objects and attributes present in the scene.
In this way, our unified framework is able to capture the correlations between
intrinsic properties (reflectance, shape, illumination), objects (table, tv-monitor),
and materials (wooden, plastic) in a given scene. For example, our model is able to
enforce the condition that if a set of pixels take same object label, e.g. table, most
likely those pixels would receive similar reflectance values. We cast the problem
in an energy minimization framework and demonstrate the qualitative and quanti-
tative improvement in the overall accuracy on the NYU and Pascal datasets.

1 Introduction
Recovering scene properties (shape, illumination, reflectance) that led to the generation of an image
has been one of the fundamental problems in computer vision. Barrow and Tenebaum [13] posed
this problem as representing each scene properties with its distinct “intrinsic” images. Over the
years, many decomposition methods have been proposed [5, 16, 17], but most of them focussed on
recovering a reflectance image and a shading1 image without explicitly modelling illumination or
shape. But in the recent years a breakthrough in the research on intrinsic images came with the works
of Barron and Malik [1-4] who presented an algorithm that jointly estimated the reflectance, the
illumination and the shape. They formulate this decomposition problem as an energy minimization
problem that captures prior information about the structure of the world.

Further, recognition of objects and their material attributes is central to our understanding of the
world. A great deal of work has been devoted to estimating the objects and their attributes in the
scene: Shotton et.al. [22] and Ladicky et.al. [9] propose approaches to estimate the object labels at
the pixel level. Separately, Adelson [20], Farhadi et.al. [6], Lazebnik et.al. [23] define and estimate
the attributes at the pixel, object and scene levels. Some of these attributes are material properties
such as woollen, metallic, shiny, and some are structural properties such as rectangular, spherical.

While these methods for estimating the intrinsic images, objects and attributes have separately been
successful in generating good results on laboratory and real-world datasets, they fail to capture the
strong correlation existing between these properties. Knowledge about the objects and attributes
in the image can provide strong prior information about the intrinsic properties. For example, if a
set of pixels takes the same object label, e.g. table, most likely those pixels would receive similar
reflectance values. Thus recovering the objects and their attributes can help reduce the ambiguities
present in the world leading to better estimation of the reflectance and other intrinsic properties.

1shading is the product of some shape and some illumination model which includes effects such as shadows,
indirect lighting etc.
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Figure 1: Given a RGBD image, our algorithm jointly estimates the intrinsic properties such as
reflectance, shading and depth maps, along with the per-pixel object and attribute labels.

Additionally such a decomposition might be useful for per-pixel object and attribute segmentation
tasks. For example, using reflectance (illumination invariant) should improve the results-when esti-
mating per-pixel object and attribute labels [24]. Moreover if a set of pixels have similar reflectance
values, they are more likely to have the same object and attribute class.

Some of the previous research has looked at the correlation of objects and intrinsic properties by
propagating results from one step to the next. Osadchy et.al. [18] use specular highlights to improve
recognition of transparent, shiny objects. Liu et.al. [15] recognize material categories utilizing the
correlation between the materials and their reflectance properties (e.g. glass is often translucent).
Weijer et.al. [14] use knowledge of the objects present in the scene to better separate the illumination
from the reflectance images. However, the problem with these approaches is that the errors in one
step can propagate to the next steps with no possibility of recovery. Joint estimation of the intrinsic
images, objects and attributes can be used to overcome these issues. For instance, in the context of
joint object recognition and depth estimation such positive synergy effects have been shown in e.g.
[8].

In this work, our main contribution is to explore such synergy effects existing between the intrinsic
properties, objects and material attributes present in a scene (see Fig. 1). Given an image, our
algorithm jointly estimates the intrinsic properties such as reflectance, shading and depth maps,
along with per-pixel object and attribute labels. We formulate it in a global energy minimization
framework, and thus our model is able to enforce the consistency among these terms. Finally,
we use an approximate dual decomposition based strategy to efficiently perform inference in the
joint model consisting of both the continuous (reflectance, shape and illumination) and discrete
(objects and attributes) variables. We demonstrate the potential of our approach on the aNYU and
aPascal datasets, which are extended versions of the NYU [25] and Pascal [26] datasets with per-
pixel attribute labels. We evaluate both the qualitative and quantitative improvements for the object
and attribute labelling, and qualitative improvement for the intrinsic images estimation.

