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Abstract. In this work we present a novel technique we term active
graph matching, which integrates the popular active shape model into a
sparse graph matching problem. This way we are able to combine the
benefits of a global, statistical deformation model with the benefits of
a local deformation model in form of a second-order random field. We
present a new iterative energy minimization technique which achieves
empirically good results. This enables us to exceed state-of-the art results
for the task of annotating nuclei in 3D microscopic images of C. elegans.
Furthermore with the help of the generalized Hough transform, we are
able to jointly segment and annotate a large set of nuclei in a fully
automatic fashion for the first time.

1 Introduction

A frequently used model organism in developmental biology is the worm C.
elegans. Since C. elegans is highly stereotypical it is well suited for comparative
developmental studies. A common and time consuming problem in such studies
is the segmentation and annotation of cell nuclei with their unique biological
names in 3D microscopic images [1,2,3,4]. This work presents a fully automated
joint segmentation and annotation method for this task.1

Previous approaches for automatic annotation of nuclei in C. elegans [2,3,4]
build an average atlas of nuclei locations, and annotate new target worms by
mapping the atlas to them. One approach finds a globally optimal one-to-one
mapping but is agnostic to covariances between nucleus positions [2,3]. Another
approach incorporates heuristic prior knowledge on relative positions of nuclei
in the form of a local deformation model, but does not tackle local deformation
and mapping of nuclei jointly in a globally optimal way [4].

While these approaches are in principle capable of performing segmentation
and annotation of nuclei in a fully automatic manner in images that show all
nuclei of C. elegans L1 larvae, none of them has been evaluated quantitatively
in this respect: Only the annotation of given, correct segmentations is evaluated

1 We work exclusively with disentangled, straightened images of all 558 nuclei of L1
larvae. Disentangling and straightening are not topics of this paper. See e.g. [5,6]
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quantitatively in [2], and only images which exclusively show the 80 widely
spaced body wall muscles of C. elegans L1 larvae are considered in [4].

We propose to learn from training data a global-plus-local deformation model
of C. elegans. The global model serves as a “backbone” of plausible nuclei con-
stellations, while the local model penalizes deviations from this backbone. We
use an active shape model [7] as a global model, and exploit the 2nd moments
of the learned distribution of relative locations of nuclei for a local model.

We achieve a one-to-one mapping between atlas and target nuclei which
is approximately globally optimal w.r.t. the local deformation model with an
advanced graph matching method [8]. However, our overall goal is to find a one-
to-one mapping which is optimal w.r.t. the local as well as the global deformation
model. Our main technical contribution is a strong optimization technique for
this problem. It can be seen as a generalization of the Iterative-Closest-Points
method, where “Closest” (referring to local, point-wise measures) is replaced by
“Best Matching” in terms of a global 2nd order matching energy. To the best of
our knowledge only one work [9] has presented a related idea, but active shape
models are not considered.

To summarize, our main contributions are (i) a new model we term active
graph matching with an associated optimization technique, and (ii) an experi-
mental validation that such a complex model can be optimized successfully for
fully automatic segmentation and annotation of nuclei in C. elegans L1 larvae.
Our method is, to our knowledge, the first fully automatic method ever evalu-
ated quantitatively for this problem. Furthermore it considerably outperforms
the state-of-the-art for annotation of given manual segmentations [2]. Finally, a
small contribution is the idea of in-painting missing nuclei into the training set.

2 Method and Data

Figure 1 sketches the proposed pipeline. It builds upon a statistical atlas of C.
elegans learned from training data. (cf. Sec. 2.1). Given a new target image,
first, a set of segmentation hypotheses is generated (cf. Sec 2.2). Then the body
axes of the worm are determined for rough initial alignment of the atlas (cf.
Section 2.3). An objective function encodes the problem of matching the atlas
to the segmentation hypotheses. We optimize the objective by Active Graph
Matching (cf. Sec. 2.3), a novel “iterative best matching points” method that
alternates between optimal graph matching and optimal adaptation of global
atlas parameters. The matching selects a subset of segmentation hypotheses,
while simultaneously annotating them with their biological names.

