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Abstract. Man-made objects, such as chairs, often have very large shape varia-
tions, making it challenging to detect them. In this work we investigate the task
of finding particular object shapes from a single depth image. We tackle this task
by exploiting the inherently low dimensionality in the object shape variations,
which we discover and encode as a compact shape space. Starting from any col-
lection of 3D models, we first train a low dimensional Gaussian Process Latent
Variable Shape Space. We then sample this space, effectively producing infinite
amounts of shape variations, which are used for training. Additionally, to support
fast and accurate inference, we improve the standard 3D object category proposal
generation pipeline by applying a shallow convolutional neural network-based fil-
tering stage. This combination leads to considerable improvements for proposal
generation, in both speed and accuracy. We compare our full system to previ-
ous state-of-the-art approaches, on four different shape classes, and show a clear
improvement.

1 Introduction

Object detection has recently undergone significant advances, thanks to progress in
GPU design [23], deep convolutional neural networks (ConvNets) [27, 38, 14], and big
image recognition dataset [10] collected by e.g. Amazon Mechanical Turk. However,
man-made objects, such as chairs, often have very large shape variations, making them
still challenging to detect. On the other hand, there is a large number of CAD models
available in 3D Warehouse. In this work we want to thoroughly analyse how to leverage
this significantly large CAD model collections for the task of finding particular object
shapes in a single depth image.

Most object detection approaches have focused on the 2D domain, with 3D being
considered only recently, in works such as [16, 34, 3]. Gupta et al.[16] is an example of
using a standard ConvNet pipeline. The authors use manually annotated RGB-D data
from the NYU dataset to train a deep convolutional neural network for feature extraction
and classification. At inference time, they classify only the proposed object locations
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Fig. 1. System overview. Given a set of 3D shapes, we learn a low dimensional latent shape space
using GP-LVM (3D Model Manifold). We then generate shapes from this space and render them
from a number of random 3D poses. We use these to train a three layer proposal pipeline, based
on SVM and ConvNets.

returned from the accurate (but slow) proposal generator of [2]. An alternative approach
is presented in [34, 3], where the authors take a collection of 3D CAD models which
they use to generate synthetic depth maps. Gupta et al. [15] used a convolutional neural
network to predict the coarse pose of the object and then align the CAD models to the
objects through a model fitting. In that work, however, object proposals are found using
an exhaustive standard sliding window proposal generator.

A hallmark of current 3D object detection work is the focus on the classification/fea-
ture discovery phase. Finding object location proposals still uses standard 2D strategies,
such as selective search or sliding window. In contrast, in this paper we explicitly tackle
the problem of proposal generation, and exploit the inherently lower appearance vari-
ance of the 3D domain to provide a method that is both faster and more accurate than
the current state of the art. Inspired by the work of Karpathy et al. [19], we show how
to use a compact 3D shape space in detecting those objects with high shape variations.

In the 2D (RGB) domain, objects have often a large appearance variance, due to
colour, texture and varying lighting conditions. These, however, do not manifest them-
selves in the 3D depth domain, which has enabled works like [31] to use primarily
synthetic data for training. Inspired by such methods, we do not assume the existence
of a large quantity of manually labelled training data, but instead interpolate between
manually constructed 3D models, using a variance-preserving approach. We start from
a collection of 3D models, obtained from the Trimble Google 3D warehouse. We use
these to train a low dimensional latent space using the Gaussian Process Latent Vari-
able Models (GL-LVM, [26]) method. Such spaces capture the intrinsic variance of the
training data and have been used previously as shape priors for 3D tracking and recon-
struction in [30] and semantic SLAM in [9]. Next we generate 3D shapes back from
these spaces and finally render them into multiple 2.5D depth-only projections.