We introduce the problem in Sec. 2. Section 3 provides details about our joint model, section 4
describes our inference and learning, Sec. 5 and 6 provide experimentation and discussion.
2 Problem Formulation
Our goal is to jointly estimate the intrinsic properties of the image, i.e. reflectance, shape and
illumination, along with estimating the objects and attributes at the pixel level, given an image
array C̄ = (C̄1...C̄V ) where C̄i ∈ R3 is the ith pixel’s associated RGB value in the image with
i ∈ V = {1...V }. Before going into the details of the joint formulation, we consider the formulations
for independently solving these problems. We first briefly describe the SIRFS (shape, illumination
and reflectance from shading) model [2] for estimating the intrinsic properties for a single given
object, and then a CRF model for estimating objects, and attributes [12].
2.1 SIRFS model for a single, given object mask
We build on the SIRFS model [2] for estimating the intrinsic properties of an image. They formu-
late the problem of recovering the shape, illumination and reflectance as an energy minimization
problem given an image. Let R = (R1...RV ), Z = (Z1...ZV ) be the reflectance, and depth maps
respectively, where Ri ∈ R3 and Zi ∈ R3, and the illumination L be a 27-dimensional vector of
spherical harmonics [10]. Further, let S(Z,L) be a function that generates a shading image given
the depth map Z and the illumination L. Here Si ∈ R3 and subsumes all light-dependent properties,
e.g. shadows, inter-reflections (refer to [2] for details). The SIRFS model then minimizes the energy

minimizeR,Z,L E
SIRFS = ER(R) + EZ(Z) + EL(L)

subject to C̄ = R · S(Z,L) (1)
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where ”·” represents componentwise multiplication, and ER(R), EZ(Z) and EL(L) are the costs
for the reflectance, depth and illumination respectively. The most likely solution is then estimated by
using a multi-scale L-BFGS, a limited-memory approximation of the Broyden-Fletcher-Goldfarb-
Shanno algorithm [2], strategy which in practice finds better local optima than other gradient descent
strategies. The SIRFS model is limited to estimating the intrinsic properties for a single object mask
within an image. The recently proposed Scene-SIRFS model [4] proposes an approach to recover
the intrinsic properties of whole image by embedding a mixture of shapes in a soft segmentation
of the scene. In Sec. 3 we will also extend the SIRFS model to handle multiple objects. The main
difference to Scene-SIRFS is that we perform joint optimization over the object (and attributes)
labelling and intrinsic image properties per-pixel.

2.2 Multilabel Object and Attribute Model
The problem of estimating the per-pixel objects and attributes labels can also be formulated in a
CRF framework [12]. Let O = (O1...OV ) and A = (A1...AV ) be the object and attribute variables
associated with all V pixels, where each object variableOi takes one out ofK discrete labels such as
table, monitor, or floor. Each attribute variableAi takes a label from the power set of theM attribute
labels, for example the subset of attribute labels can be Ai = {red, shiny, wet}. Efficient inference
is performed by first representing each attributes subset Ai by M binary attribute variables Ami ∈
{0, 1}, meaning that Ami = 1 if the ith pixel takes the mth attribute and it is absent when Ami = 0.
Under this assumption, the most likely solution for the objects and the attributes correspond to
minimizing the following energy function

EOA(O,A) =
∑
i∈V

ψi(Oi) +
∑
m

∑
i∈V

ψi,m(Ami )+
∑
i<j∈V

ψij(Oi, Oj)+
∑
m

∑
i<j∈V

ψij(A
m
i , A

m
j ) (2)

Here ψi(Oi) and ψi,m(Ami ) are the object and per-binary attribute dependent unary terms respec-
tively. Similarly, ψij(Oi, Oj) and ψij(Ami , A

m
j ) are the pairwise terms defined over the object and

per-binary attribute variables. Finally the best configuration for the object and attributes are esti-
mated using a mean-field based inference approach [12]. Further details about the form of the unary,
pairwise terms and the inference approach are described in our technical report [29].

