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Abstract The success of deep learning in computer

vision is based on the availability of large annotated

datasets. To lower the need for hand labeled images,

virtually rendered 3D worlds have recently gained pop-

ularity. Unfortunately, creating realistic 3D content is

challenging on its own and requires significant human

effort. In this work, we propose an alternative paradigm

which combines real and synthetic data for learning

semantic instance segmentation and object detection

models. Exploiting the fact that not all aspects of the

scene are equally important for this task, we propose to

augment real-world imagery with virtual objects of the

target category. Capturing real-world images at large

scale is easy and cheap, and directly provides real back-

ground appearances without the need for creating com-

plex 3D models of the environment. We present an ef-

ficient procedure to augment these images with virtual

objects. This allows us to create realistic composite im-

ages which exhibit both realistic background appear-
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ance as well as a large number of complex object ar-

rangements. In contrast to modeling complete 3D en-

vironments, our data augmentation approach requires

only a few user interactions in combination with 3D

shapes of the target object category. Through an ex-

tensive set of experiments, we conclude the right set of

parameters to produce augmented data which can max-

imally enhance the performance of instance segmenta-

tion models. Further, we demonstrate the utility of pro-

posed approach on training standard deep models for

semantic instance segmentation and object detection

of cars in outdoor driving scenarios. We test the mod-

els trained on our augmented data on the KITTI 2015

dataset, which we have annotated with pixel-accurate

ground truth, and on the Cityscapes dataset. Our ex-

periments demonstrate that the models trained on aug-

mented imagery generalize better than those trained on

synthetic data or models trained on limited amounts of

annotated real data.

Keywords Synthetic training data · Data augmenta-

tion · Autonomous driving · Instance segmentation ·
Object detection

1 Introduction

In recent years, deep learning has revolutionized the

field of computer vision. Many tasks that seemed elusive

in the past, can now be solved efficiently and with high

accuracy using deep neural networks, sometimes even

exceeding human performance (Taigman et al (2014)).

However, it is well-known that training high ca-

pacity models such as deep neural networks requires

huge amounts of labeled training data. This is partic-

ularly problematic for tasks where annotating even a

single image requires significant human effort, e.g., for
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semantic or instance segmentation. A common strat-

egy to circumvent the need for human labels is to train

neural networks on synthetic data obtained from a 3D

renderer for which ground truth labels can be auto-

matically obtained, (Shafaei et al (2016); Richter et al

(2016); Movshovitz-Attias et al (2016); Varol et al (2017);

Zhang et al (2016a); Ros et al (2016); Handa et al

(2016); Gaidon et al (2016)). While photo-realistic ren-

dering engines exist (Jakob (2010)), the level of realism

is often lacking fine details in the 3D world, e.g., leaves

of trees can only be modeled approximately.

In this paper, we demonstrate that state-of-the-art

photo-realistic rendering can be utilized to augment

real-world images and obtain virtually unlimited amounts

of training data for specific tasks such as semantic in-

stance segmentation and object detection. Towards this

goal, we consider real images with additional side in-

formation, such as camera calibration and environment

maps, and augment these images with novel object in-

stances. In particular, we augment the data with real-

istically rendered car instances. This allows us to keep

the full realism of the background while being able to

generate arbitrary amounts of foreground object con-

figurations.

Figure 1 shows a real image before and after aug-

mentation. While our rendered objects rival the real-

ism of the input data, they provide the variations (e.g.,

pose, shape, appearance) needed for training deep neu-

ral networks for instance aware semantic segmentation

and bounding box detection of cars. By doing so, we

are able to considerably improve the accuracy of state-

of-the-art deep neural networks trained on real data.

While the level of realism is an important factor

when synthesizing new data, there are two other im-

portant aspects to consider - data diversity and human

labor. Manually assigning a class or instance label to ev-

ery pixel in an image is possible but tedious, requiring

up to one hour per image (Cordts et al (2016)). Thus

existing real-world datasets are limited to a few hun-

dred (Brostow et al (2009)) or thousand (Cordts et al

(2016)) annotated examples, thereby severely limiting

the diversity of the data. In contrast, the creation of vir-

tual 3D environments allows for arbitrary variations of

the data and virtually infinite number of training sam-

ples. However, the creation of 3D content requires pro-

fessional artists and the most realistic 3D models (de-

signed for modern computer games or movies) are not

publicly available due to the enormous effort involved in

creating them. While Richter et al (2016) have recently

demonstrated how content from commercial games can

be accessed through manipulating low-level GPU in-

structions, legal problems are likely to arise and often

the full flexibility of the data generation process is no

longer given.

In this work we demonstrate that the creation of an

augmented dataset which combines real with synthetic

data requires only moderate human effort while yielding

the variety of data necessary for improving the accu-

racy of state-of-the-art instance segmentation network

(Multitask Network Cascades) (Dai et al (2016)) and

object detection network (Faster R-CNN) (Ren et al

(2015)). In particular, we show that a model trained

using our augmented dataset generalizes better than

models trained purely on synthetic data as well as mod-

els which use a smaller number of manually annotated

real images. Since our data augmentation approach re-

quires only minimal manual effort, we believe that it

constitutes an important milestone towards the ulti-

mate task of creating virtually infinite, diverse and re-

alistic datasets with ground truth annotations. In sum-

mary, our contributions are as follows:

– We propose an efficient solution for augmenting real

images with photo-realistic synthetic object instances

which can be arranged in a flexible manner.

– We provide an in-depth analysis of the importance

of various factors of the data augmentation process,

including the number of augmentations per real im-

age, the realism of the background and the fore-

ground regions.

– We find that models trained on augmented data

generalize better than models trained on purely syn-

thetic data or small amounts of labeled real data.