We use a set of training worms also used in [2]1 All nuclei that can be
distinguished by eye were segmented manually in 30 images C. elegans L1 larvae.
Per worm 357 nuclei were annotated manually. See [2] for more details on the
data. Let nW denote the number of training worms, and nA the number of
annotated nuclei. Per worm, index i, with 1 ≤ i ≤ nA, represents the i-th
annotated nucleus. Nuclei are sorted consistently by their biological names.

1 We thank H. Peng, F. Long, X. Liu and S. Kim for providing the data.
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Fig. 1. A sketch of the proposed pipeline. First, a statistical atlas is learned from
annotated data. New, straightened images are then segmented automatically. Subse-
quently, the body axes of atlas and segmentation are aligned. Active Shape Matching
then alternates between graph matching and optimization of atlas parameters.

(a)

(b)

Fig. 2. Two types of local statistical models in our C. elegans atlas. (a) Local point
distribution models per nucleus: Respective covariance matrices C(i, I) represented as
ellipses. (b) Average shape sA(i) of each nucleus in the atlas. Note that the local shape
models also contain the respective covariances. Figures show the in-painted atlas.

2.1 Atlas

Our statistical atlas of C. elegans consists of (i) a global model of the variability
of the point clouds formed by each worm’s nuclei center points, (ii) local models
of the variability of single nucleus locations (cf. Figure 2a), (iii) local models of
the variability of the shape of each nucleus (cf. Figure 2b), and (iv) local models
of the variability of offsets between any two nucleus locations.

Global point distribution model. From the set of training worms we
extract locations of nuclei center points. We denote the center point location of
nucleus i ≤ nA in training worm w ≤ nW as x(i, w) ∈ R3, the concatenation of

all locations of worm w as xw := (. . . , x(i, w)
T
, . . .)T ∈ R3nA , and the matrix of

all training vectors as X := (. . . ,xw, . . .). From the set of training vectors xw,
we build a point distribution model [7] of nuclei locations. Therefore we align all
training vectors via Procrustes analysis, and then perform principle component
analysis, yielding the eigenvectors pk ∈ R3nA of the covariance matrix (1/(nW −
1))(X −X̄ )(X −X̄ )T , where X̄ denotes a matrix with the average nuclei location
vector x̄A := (1/nW )

∑
w xw in every column. We denote the matrix assembled

from the eigenvectors as P := (. . . ,pw, . . .). The point distribution model can
then be formulated as xA(b, t) := t(x̄A+P ·b) with b denoting a vector of global
shape parameters, and t : R3 → R3 an affine transformation. t consists of a 3x3
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matrix R, and an offset vector o. Per nucleus i, the model reads xA(i,b, t) :=
R(x̄A(i) + P (i) · b) + o, with x̄A(i) denoting the average location of nucleus i,
and P (i) denoting rows 3i− 2, 3i− 1 and 3i of P . Each training vector can be
represented by some global shape parameter vector: ∃bw : x̄A + P · bw = xw.
In our global shape model we confine the shape parameters to the min/max
respective values that appear in training data.

Local models. As for our local point distribution model: Let X (i) denote
the matrix with all training locations of nucleus i as columns. The covariance ma-
trix per nucleus location, C(i, R) := (1/nW )R(X (i)− X̄ (i))(X (i)− X̄ (i))TRT ∈
R3×3, allows us to measure the distance of some point x ∈ R to location i in
the atlas: locDiff(x, i,b, t) := (x− xA(i,b, t))T · C(i, R)−1 · (x− xA(i,b, t)).