3 Joint Model for Intrinsic Images, Objects and Attributes
Now, we provide the details of our formulation for jointly estimating the intrinsic images (R,Z,L)
along with the objects (O) and attribute (A) properties given an image C̄ in a probabilistic frame-
work. We define the posterior probability and the corresponding joint energy function E as:

P (R,Z,L,O,A|I) = 1/Z(I) exp{−E(R,Z,L,O,A|I)}

E(R,Z,L,O,A|I) = ESIRFSG(R,Z,L|O,A) +ERO(R,O)+ERA(R,A)+EOA(O,A)

subject to C̄ = R · S(Z,L) (3)

We define ESIRFSG = ER(R) + EZ(Z) + EL(L), a new global energy term. The terms
ERO(R,O) and ERA(R,A) capture correlations between the reflectance, objects and/or attribute
labels assigned to the pixels. These terms take the form of higher order potentials defined on
the image segments or regions of pixels generated using unsupervised segmentation approach of
Felzenswalb and Huttenlocker [21]. Let S corresponds to the set of these image segments. These
terms are described in detail below.

3.1 SIRFS model for a scene
Given this representation of the scene, we model the scene specific ESIRFSG by a mixture of
reflectance, and depth terms embedded into the segmentation of the image and an illumination term
as:

ESIRFSG(R,Z,L|O,A) =
∑
c∈S

(
ER(Rc) + EZ(Zc)

)
+ EL(L) (4)

where R = {Rc}, Z = {Zc}. Here ER(Rc) and EZ(Zc) are the reflectance and depth terms
respectively defined over segments c ∈ S. In the current formulation, we have assumed that we have
a single model of illumination L for whole scene which corresponds to a 27-dimensional vector of
spherical harmonics [2].
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3.2 Reflectance, Objects term
The joint reflectance-object energy term ERO(R,O) captures the relations between the objects
present in the scene and their reflectance properties. Our higher order term takes following form:

ERO(R,O) =
∑
c∈S

πcoψ(Rc) +
∑
c∈S

πcrψ(Oc) (5)

where Rc, Oc are the labeling for the subset of pixels c respectively. Here πcoψ(Rc) is an object
dependent quality sensitive higher order cost defined over the reflectance variables, and πcrψ(Oc) is
a reflectance dependent quality sensitive higher order cost defined over the object variables. The term
ψ(Rc) reduces the variance of the reflectance values within a clique and takes the form ψ(Rc) =
‖c‖θα(θp + θvG

r(c)) where

Gr(c) = exp

(
−θβ
‖
∑
i∈c(Ri − µc)2‖
‖c‖

)
. (6)

Here ‖c‖ is the size of the clique, µc =
∑
i∈c Ri
‖c‖ and θα, θp, θv, θβ are constants. Further in order

to measure the quality of the reflectance assignment to the segment, we weight the higher order cost
ψ(Rc) with an object dependent πco that measures the quality of the segment. In our case, πco takes
following form:

πco =

{
1 if Oi = l, ∀i ∈ c
λo otherwise

(7)

where λo < 1 is a constant. This term allows variables within a segment to take different reflectance
values if the pixels in that segment take different object labels. Currently the term πco gives rise to a
hard constraint on the penalty but can be extended to one that penalizes the cost softly as in [29].

Similarly we enforce higher order consistency over the object labeling in a clique c ∈ S. The term
ψ(Oc) takes the form of pattern-based PN -Potts model [7] as:

ψ(Oc) =

{
γol if Oi = l, ∀i ∈ c
γomax otherwise

(8)

where γol , γ
o
max are constants. Further we weight this term with a reflectance dependent quality

sensitive term πcr. In our experiment we measure this term based on the variance of reflectance
terms on all constituent pixels of a segment, i.e., Gr(c) (define earlier). Thus πcr takes following
form:

πcr =

{
1 if Gr(c) < K, ∀i ∈ c
λr otherwise

(9)

where K and λr < 1 are constants. Essentially, this quality measurement allows the pixels within
a segment to take different object labels, if the variation in the reflectance terms within the segment
is above a threshold. To summarize, these two higher order terms enforce the cost of inconsistency
within the object and reflectance labels.

3.3 Reflectance, Attributes term
Similarly we define the term ERA(R,A) which enforces a higher order consistency between re-
flectance and attribute variables. Such higher order consistency takes the following form:

ERA(R,A) =
∑
m

(∑
c∈S

πca,mψ(Rc) +
∑
c∈S

πcrψ(Amc )
)

(10)

where πca,mψ(Rc) and πcrψ(Amc ) are the higher order terms defined over the reflectance image and
the attribute image corresponding to the mth attribute respectively. Forms of these terms are similar
to the one defined for the object-reflectance higher order terms; these terms are further explained in
the supplementary material.