A second requirement for a proposal generator is fast and accurate inference. With
this in mind, we train a cascaded object proposal method, comprising of rwo layers. The
first is a traditional “objectness” proposal generator such as BING [7] or edgeBox [40],
which are the fastest ones. We use this to generate a large number (over 1000) of low
accuracy proposals, very quickly, at over 1000 fps. The last layer then is designed to fil-
ter out the noise and retain only a small number (about 100) of very accurate proposals.
This is constructed using a shallow ConvNet and a linear SVM classifier.
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As shown in Figure 1, the output of this cascade is a set of proposals that can be
classified by any downstream classifier, e.g. ConvNet [27, 16]. This work therefore pro-
poses a novel method for finding object location proposals, specific to the 3D depth
domain. Using our test data, as outlined in the results section, the standard 2D selective
search method result in an accuracy of 56.3%, using 100 proposals, while ours has an
accuracy of 82.9%. Furthermore, whereas selective search required over 2.6 seconds per
frame, our approach needs 0.88 seconds, giving a relative speed up of almost 3x. The
improvement in accuracy and speed comes as a result of our two main contributions:

— We leverage the generative abilities of GP-LVM shape spaces, coupled with a
random pose rendering stage, to generate effectively infinite amounts of shape
variance-maintaining training data.

— We improve the standard 3D object category proposal pipeline, by integrating a
proposal generator with a shallow ConvNet-based filtering stage. This leads to con-
siderable improvements in both speed and accuracy of the proposal generation.

2 Related Work

We review related approaches for proposal generation, along with methods that use
synthetic data for depth-based inference.

Object proposal methods have been developed to find a small number (e.g. 1,000) of
category-independent bounding box candidates that are expected to cover all objects
in an image [1, 12]. Such pruning methods are extremely effective in object detection,
as demonstrated in recent state-of-the-art approaches [14]. One category of object pro-
posal methods [11, 6] uses rough segmentations to generate the object candidates. While
such methods successfully reduce the search space for category-based classifiers, they
are computationally very expensive, requiring 2-7 minutes to process a single image.
Alexe et al. [1] developed an efficient method that integrates several objectness cues to
predict the object candidates. Zhang et al. [39] proposed a cascaded ranking SVM ap-
proach with orientated gradient features to generate the object proposals. More recently,
Uijlings et al. [38] proposed a selective search method that achieves higher recall pre-
diction. The method, when integrated with an SVM classifier, has been demonstrated
to achieve state-of-the-art performance in object detection. Recently, Cheng et al. [7],
proposed a very fast cascaded SVM method that generates object proposals at over 300
fps. Zitnick et al. [40] use edge detection to generate reliable and relative fast propos-
als. Arbeléez et al. [2] develop a multiscale combinatorial grouping method which can
provide very accurate segmentation proposals. Krihenbiihl et al. [22] use a method to
identify critical level sets in geodesic distance transforms computed for seeds placed in
the image, based on which they generate a lot of reliable segmentation proposals.
Synthetic data has been used for object detection in two primary ways. One is to learn
multi-view priors for object detectors from 3D models [21,29]. The other is to use
transfer learning [8] to train a detector using the 3D model data in the 3D domain
and use it in 2D images. Generating realistic RGB data from 3D models, however, is
very difficult, as it requires realistic 3D shapes, textures, poses, and lighting. Related
approaches have been used, for example, in model-based hand 3D tracking by [35, 24,
37]. Fortunately, in the context of depth images, rendering realistic synthetic depth is
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comparatively much easier, as it only requires realistic 3D models and pose. Such an
approach was used successfully in detection based human pose estimation by [31].

Song et al. [34] and Aubry et al. [3] developed exemplar-based 3D object detectors
trained on 3D CAD datasets. Our approach differs from theirs, as they explore 3D ob-
ject detection with a sliding window whereas we propose a data-driven object category
proposal generator. Our approach is complementary to Gupta ef al. [16], who use the
region-based convolutional neural network [14] framework to learn rich features for
3D object detection, and have achieved very high accuracy in 3D object detection. We
leverage publicly available 3D CAD models to improve both the speed and quality of
the object category proposal generators, which is the bottleneck of their system.