We describe the shape of an individual nucleus by means of the radii of an
ellipsoid fit to the nucleus volume, sorted by value. We denote the shape of
nucleus i in training worm w as s(i, w) ∈ R3. From the training data, we derive
the average shape per nucleus, sA(i), as well as the respective covariance matrix
S(i). Thus we can measure the distance of some shape s to the shape of atlas
nucleus i as shapeDiff(s, i) := (s− sA(i))T · S(i)−1 · (s− sA(i)).

In addition to nucleus-individual statistics, we also perform statistics on offset
vectors between any two nuclei: Let d(i, j, w) := x(i, w)−x(j, w) denote a training
offset vector. We retrieve the average offset d̄A(i, j) := (1/nW )

∑
w d(i, j, w) as

well as the respective covariance matrix D(i, j, R). Let dA(i, j,b, R) denote an
offset vector in an instance of the global point distribution model. Then, we
can measure the distance of some offset d w.r.t. nuclei i and j in the atlas:
offsetDiff(d, i, j,b, R) := (d− dA(i, j,b, R))T ·D(i, j, R)−1 · (d− dA(i, j,b, R)).

Furthermore the determinant of the covariance of offsets, detD(i, j, R), lets
us measure how closely two nuclei locations correlate, and thus lets us define a
K-neighborhood on the atlas, denoted as NK . This neighborhood contains all
pairs of atlas nuclei (i, j) for which nucleus j is among the K “closest” to i in
terms of detD(i, j, R), or vice-versa i is among the K “closest” to j.

Inpainting. Nuclei that are “missing” in our 357-nuclei-atlas, mainly in
the brain region, pose a challenge to the annotation problem: The atlas region
posterior to the brain can freely match to target nuclei within the brain, taking
the posterior body part with them. Therefore we inpaint the missing 201 nuclei
into the training worms by taking one complete manual segmentation as reference
and warping it to all the other training point clouds by means of Thin Plate
Spline Warps. We inpaint the missing nuclei shapes by assigning the shape of
the closest not-annotated nucleus in the respective manual segmentation.

2.2 Segmentation Hypotheses

For nuclei segmentation we use the Generalized Hough Transform (GHT) [10]
with an ellipsoid as a template. We run GHT multiple times with a range of
differently scaled and oriented templates. One GHT run yields one segmentation
hypothesis per voxel, namly the template with highest scoring scale/orientation
at the respective voxel position, where the score,GHT (x) ∈ {0, 1}, measures how
well the template fits the image gradient. From this abundant pool, per GHT
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run, we greedily select the n best-scoring hypotheses which do not overlap. Our
final set of hypotheses is the union of sets of selected from the different GHT
runs. Note that hypotheses from different GHT runs do, in general, overlap. This
way we reduce the risk of missing nuclei. Figure 1 shows examples.

2.3 Active Graph Matching

Objective. Let nT denote the number of segmentation hypotheses. An assign-
ment ai,j ∈ {0, 1} encodes whether atlas index i ≤ nA is assigned to target
index j ≤ nT . We denote the matrix of assignments as A := (ai,j)

nA,nT

i=1,j=1. A

bipartite matching is a matrix A which satisfies ∀i ≤ nA :
∑nT

j=1 ai,j ≤ 1 and

∀j ≤ nT :
∑nA

i=1 ai,j ≤ 1. I.e., an atlas nucleus can be matched to at most one
target nucleus, and vice-versa. We define the energy of matching the atlas to the
target with affine transformation t, shape parameters b, and matching A, as

E(A,b, t) :=
∑

i≤nA,k≤nT

φ(i, k,b, t) ·ai,k+
∑

(i,j)∈NK ,k,l≤nT

ψ(i, j, k, l,b, t) ·ai,k ·aj,l

(1)
where NK is the neighborhood relation we defined on the atlas, cf. Section 2.1.
Unary potentials φ(i, k,b, t) encode the cost per assignment ai,k. We define