4 Inference and Learning
Given the above model, our optimization problem involves solving following joint energy function
to get the most likely solution for (R,Z,L,O,A):

E(R,Z,L,O,A|I) = ESIRFSG(R,Z,L) + ERO(R,O) + ERA(R,A) + EOA(O,A) (11)
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However, this problem is very challenging since it consists of both the continuous variables
(R,Z,L) and discrete variables (O,A). Thus in order to minimize the function efficiently with-
out losing accuracy we follow an approximate dual decomposition strategy [28].

We first introduce a set of duplicate variables for the reflectance (R1, R2, R3), objects (O1, O2),
and attributes (A1, A2) and a set of new equality constraints to enforce the consistency on these
duplicate variables. Our optimization problem thus takes the following form:

minimize
R1,R2,R3,Z,L,O1,O2

E(R1, Z, L) + E(O1, A1) + E(R2, O2) + E(R3, A2)

subject to R1 = R2 = R3; O1 = O2; A1 = A2 (12)

From now on we have removed the subscripts and superscripts from the energy terms for simplicity
of the notations. Now we formulate it as an unconstrained optimization problem by introducing a
set of lagrange multipliers θ1

r , θ
2
r , θo, θa and decompose the dual problem into four sub-problems as:

E(R1, Z, L) + E(O1, A1) + E(R2, O2) + E(R3, A2) + θ1
r(R

1 −R2)

+ θ2
r(R

2 −R3) + θo(O
1 −O2) + θa(A1 −A2)

= g1(R1, Z, L) + g2(O1, A1) + g3(O2, R2) + g4(A2, R3), (13)

where
g1(R1, Z, L) = minimizeR1,Z,L E(R1, Z, L) + θ1

rR
1

g2(O1, A1) = minimizeO1,A1 E(O1, A1) + θoO
1 + θaA

1

g3(O2, R2) = minimizeO2,R2 E(O2, R2)− θoO2 − θ1
rR

2

g4(A2, R3) = minimizeA2,R3 E(A2, R3)− θaA2 − θ2
rR

3 (14)

are the slave problems which are optimized separately and efficiently while treating the dual vari-
ables θ1

r , θ
2
r , θo, θa constant, and the master problem then optimizes these dual variables to enforce

consistency. Next, we solve each of the sub-problems and the master problem.

Solving subproblem g1(R1, Z, L): Solving the sub-problem g1(R1, Z, L) requires optimizing
with only continuous variables (R1, Z, L). We follow a multi-scale LBFGS strategy [2] to opti-
mize this part. Each step of the LBFGS approach requires evaluating the gradient of g1(R1, Z, L)
wrt. R1, Z, L.

Solving subproblem g2(O1, A1): The second sub-problem g2(O1, A1) involves only discrete
variables (O1, A1). The dual variable dependent terms add θoO

1 to the object unary potential
ψi(O

1) and θaA1 to the attribute unary potential ψi(A1). Let ψ′(O1) and ψ′(A1) be the updated
object and attribute unary potentials. We follow a filter-based mean-field strategy [11, 12] for the op-
timization. In the mean-field framework, given the true distribution P = exp(−g2(O1,A1))

Z̄
, we find

an approximate distribution Q, where approximation is measured in terms of the KL-divergence
between the P and Q distributions. Here Z̄ is the normalizing constant. Based on the model in
Sec. 2.2, Q takes the form as Qi(O1

i , A
1
i ) = QOi (O1

i )
∏
mQ

A
i,m(Ai

1
m), where QOi is a multi-class

distribution over the object variable, and QAi,m is a binary distribution over {0,1}. With this, the
mean-field updates for the object variables take the following form:

QOi (O1
i = l) =

1

ZOi
exp{−ψ′i(O1

i )−
∑

l′∈1..K

∑
j 6=i

QOj (O1
j = l′)(ψij(O

1
i , O

1
j ))} (15)

where ψij is a potts term modulated by a contrast sensitive pairwise cost defined by a mixture of
Gaussian kernels [12], and ZOi is per-pixel normalization factor. Given this form of the pairwise
terms, as in [12], we can efficiently evaluate the pairwise summations in Eq. 15 using K Gaussian
convolutions. The updates for the attribute variables also take similar form (refer to the supplemen-
tary material).
Solving subproblems g3(O2, R2), g4(A2, R3): These two problems take the following forms:

g3(O2, R2) = minimizeO2,R2

∑
c∈S

πco2ψ(R2
c) +

∑
c∈S

πcr2ψ(O2
c )− θoO2 − θ1

rR
2 (16)

g4(A2, R3) = minimizeA2,R3

∑
m

(∑
c∈S

πca2,mψ(R3
c)+

∑
c∈S

πcr3ψ(A2,m
c )