Another defining feature of our approach is the use of dimensionality reduction for
variance-maintaining shape interpolation. This has been used before for e.g. 3D tracking
and reconstruction, in e.g. [30, 9], but, to our knowledge, has not yet employed in object
proposal generation. Dimensionality reduction in detection has so far primarily targeted
training data preconditioning, by removing unnecessary variance from local descriptors
in e.g. [20, 5, 33], thereby leading to improved final results.

In this work we follow [31] and use synthetic depth generated from a collection of
3D models to train a detector. We learn low dimensional GP-LVM shape manifolds. We
then sample the explicit shape manifolds to generate low variance 3D shapes, which we
use to synthetically generate several depth images from multiple views. These are next
used to train a fast SVM object category proposal generator method, similar to [7].

3 Algorithm

We propose an algorithm for generating category proposals for single view depth im-
ages, that is specialised in handling a particular shape family such as e.g. chairs, mon-
itors, toilets, or sofas. The algorithm runs in three main stages: starting from a set of
object models, we construct a corresponding shape manifold to model the in-category
variations (§3.1); we then sample the extracted manifold to create representative shapes
that are then used to synthetically produce depth images (§3.2); and finally we use the
synthetic depth images to train a cascaded proposal generator (§3.3).

Input 3D models Shape descriptor — 3D DCT of SDF GP-LVM Shape Manifold Output Shape

e T

Fig. 2. 3D Parametrised Manifold: given an unorganised 3D chair model collection we build
shape descriptors and learn low dimensional embeddings which we use to remove unnecessary
shape and training dataset variance.




Object Proposals Estimation Using Compact 3D Shape Manifolds 5

Shapes with correspondence in the training set (green - training, red - by the latent space)

VO B9GP W W

Shapes interpolated by the latent space (low variance)

Q7 QB QQ 010}%11

Shapes interpolated by the latent space (high variance)

Shapes with in the training set (green - training, red - gener bylhelalen(space)
QW .. LB LAELE LT

Shapes |n(erpolaled by the latent space (low variance)

L IL D, BT

Fig. 3. Example Latent Shape Space: Each row shows a two dimensional latent space of 3D
shapes (left) and samples from it (right). Warmer colours indicate higher variance, colder colours
lower variance and the red dots point out the latent points corresponding to the training data. Red
shapes are generated by the latent space and have the green shapes as ground truth. Blue shapes
are interpolated by the latent space, with no correspondence in the training data.

3.1 Constructing a 3D Shape Manifold

We learn Gaussian Process Latent Variable Models (GP-LVM, [25]) shape spaces [9,
30], using the pipeline outlined in Figure 2. In §4, we show how the access to parametrised
shape manifolds improves the object category proposal generation, leading to a perfor-
mance that is superior to several state-of-the-art alternatives.

We assume a given set of training 3D models from the Google Warehouse. These
are then aligned (using ICP), voxelised to a volumetric representation, embedded inside
3D signed distance functions, and compressed using the 3D discrete cosine transform.

We next apply GP-LVM on the DCT-SDF descriptor to find a low dimensional
shape embedding space. GP-LVM is a nonlinear and probabilistic dimensionality re-
duction technique. It is used to represent a set of N high dimensional observations Y =
[¥1,--.,yn] with a set of corresponding low dimensional points X = [x1,...,Xn],
where the dimensionality of X is (much) smaller than that of Y, i.e. Y € R®*Y and
X € RPXN with P < Q. In our case the observation variables are the DCT com-
pressed SDF volumes, so we can write:

yi = DCT3D(SDF(MZ)) Mz = He(IDCTSD(yz)) (1)

where M; is the volumetric representation of the i-th 3D shape, H, is the smooth Heav-
iside function, SDF computes a signed distance function, and DCT/IDCT are the for-
ward and reverse discrete cosine transforms. Figure 3 shows an example 2D latent space
embedding 3D shapes of chairs. We use 256 x 256 x 256 3D volumes and 40 x 40 x 40
3D DCT harmonics, for a 64000D final shape descriptor.

