
APPENDIX A: PROOF OF LEMMA 1

Let us write down the linear program corresponding
to the QPBO method. The roof duality relaxation for
function E is given by equation (17). Adding pairwise
terms Cxaxb for a, b ∈ A(p), a �= b to function (13)
will affect the relaxation (17) as follows: linear terms
Cxab will be added to function (17), and corresponding
constraints will be imposed (see (17)). Since C is a large
constant, new variables xab will be forced to 0. Therefore,
we arrive at the following linear program:

min
∑
a∈A

θ̄axa +
∑

(a,b)∈N

θ̄abxab (19)

subject to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xa + xb ≤ 1 ∀ a, b ∈ N(p), p ∈ P, a �= b

0 ≤ xa ≤ 1 ∀ a ∈ A

xab ≤ xa, xab ≤ xb ∀ (a, b) ∈ N

xab ≥ xa + xb − 1 ∀ (a, b) ∈ N

xab ≥ 0 ∀ (a, b) ∈ N

Let us now derive the relaxation solved by the decom-
position approach with the linear and maxflow subprob-
lems, i.e. with I = {L, F}. It is known [2] that the optimal
value of the linear matching problem ΦL(θL) is equal to
the optimal value of the following linear program:

min
∑
a∈A

θL
a xa sb.t.

⎧⎪⎨
⎪⎩
∑

a∈A(p)

xa ≤ 1 ∀ p ∈ P

xa ≥ 0 ∀ a ∈ A

= max
∑
p∈P

−μp sb.t.

{
−μp − μq ≤ θL

a ∀ a = (p, q) ∈ A

μp ≥ 0 ∀ p ∈ P
(20)

Similarly, the lower bound for the maxflow subprob-
lem ΦF (θF ) can be written as the dual problem to (17):

max
∑
a∈A

−λa +
∑

(a,b)∈N

−λab (21)

subject to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−λa +
∑

(a,b)∈N

[
λ̄ab − λab

]
≤ θF

a ∀ a ∈ A

−λ̄ab − λ̄ba + λab ≤ θF
ab ∀ (a, b) ∈ N

λa ≥ 0 ∀ a ∈ A

λ̄ab ≥ 0, λ̄ba ≥ 0, λab ≥ 0 ∀ (a, b) ∈ N

Here we denoted λ̄ab and λab to be the dual variables
for the constraints xab ≤ xa and xab ≥ xa + xb − 1,
respectively. Note that λ̄ab and λ̄ba are distinct variables,
while λab and λba denote the same variable.

Using (20) and (21), we can write the optimal lower
bound of the decomposition approach as follows:

max
θL

∈ΩL,

θL
+θF

=
¯θ

ΦL(θL) + ΦF (θF ) = max
θ:θab=0

ΦL(−θ) + ΦF (θ̄ + θ)

which yields

max
θ,μ,λ,

¯λ

∑
p∈P

−μp +
∑
a∈A

−λa +
∑

(a,b)∈N

−λab

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−μp − μq ≤ −θa ∀ a = (p, q) ∈ A

−λa +
∑

(a,b)∈N

[
λ̄ab − λab

]
≤ θ̄a + θa ∀ a ∈ A

−λ̄ab − λ̄ba + λab ≤ θ̄ab ∀ (a, b) ∈ N

μp ≥ 0 ∀ p ∈ P

λa ≥ 0 ∀ a ∈ A

λ̄ab ≥ 0, λ̄ba ≥ 0, λab ≥ 0 ∀ (a, b) ∈ N

We can eliminate θa from the first and the second
constraint and combine them into one constraint, then
we obtain

max
μ,λ,

¯λ

∑
p∈P

−μp +
∑
a∈A

−λa +
∑

(a,b)∈N

−λab

sb.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−μp − μq − λa +
∑

(a,b)∈N

[
λ̄ab − λab

]
≤ θ̄a

∀ a = (p, q) ∈ A

−λ̄ab − λ̄ba + λab ≤ θ̄ab ∀ (a, b) ∈ N

μp ≥ 0 ∀ p ∈ P

λa ≥ 0 ∀ a ∈ A

λ̄ab ≥ 0, λ̄ba ≥ 0, λab ≥ 0 ∀ (a, b) ∈ N

The dual to this linear program is given by

min
∑
a∈A

θ̄axa +
∑

(a,b)∈N

θ̄abxab

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
a∈A(p)

−xp ≥ −1 ∀ p ∈ P

−xa ≥ −1 ∀ a ∈ A

−xa − xb + xab ≥ −1 ∀ (a, b) ∈ N

xa − xab ≥ 0, xb − xab ≥ 0 ∀ (a, b) ∈ N

xa ≥ 0 ∀ a ∈ A

xab ≥ 0 ∀ (a, b) ∈ N

Thus, the optimal value of the lower bound equals

min
∑
a∈A

θ̄axa +
∑

(a,b)∈N

θ̄abxab (22)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
a∈A(p)

xp ≤ 1 ∀ p ∈ P

0 ≤ xa ≤ 1 ∀ a ∈ A

xab ≤ xa, xab ≤ xb ∀ (a, b) ∈ N

xab ≥ xa + xb − 1 ∀ (a, b) ∈ N

xab ≥ 0 ∀ (a, b) ∈ N

It is easy to see that the optimal value of (22) is the
same or larger than the optimal value of (19). Indeed,
the only difference between (19) and (22) is that the
first constraint in (22) is tighter than the corresponding
constraint in (19):