φ(i, k,b, t) := λ1 · locDiff(xT (k), i,b, t)+λ2 · shapeDiff(sT (k), i)+λ3 ·cost(k)+c
(2)

where xT (k) ∈ R3 is the center point of the k-th hypothesis, k ≤ nT , sT (k) ∈ R3

is the target shape descriptor, cost(k) := 1−GHT (xT (k)) encodes how well the
image data supports the k-th hypothesis, and c is a negative constant that serves
as an incentive to make matches. Terms are weighted by positive constants λ.
Binary potentials ψ(i, j, k, l,b, t) encode costs per pair of assignments, ai,k, aj,l:

ψ(i, j, k, l,b, t) := λ4 · offsetDiff(dT (k, l), i, j,b, t) (3)

where dT (k, l) denotes the offset between target nuclei k, l, namely xT (k)−xT (l).
Optimization. To minimize (1) we first estimate initial parameters, b, t,

and then alternate between minimization w.r.t. A (matching) and w.r.t. b, t.
Initial Atlas Parameters: We initialize the global shape parameters b to

zero. As for an initial affine transformation t, we align the first eigenvector of
the point cloud given by all segmentation hypotheses with the anterior-posterior
axis of the atlas such that the centers of gravity line up. We identify the correct
rotation around this axis via the fact that nuclei are distributed asymmetrically
along the dorso-ventral axis, while symmetrically along the left-right axis.

Optimal Matching: For fixed b, t we minimize (1) w.r.t. the matching A
with the Dual-Decomposition-based method of Torresani et al. [8]. In practice,
considering all entries of A is intractable. Hence we only consider assignments
ai,k for which locDiff(xT (k), i,b, t) falls below a fixed threshold.

Optimization of Atlas Parameters: For a fixed matching, the objective is
the sum of squared residuals of an overdetermined system of equations which
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ActiveGM ActiveIGM ActiveHungarian Long et al.

Synthetic 95/94(7) - 93/88(12) -
SemiAuto 92/90(8) 93/92(7) 79/77(9) */86(*)
Automatic 86/82(12) 86/83(11) 62/60(12) **

Table 1. Evaluation of annotation accuracy on 30 worms. Measures: me-
dian/mean(std), all in %. See text for description of scenarios (rows) and algorithms
(columns). *Results presented as plot in [2], but numbers not given. **Results pre-
sented as plot in [2], but error measure not described and numbers not given.

is linear in the global parameters b and t, as described in the following. In the
objective, only the terms locDiff and offsetDiff depend on atlas parameters. For
locDiff each matched nucleus i entails three equations, namely

S ·R−1xT (k)− S · x̄A(i)− S · P (i)b− S ·R−1o = (0, 0, 0)T (4)

where S satisfies ST ·S = C(i, I)−1. Such an S exists in case C(i, I) is symmetric
and positive definite, which is the case in our practical setting. The equations
are linear in the entries of R−1, b, and õ := R−1o, respectively. For offsetDiff,
each pair of matched neighbors i, j entails the following three equations:

G·R−1(xT (k)−xT (l))−G·(x̄A(i)−x̄A(j))−G·(P (i)−P (j))(b) = (0, 0, 0)T (5)

where G satisfies GT ·G = D(i)−1. Analogous to S, such a G exists in our prac-
tical setting. Overall we have, in practice, far more equations than parameters.
Hence we can solve for optimal R, o and b with the method of least squares.

3 Results and Discussion

We run our method in a leave-one-out fashion on the 30 datasets used for atlas
training (cf. Sec. 2). We consider three different scenarios. (1, Synthetic): We
match the 357-nuclei atlas to the corresponding 357 target nuclei, which requires
these 357 to be tagged in the manual segmentation. (2, SemiAuto): We match
the atlas to all manually segmented target nuclei. (3, Automatic): We run fully
automatic joint segmentation and annotation. We run our algorithm in three
different ways: (1, ActiveGM ) with the 357-nuclei atlas, (2, ActiveIGM ) with the
inpainted 558-nuclei atlas, and (3, ActiveHungarian) without binary potentials.
We run ActiveIGM only for the real-world scenarios. We run ActiveHungarian
without in-painting in the synthetic scenario, and with in-painting in the real-
world scenarios.