Finding a GP-LVM embedding is done by maximising the probability of the obser-
vation data Y jointly given the latent variables X and the hyperparameters of a Gaussian
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Process (GP) [25] mapping Y into X. This probability is formally written as:

P(Y[X) = HN ¥()[0,K) )

=1
where y ;) is the ith row of Y and K is the covariance matrix of the GP with the
following nonlinear kernel:

K (x5, %)) = i(xi, %)) = Ore ™ 2167915 g5 40,5, G)

with 6, _4 being the GP hyperparameters, J;; Kronecker’s delta function and x(-, -) the
GP covariance function. This model generates 3D shapes y; from latent variables x; as
Gaussian distributions:

il X ~ N (i, 07) )
pi = K(x, X)KYT (5)
02 - H(Xzaxl) (X17 )K_l"q‘(xivx)T' (6)

Identifying unusual shapes when using a GP-LVM shape space simply amounts to
generating all training shapes back from the latent space and sorting them by variance,
with the lowest variance corresponding to the most typical 3D models.

3.2 Depth Rendering and Data Synthesis

Real world objects have different shapes and can be placed in different poses, with dif-
ferent camera viewpoints. This leads to a very large possible appearance space, whose
variability we need to deal with. Following Shotton et al. [31], we build a randomised
depth image rendering pipeline based on the extracted 3D model manifold. Thus we
generate a large number of depth images, from different viewpoints and with the object
in different poses and displaying intrinsic shape variations. When rendering the depth
images (the shapes M; described above are converted to meshes), we randomly sample
the set of 3D appearance parameters using a heuristic approximation of the variability
we expected to observe in the real world. Also, in order to make our data more realistic,
we use the intrinsic parameters used in NYU V2 data.

3.3 Cascaded Object Category Proposal Generator

Our depth-based object category proposal generator draws inspiration from recent ob-
ject proposal generators, such as BING [7], EdgeBox [40], and ConvNet-based object
detection approaches, such as [14]. We suggest a two-layer structure. The first layer
follows the object proposal generator. At inference time, these produce a large number
of detections very quickly (at over 1000 fps). Precision however can often be quite low.
The second layer is then designed to remove some false positives and so reduce the
number of proposals needed for an accurate detection from e.g. 1000 to e.g. 100, with
little to no loss of recall. This layer is implemented using a shallow ConvNet.
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Unlike in RGB images, the object contour information is very salient in depth im-
ages. One way to detect such contours is to use gradient convolution filters. This led us
to adapt the 64D normalised gradients feature used for 2D RGB object category pro-
posal estimation in [7], to our depth-only scenario. In our proposed framework, we can
also use a more accurate proposal generator approach, such as EdgeBox [40].
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Fig. 4. Shallow ConvNet model architecture. This figure presents our inference process during
inference time. We adapted successful network configuration described in [28] for this task.

Refining the Object Category Pool The first stage of our proposal generating cascade
is very fast, but often leads to low quality proposals. In order to refine the proposal pool,
we use a shallow 4-layer ConvNet and a following linear SVM, as shown in figure 4.
We trained the ConvNet first on the ImageNet dataset and next fine-tuned it on the
NYU V2 depth training data and the synthetic data generated from the GP-LVM low
dimensional latent space. Using both real and artificial examples prevents the network
from overfitting. Compared to the standard deep networks [18] used in the ImageNet
object detection task, our network is shallower than the deep networks [18, 36], while
having lower accuracy, is faster at run-time, making it better suited for the task at hand.