)
−θaA2−θ2

rR
3
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Solving of these two sub-problems requires optimization with both the continuous R2 and discrete
O2, A2 variables respectively. However since these two sub-problems consist of higher order terms
(described in Eq. 8) and dual variable dependent terms, we follow a simple co-ordinate descent
strategy to update the reflectance and the object (and attribute) variables iteratively. The optimization
of the object (and attribute) variables are performed in a mean-field framework, and a gradient
descent based approach is used for the reflectance variables.

Solving master problem The master problem then updates the dual-variables θ1
r , θ

2
r , θo, θa given

the current solution from the slaves. Here we provide the update equations for θ1
r ; the updates

for the other dual variables take similar form. The master calculates the gradient of the problem
E(R,Z,L,O,A|I) wrt. θ1

r , and then iteratively updates the values of θ1
r as:

θ1
r = θ1

r + α1
r

(
g
θ1r
1 (R1, Z, L) + g

θ1r
3 (O2, R2)

)
(17)

where αtr is the step size tth iteration and gθ
1
r

1 , g
θ1r
3 are the gradients w.r.t. to the θ1

r . It should be noted
that we do not guarantee the convergence of our approach since the subproblems g1(.) and g2(.) are
solved approximately. Further details on our inference techniques are provided in the supplementary
material.

Learning: In the model described above, there are many parameters joining each of these terms.
We use a cross-validation strategy to estimate these parameters in a sequential manner and thus
ensuring efficient strategy to estimate a good set of parameters. The unary potentials for the objects
and attributes are learnt using a modified TextonBoost model of Ladicky et.al. [9] which uses a
colour, histogram of oriented gradient (HOG), and location features.

5 Experiments
We demonstrate our joint estimation approach on both the per-pixel object and attribute labelling
tasks, and estimation of the intrinsic properties of the images. For the object and attribute labelling
tasks, we conduct experiments on the NYU 2 [25] and Pascal [26] datasets both quantitatively and
qualitatively. To this end, we annotate the NYU 2 and the Pascal datasets with per-pixel attribute
labels. As a baseline, we compare our joint estimation approach against the mean-field based method
[12], and the graph-cuts based α-expansion method [9]. We assess the accuracy in terms of the
overall percentage of the pixels correctly labelled, and the intersection/union score per class (defined
in terms of the true/false positives/negatives for a given class as TP/(TP+FP+FN)). Additionally we
also evaluate our approach in estimating better intrinsic properties of the images though qualitatively
only, since it is extremely difficult to generate the ground truths for the intrinsic properties, e.g.
reflectance, depth and illumination for any general image. We compare our intrinsic properties
results against the model of Barron and Malik2[2, 4], Gehler et.al. [5] and the Retinex model [17].
Further, only visually we also show how our approach is able to recover better smooth and de-noised
depth maps compared to the raw depth provided by the Kinect [25]. In all these cases, we use the
code provided by the authors for the AHCRF [9], mean-field approach [11, 12]. Details of all the
experiments are provided below.
5.1 aNYU 2 dataset
We first conduct experiment on aNYU 2 RGBD dataset, an extended version of the indoor NYU
2 dataset [25]. The dataset consists of 725 training images, 100 validation and 624 test images.
Further, the dataset consists of per-pixel object and attribute labels (see Fig. 1 and 3 for per-pixel
attribute labels). We select 15 object and 8 attribute classes that have sufficient number of instances
to train the unary classifier responses. The object labels corresponds to some indoor object classes
as floor, wall, .. and attribute labels corresponds to material properties of the objects as wooden,
painted, .... Further, since this dataset has depth from the Kinect depths, we use them to initialize
the depth maps Z for both our joint estimation approach and the Barron and Malik models [2-4].