As for the parameters of our method, we always set: λ2 := 1, c := −150,
K := 6, and as optimization steps 3 times the sequence A, t, followed by 3 times
A,b. We consider the first two modes of variation in b. As for locDiff we set
λ1 := 0 for ActiveGM, and λ1 := 1 for ActiveHungarian. As for offsetDiff we
set λ4 := 1 for ActiveGM, but λ4 := 0 for ActiveHungarian since it cannot
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(a) (b) (c)

Fig. 3. (a) Close-up to matching results in the head of an exemplary worm. Top: in-
painted atlas; bottom: partial atlas. Inpainting leads to better matching performance.
White lines: correct annotation; black lines: inpainted nuclei, no ground truth avail-
able; red lines: annotation errors (fewer on top). (b) Evolution of annotation accuracy
for semi-automatic matching scenario. X-axis: matching iteration. Y-axis: fraction of
correctly annotated nuclei. (c) Evolution of the respective matching energy.

handle binary potentials. As target cost weight we set λ3 := 0 in all but the fully
automatic scenario, where we set λ3 := 10. All parameter values were chosen
heuristically.

To measure annotation accuracy, in case of manual segmentations, we count
the fraction of correctly annotated nuclei. For the fully automatic scenario, we
count the fraction of matched segmentation hypotheses whose center points lie
within the respective ground truth nucleus, or are at most one average nucleus
radius apart from the true center point. Table 1 lists the results for all experi-
ments described above. For reference we also include the result of Long et al. [2].

Apart from annotation accuracy we analyzed the optimality of matching in
terms of the gap between lower bound and found energy: In the synthetic and
the semi-automatic scenario, lower bounds are tight, i.e. here we find the globally
optimal matching. As for the fully automtatic scenario, the matching problem
is solved approximately with an average duality gap of about 2c.

Discussion. For the task of annotating manual segmentations of nuclei our
average annotation rate of 92% considerably outperforms the result of Long et
al. who report an average of 86%. Note that furthermore Long et al. need an
additional image channel which our method does not. For the fully automatic
task our median/average annotation rate of 86/83% approaches the rate that
Long et al. achieved in the much simpler partly manual scenario.

Employing 2nd order graph matching instead of just the Hungarian algo-
rithm makes a huge difference: ActiveHungarian works relatively well only in
the synthetic scenario, while the inferiority as compared to ActiveGM increases
as the matching problem gets more sophisticated: In the order of complexity of
the matching problem (top to bottom in Table 1), ActiveGM is on average 6%,
15%, and 23% better than ActiveHungarian, respectively.
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Figure 3(a) shows the benefit of using the in-painted atlas instead of the
357-nuclei-atlas. Figure 3(b,c) shows how the annotation rate and the respective
value of the objective evolve during Active Graph Matching iterations.

Neglecting location differences in the 2nd order energy, i.e. l1 := 0 for Ac-
tiveGM, yields considerably better annotation accuracy. We argue that this is
due to the respective much more flexible local deformation model. Note that
locDiff = 0 means that the objective is invariant w.r.t. o. However, in practice
we still need o for selecting the assignments we consider in the matching problem
(cf. Section 2.3), hence we always derive it via locDiff.

Conclusion. We have presented active graph matching, a method that com-
bines active shape models with graph matching in one objective and provides an
approach for global optimization. With this method we do not only outperform
the current state of the art in annotating manual segmentations of nuclei in C.
elegans L1 larvae, but furthermore define the state of the art in solving both
segmentation and annotation simultaneously in a fully automatic fashion. We
hypothesize that our method will be highly beneficial for the equally relevant
task of nuclei annotation in later stages of C. elegans development, where nuclei
are more numerous and more densely packed.
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