4 Experiments

We evaluate our method on the NYU V2 [32] dataset using four categories of ob-
jects (chairs, sofas, toilets and TV). The remainder of this section is split into four
parts: (i) §4.1 describes our experimental setup; (ii) §4.2 shows that using our variance-
preserving synthetic data and random view rendering improves accuracy; (iii) §4.3
shows that the extra ConvNet filtering further improves accuracy.

4.1 Experimental Setup

Dataset. The NYU V2 dataset [32] contains 1449 RGB and depth images with pixel-
level segmentation annotations. We split data set according to the standard NYU V2
train/test split to obtain 495 training and validation images, and 404 testing images.

To train our latent space and classifiers we also use 3D models downloaded from the
Google 3D Warehouse. We select 374 chairs, 42 TV, 36 sofas, and 24 toilets 3D CAD
models. After passing through the latent space filtering, we use them to render the depth
images, 37400 for the chair class, 25200 for TV, 21600 for sofa, and 14400 for toilet.
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Fig. 5. Logarithmic plot measuring the DR#100 (50% Intersection-over-union) accuracy when
we double the amount of synthetic data (i.e. sofa: 43200 (red), 21600 (black); TV: 50400 (red),
25200 (black); chair: 74800 (red), 37400 (black); tiolet: 28800 (red), 14400 (black).). The extra
data leads to much higher accuracy when using fewer proposals. As the number of proposals
increases the extra training points do not help much, as the BING discrimination ability saturates.

Here we considered 600 different random pose and viewpoint configurations, which
excluded the top and bottom viewpoints, as these are rarely seen in indoor scenes.
Evaluation Criteria. We use standard DR-#WIN accuracy measure [1], which quanti-
fies detection rate (DR) given #WIN proposals. A proposal covers an object if the strict
VOC [13] criterion is satisfied, i.e. if INT-UNION> 0.5.

Implementation. Our approach is implemented based on the Caffe [17] library. We
fine-tune the network-in-network model [28] on the NYU V2 dataset and the synthetic
data. The learning step size is 5000, the momentum is 0.9, and the weight decay is
0.0005. Using a NVIDIA Titan Black GPU, the per frame inference processing is 0.88
seconds per frame, with a pool of 1000 category proposal candidates from BING !.

4.2 Synthetic Data

We first investigate the effect of the number of rendered depth images on the classifi-
cation result. As shown in the Figure 5, we observe the clear trend that adding more
synthetic renderings into the training set helps boost the performance of the approach.
We next investigate the effect of the data preconditioning (i.e. the number of GP-
LVM dimensions and variance of the 3D shapes) on the classification result. Not all

! https://github.com/bittnt/Objectness
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object 3D models are realistic and not all 3D shape details are important in the clas-
sification. The GP-LVM shape manifold allows us to remove both unusual shapes and
unnecessary intra-shape variance from the training data. To showcase this feature we
used 374 3D chair shapes to train 3, 4, 5, 6 and 7 dimensional GP-LVM shape spaces.
The results are shown in Table 1 (left and right) and Table 2. In Table 1 (left) we show
the results obtained from the original training set (i.e. not compressed with GP-LVM)
and when learning a 5D GP-LVM latent space and training with (i) the top 100, 150
and 200 shapes with the lowest variance, and (ii) the full training set. Initially, as the
number of training shapes increases (between 100 and 150 models) accuracy improves.
At some point between 150 and 200 though unusual shapes start being added to the
training set, which decreases the accuracy. In Table 1 (right) we vary the number of
dimensions used for the trained GP-LVM spaces from 3 to 7. The same trend as in
Table 1 (left) can be observed. Initially (when using between 3 and 5 dimensions) we
add useful shape variance to the training set which improves the final accuracy. When
more than 5 dimensions are used (and that includes the full uncompressed training set)
we add unnecessary variance to the training set thus decreasing accuracy. Finally, in
Table 2 2, we use the chair class and 1000 BING proposals to evaluate our method of
shape generation (BING+GPLVM) against (i) BING + the alternative shape generation
method of ShapeSynth [4] and (ii) other methods for proposal generations that do not
use synthetic data: BING [7] runs on depth images, OBN [1] that performs on RGB im-
ages, CSVM [39] that is conducted on depth images, SEL [38] runs on depth images,
and random guessing. OBN, CSVM and BING are trained on the NYU V2 training set
whereas SEL does not require any data. BING+ShapeSynth and BING+GPLVM are
trained on the NYU V2 training data and the sampled ShapeSynth or GPLVM synthetic
shapes. Our method outperforms all the other proposal generators. Of particular note is
that BING+GP-LVM outperforms BING+ShapeSynth, in spite of ShapeSynth usually
generating much more realistic looking shapes. This result complements the experiment
from Table 1 and shows that sampling only low variance shapes from the manifold is
beneficial.