We show quantitative and qualitative results in Tab. 1 and Fig. 3 respectively. As shown, our joint
approach achieves an improvement of almost 2.3% , and 1.2% in the overall accuracy and average
intersection-union (I/U) score over the model of AHCRF [9], and almost 1.5 % improvement in the

2We extended the SIRFS [2] model to our Scene-SIRFS using a mixture of reflectance and depth maps,
and a single illumination model. These mixtures of reflectance and depth maps were embedded in the soft
segmentation of the scene generated using the approach of Felzenswalb et.al. [21]. We call this model: Barron
and Malik [2,4].
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Algorithm Av. I/U Oveall(% corr)
AHCRF [9] 28.88 51.06

DenseCRF [12] 29.66 50.70
Ours (OA+Intr) 30.14 52.23

(a) Object Accuracy

Algorithm Av. I/U Oveall(% corr)
AHCRF [9] 21.9 40.7

DenseCRF [12] 22.02 37.6
Ours (OA+Intr) 24.175 39.25

(b) Attribute Accuracy
Table 1: Quantitative results on aNYU 2 dataset for both the object segmentation (a), and attributes
segmentation (b) tasks. The table compares performance of our approach (last line) against three
baselines. The importance of our joint estimation for intrinsic images, objects and attributes is
confirmed by the better performance of our algorithm compared to the graph-cuts based (AHCRF)
method [9] and mean-field based approach [12] for both the tasks. Here intersection vs. union (I/U)
is defined as TP

TP+FN+FP and ’% corr’ as the total proportional of correctly labelled pixels.

Input Image our reflectance our shading our normals our depth reflectance [17] reflectance[5]

Kinect depth reflectance [2,4] shading [2,4] normals [2,4] depth [2,4] shading [17] shading[5]

Input Image our reflectance our shading our normals our depth reflectance [17] reflectance[5]

Kinect depth reflectance [2,4] shading [2,4] normals [2,4] depth [2,4] shading [17] shading[5]

Figure 2: Given an image and its depth image for the aNYU dataset, these figures qualitatively com-
pare our algorithm in jointly estimating better the intrinsic properties such as reflectance, shading,
normals and depth maps. We compare against the model Barron and Malik [2,4], the Retinex model
[17] (2nd last column) and the Gehler et.al. approach [5] (last column).

average I/U over the model of [12] for the object class segmentation . Similarly we also observe an
improvement of almost 2.2 % and 0.5 % in the overall accuracy and I/U score over AHCRF [12],
and almost 2.1 % and 1.6 % in the overall accuracy and average I/U over the model of [12] for the
per-pixel attribute labelling task. These quantitative improvement suggests that our model is able to
improve the object and attribute labelling using the intrinsic properties information. Qualitatively
also we observe an improvement in the output of both the object and attribute segmentation tasks as
shown in Fig. 3.

Further, we show the qualitative improvement in the results of the intrinsic properties in the Fig. 2.
As shown our joint approach helps to recover better depth map compared to the noisy kinect depth
maps; justifying the unification of reconstruction and objects and attributes based recognition tasks.
Further, our reflectance and shading images visually look much better than the models of Retinex
[17] and Gehler et.al. [5], and similar to the Barron and Malik approach [2,4].

5.2 aPascal dataset
We also show experiments on aPascal dataset, our extended Pascal dataset with per-pixel attribute
labels. We select a subset of 517 images with the per-pixel object labels from the Pascal dataset and
annotate it with 7 material attribute labels at the pixel level. These attributes correspond to wooden,
skin, metallic, glass, shiny... etc. Further for the Pascal dataset we do not have any initial depth
estimate. Thus, we start with a depth map where each point in the space is given same constant
depth value.

Some quantitative and qualitative results are shown in Tab. 2 and Fig. 3 respectively. As shown, our
approach achieves an improvement of almost 2.0 % and 0.5 % in the I/U score for the object and

7



Algorithm Av. I/U Oveall(% corr)
AHCRF [9] 32.53 82.30

DenseCRF [12] 36.9 79.4
Ours (OA + Intr) 38.1 81.4

(a) Object Accuracy

Algorithm Av. I/U Oveall(% corr)
AHCRF [9] 17.4 95.1

DenseCRF [12] 18.28 96.2
Ours (OA+Intr) 18.85 96.7

(b) Attribute Accuracy
Table 2: Quantitative results on aPascal dataset for both the object segmentation (a), and attributes
segmentation (b) tasks. The table compares performance of our approach (last line) against three
baselines. The importance of our joint estimation for intrinsic images, objects and attributes is
confirmed by the better performance of our algorithm compared to the graph-cuts based (AHCRF)
method [9] and mean-field based approach [12] for both the tasks. Here intersection vs. union (I/U)
is defined as TP

TP+FN+FP and ’% corr’ as the total proportional of correctly labelled pixels.

attribute labelling tasks respectively over the model of [12]. We observe qualitative improvement in
the accuracy shown in Fig. 3.