∑
a∈A(p) xa ≤ 1 implies xa +xb ≤ 1 for

a, b ∈ A(p), a �= b, but not the other way around. (Note
that the labeling xa = 0.5 for a ∈ A(p) satisfies the latter
constraint but not the former, if |A(p)| > 2.)
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Consider a local subproblem σ ∈ I . Let σ′ be a sub-
problem of σ, i.e. the feasibility set of σ′ is contained
in the feasibility set of σ: Ωσ′ ⊆ Ωσ. It can be seen
that adding σ′ to I as another local subproblem does
not affect the optimal lower bound. Indeed, it is clear
that adding σ′ cannot decrease the optimal bound. The
optimal bound also cannot increase since for any vector

θ′ = (. . . ,θσ, θσ′

, . . .) ∈ Ω′, where Ω′ is the constraint set
for the new problem, there exists vector θ = (. . . ,θσ +

θσ′

, . . .) ∈ Ω whose bound is not worse since

Φσ(θσ + θσ′

) = 2Φσ

(
θσ + θσ′

2

)
≥ Φσ(θσ) + Φσ′(θσ′

).

(The inequality holds since Φσ′(·) is the same function
as Φσ(·), and it is concave.)

Let us prove part (a). Let I be a set of subproblem
indexes which does not include the linear problem L.
We need to show that adding L to I cannot increase
the optimal lower bound. Instead of L, let us add a
new subproblem p to I for each point p ∈ P which
includes only assignments in A(p) (and does not include
any edges), i.e. the feasibility set Ωp for this subproblem
is defined by θp

a = 0 for all assignments a ∈ A − A(p)
and θp

ab = 0 for all edges (a, b) ∈ N . As follows from the
argument above and conditions of part (a), this operation
cannot improve the best lower bound. Thus, it suffices
to prove that replacing the new set of subproblems with
L would not improve optimal bound. In other words,
we need to show that for any θL

ΦL(θL) ≤ max
∑
p∈P

Φp(θ
p) sb.t.

∑
p∈P

θp = θL (23)

Using LP duality, it is easy to show that in fact an
equality holds in (23). Indeed, the optimal solution
for vector θp can be obtained as follows: Φp(θ

p) =
min{0, mina∈A(p) θp

a}. Thus, the maximization problem
in (23) can be written as

max
∑
p∈P

−μp sb.t.

⎧⎪⎨
⎪⎩

θp
a + θq

a = θL
a ∀ a = (p, q) ∈ A

−μp ≤ θp
a ∀ p ∈ P, a ∈ A(p)

−μp ≤ 0 ∀ p ∈ P

Constraints {θp
a + θq

a = θL
a ,−μp ≤ θp

a,−μq ≤ θq
a} for

a = (p, q) ∈ A can be replaced with a single constraint
−μp−μq ≤ θL

a since variables θp
a and θq

a are not involved
in any other constraints. Then we arrive at the linear
program (20) which equals ΦL(θL).

Let us now prove part (b). Using a similar argumen-
tation, we conclude that it suffices to prove that

ΦF (θF ) ≤ max
∑
a∈A

Φa(θa) +
∑

(a,b)∈N

Φab(θ
ab) (24)

subject to
∑
a∈A

θ
a +

∑
(a,b)∈N

θ
ab = θ

F

where σ = a is a local subproblem in which only the
element θa

a is allowed to be non-zero and σ = (a, b) is

a local subproblem in which only the elements θab
a , θab

b ,
θab

ab are allowed to be non-zero.
It can be shown that if we take Φab(θ

ab) to be a
lower bound minx∈{0,1}A E(x|θab) rather than the global

minimum minx∈M E(x | θab) then we get an equality
in (24). (An equivalent fact was proved in [21].) This
implies (24) since using the global minimum instead of
a lower bound can only increase the RHS.

For completeness, let us prove this equality. We have

Φa(θa) = min{0, θa
a}

Φab(θ
ab) = min{0, θab

a , θab
b , θab

a + θab
b + θab

ab}

Thus, the maximization in (24) can be written as

max
∑
a∈A

−λa +
∑

(a,b)∈N

−λab

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θa
a +

∑
(a,b)∈N

θab
a = θF

a ∀ a ∈ A

−λa ≤ θa
a ∀ a ∈ A

−λa ≤ 0 ∀ a ∈ A

−λab ≤ θab
a ,−λab ≤ θab

b ∀ (a, b) ∈ N

−λab ≤ θab
a + θab

b + θF
ab ∀ (a, b) ∈ N

−λab ≤ 0 ∀ (a, b) ∈ N

We can eliminate θa
a from the first and the second

constraint and combine them into one constraint:

max
∑
a∈A

−λa +
∑

(a,b)∈N

−λab

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−λa +
∑

(a,b)∈N

θab
a ≤ θF

a ∀ a ∈ A

λa ≥ 0 ∀ a ∈ A

θab
a + λab ≥ 0, θab

b + λab ≥ 0 ∀ (a, b) ∈ N

−λab − θab
a − θab

b ≤ θF
ab ∀ (a, b) ∈ N

λab ≥ 0 ∀ (a, b) ∈ N

Let us use variables λ̄ab instead of θab
a such that θab

a =
λ̄ab − λab, or λ̄ab = θab

a + λab. It is straightforward to
see that then we arrive at the linear program (21) whose
optimal value equals ΦF (θF ).