BING-GPLVM BING-GPLVM
#DIM(#SAM) | DR-#1000W |#DIM(#SAM)|DR-#1000W
5-100 88.7 3-150 88.0
5-150 89.7 4-150 89.6
5-200 89.2 5-150 89.7
5-374 88.4 6-150 89.3
original-374 |87.8 7-150 89.2

Table 1. Effect of data preconditioning. Left - accuracy results obtained when training on the
chair category with the original dataset not compressed with GP-LVM and when using a 5D low
dimensional GP-LVM space and training with (i) the top 100, 150 and 200 shapes with the lowest
variance (ii) the full training set. Right - accuracy obtained when generating data from 3-7D low
dimensional spaces and selecting the top 150 shapes with the lowest variance. #DIM indicates
the number of latent space dimensions and #SAM the number of samples from each latent space.

2 Experiments are carried out on a machine with a Intel Xeon E5-2687w(32 Cores).
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Fig. 6. DR#100 Comparison. We compare three methods, selective search (which we consider

to be the state of the art), BING+GP-LVM, and BING+GP-LVM+ConvNet, when using only 100

proposals, and all four object classes. Our full approach is the most accurate, with an accuracy of
82.9% whereas selective search produces 56.3%.

Method Random|OBN|CSVM SEL | BING [BING-ShapeSynth| BING-GPLVM
Guess | [1] | [39] |[38]]| [7] [4] our approach
DR-#1000W 42.0 |83.0| 84.5 |85.9| 85.6 88.5 89.7
Time (seconds)|| N/A |2.10| 1.20 | 2.6 |0.0009 0.0009 0.0009

Table 2. Quantitative results on different proposal estimation approaches. We compared
different approaches on the chair category using the NYU V2 depth image dataset. We follow
the standard evaluation criteria, which is the detection rate over 1000 object proposals [1]. The
best result are obtained when using BING+GP-LVM.

4.3 ConvNet Filtering Layer

In Figure 6 we compare selective search, BING+GP-LVM and BING+GP-LVM+ConvNet,
when using only 100 proposals, and all four object classes. The best results are obtained
when using our full approach (BING+GP-LVM+ConvNet), with BING+GP-LVM fol-
lowing with 59.2% respectively, and selective search being the last with 56.3%. Of
course both selective search would reach higher accuracy with more proposals, as
shown before. However, no method other than BING+GP-LVM+ConvNet is able to
reach this level of accuracy with just 100 proposals. We also note that per-frame pro-
cessing with our full approach was 0.88s, whereas for selective search it was 2.6s.

5 Conclusions

We presented an algorithm for generating depth-based proposals for high-variation spe-
cific object categories. Our main message is that (i) the use of synthetic data, sampled
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from variance-maintaining compact shape manifolds, boosts the accuracy of object cat-
egory proposal estimation, as it enables the classifier to focus on the intrinsic ‘classness*
variance and ignore unusual shape details; and (ii) a final shallow ConvNet layer fur-
ther dramatically improve the overall accuracy. As future work, we intend to investigate
the use of this proposal generator in various applications, such as depth fusion or 3D
reconstruction.
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