Input Image Reflectance Depth Ground truth Output [9] Output [10] Our Object Our Attribute

NYU Object-color coding

Attribute-color coding

Figure 3: Qualitative results on aNYU (first 2 lines) and aPascal (last line) dataset. From left to
right: input image, reflectance, depth images, ground truth, output from [9] (AHCRF), output from
[12], our output for the object segmentation. Last column shows our attribute segmentation output.
(Attributes for NYU dataset: wood, painted, cotton, glass, brick, plastic, shiny, dirty; Attributes for
Pascal dataset: skin, metal, plastic, wood, cloth, glass, shiny.)

6 Discussion and Conclusion
In this work, we have explored the synergy effects between intrinsic properties of an images, and
the objects and attributes present in the scene. We cast the problem in a joint energy minimization
framework; thus our model is able to encode the strong correlations between intrinsic properties
(reflectance, shape,illumination), objects (table, tv-monitor), and materials (wooden, plastic) in a
given scene. We have shown that dual-decomposition based techniques can be effectively applied to
perform optimization in the joint model. We demonstrated its applicability on the extended versions
of the NYU and Pascal datasets. We achieve both the qualitative and quantitative improvements for
the object and attribute labeling, and qualitative improvement for the intrinsic images estimation.

Future directions include further exploration of the possibilities of integrating priors based on the
structural attributes such as slanted, cylindrical to the joint intrinsic properties, objects and attributes
model. For instance, knowledge that the object is slanted would provide a prior for the depth and
distribution of the surface normals. Further, the possibility of incorporating a mixture of illumination
models to better model the illumination in a natural scene remains another future direction.
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nity, under the PASCAL2 Network of Excellence, IST-2007-216886. P.H.S. Torr is in receipt of
Royal Society Wolfson Research Merit Award.

References
[1] Barron, J.T. & Malik, J. (2012) Shape, albedo, and illumination from a single image of an unknown object.
In IEEE CVPR, pp. 334-341. Providence, USA.

[2] Barron, J.T. & Malik, J. (2012) Color constancy, intrinsic images, and shape estimation. In ECCV, pp.
57-70. Florence, Italy.

8



[3] Barron, J.T. & Malik, J. (2012) High-frequency shape and albedo from shading using natural image statis-
tics. In IEEE CVPR, pp. 2521-2528. CO, USA.

[4] Barron, J., & Malik, J. (2013) Intrinsic scene properties from a single RGB-D image. In IEEE CVPR.

[5] Gehler, P.V., Rother, C., Kiefel, M., Zhang, L. & Bernhard, S. (2011) Recovering intrinsic images with a
global sparsity prior on reflectance. In NIPS, pp. 765-773. Granada, Spain.

[6] Farhadi, A., Endres, I., Hoiem, D. & Forsyth D.A., (2009) Describing objects by their attributes. In IEEE
CVPR, pp. 1778-1785. Miami, USA.

[7] Kohli, P., Kumar, M.P., & Torr, P.H.S. (2009) P & beyond: move making algorithms for solving higher
order functions. In IEEE PAMI, pp. 1645-1656.

[8] Ladicky, L., Sturgess, P., Russell C., Sengupta, S., Bastnlar, Y., Clocksin, W.F., & Torr P.H.S. (2012) Joint
optimization for object class segmentation and dense stereo reconstruction. In IJCV, pp. 739-746.

[9] Ladicky, L., Russell C., Kohli P. & Torr P.H.S., (2009) Associative hierarchical CRFs for object class image
segmentation. In IEEE ICCV, pp. 739-746. Kyoto, Japan.

[10] Sloan, P.P., Kautz, J., & Snyder, J., (2002) Precomputed radiance transfer for real-time rendering in dy-
namic, low-frequency lighting environments. In SIGGRAPH, pp. 527-536.

[11] Vineet, V., Warrell J., & Torr P.H.S., (2012) Filter-based mean-field inference for random fields with
higher-order terms and product label-spaces . In IEEE ECCV, pp. 31-44. Florence, Italy.
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