– For conducting the experiments in this paper, we

introduce two newly labeled instance segmentation

datasets, named KITTI-15 and KITTI-360, with a

total of 400 images.

2 Related Work

Due to the scarcity of real-world data for training deep

neural networks, several researchers have proposed to

use synthetic data created with the help of a 3D render-

ing engine. Indeed, it was shown (Shafaei et al (2016);

Richter et al (2016); Movshovitz-Attias et al (2016))

that deep neural networks can achieve state-of-the-art

results when trained on synthetic data and that the ac-

curacy can be further improved by fine tuning on real

data (Richter et al (2016)). Moreover, it was shown that

the realism of synthetic data is important to obtain

good performance (Movshovitz-Attias et al (2016)).

Making use of this observation, several synthetic

datasets have been released which we will briefly review

in the following. Hattori et al (2015) present a scene-

specific pedestrian detector using only synthetic data.
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Fig. 1: Obtaining synthetic training data usually requires building large virtual worlds (top right) (Gaidon et al

(2016)). We propose a new way to extend datasets by augmenting real training images (top left) with realistically

rendered cars (bottom) keeping the resulting images close to real while expanding the diversity of training data.

Varol et al (2017) present a synthetic dataset of hu-

man bodies and use it for human depth estimation and

part segmentation from RGB-images. In a similar effort,

Chen et al (2016) use synthetic data for 3D human pose

estimation. In (de Souza et al (2016)), synthetic videos

are used for human action recognition with deep net-

works. Zhang et al (2016b) present a synthetic dataset

for indoor scene understanding. Similarly, Handa et al

(2016) use synthetic data to train a depth-based pix-

elwise semantic segmentation method. In Zhang et al

(2016a), a synthetic dataset for stereo vision is pre-

sented which has been obtained from the UNREAL ren-

dering engine. Zhu et al (2016) present the AI2-THOR

framework, a 3D environment and physics engine which

they leverage to train an actor-critic model using deep

reinforcement learning. Peng et al (2015) investigate

how missing low-level cues in 3D CAD models affect

the performance of deep CNNs trained on such models.

Stark et al (2010) use 3D CAD models for learning a

multi-view object class detector.

In the context of autonomous driving, the SYN-

THIA dataset (Ros et al (2016)) contains a collection

of diverse urban scenes and dense class annotations.

Gaidon et al (2016) introduce a synthetic video dataset

(Virtual KITTI) which was obtained from the KITTI-

dataset (Geiger et al (2013)) alongside with dense class

annotations, optical flow and depth. Su et al (2015) use

a dataset of rendered 3D models on random real im-

ages for training a CNN on viewpoint estimation. While

all aforementioned methods require labor intensive 3D

models of the environment, we focus on exploiting the

synergies of real and synthetic data using augmented re-

ality. In contrast to purely synthetic datasets, we obtain

a large variety of realistic data in an efficient manner.

Furthermore, as evidenced by our experiments, combin-

ing real and synthetic data within the same image re-

sults in models with better generalization performance.

While most works use either real or synthetic data,

only few papers consider the problem of training deep

models with mixed reality. Rozantsev et al (2015) es-

timate the parameters of a rendering pipeline from a

small set of real images for training an object detector.

Gupta et al (2016) use synthetic data for text detection

in images. Pishchulin et al (2011) use synthetic human

bodies rendered on random backgrounds for training

a pedestrian detector. Dosovitskiy et al (2015) render

flying chairs on top of random Flickr backgrounds to

train a deep neural network for optical flow. Unlike ex-

isting mixed-reality approaches which are either sim-

plistic, consider single objects or augment objects in

front of random backgrounds, our goal is to create high

fidelity augmentations of complex multi-object scenes

at high resolution. In particular, our approach takes

the geometric layout of the scene, environment maps
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as well as artifacts stemming from the image capturing

device into account. We experimentally evaluate which

of these factors are important for training good models.

3 Data Augmentation Pipeline

In this section, we describe our approach to data aug-

mentation through photo-realistic rendering of 3D mod-

els on top of real scenes. To achieve this, three essen-

tial components are required: (i) detailed high quality

3D models of cars, (ii) a set of 3D locations and poses

used to place the car models in the scene and, (iii) the

environment map of the scene that can be used to pro-

duce realistic reflections and lighting on the models that

matches the scene.

We use 28 high quality 3D car models covering 7 cat-

egories (SUV, sedan, hatchback, station wagon, mini-

van, van) obtained from online model repositories1. The

car color is chosen randomly during rendering to in-

crease the variety in the data. To achieve high qual-

ity realistic augmentation, it is essential to correctly

place virtual objects in the scene at practically plau-

sible locations, matching the distribution of poses and

occlusions in the real data. We explored four different

location sampling strategies: (i) Manual car location an-

notations, (ii) Automatic road segmentation, (iii) Road

plane estimation, (iv) Random unconstrained location

sampling. For (i), we leverage the homography between

the ground plane and the image plane, transforming

the perspective image into a birdseye view of the scene.

Based on this new view, our in-house annotators marked

possible car trajectories (Figure 3). We sample the loca-

tions from these annotations and set the rotation along

the vertical axis of the car to be aligned with the tra-

jectory. For (ii), we use the algorithm proposed by (Te-

ichmann et al (2016)) which segments the image into

road and non-road areas with high accuracy. We back-

project those road pixels and compute their location

on the ground plane to obtain possible car locations

and use a random rotation around the vertical axis of

the vehicle. While this strategy is simpler, it can lead

to visually less realistic augmentations. For (iii), since

we know the intrinsic parameters of the capturing cam-

era and its exact pose, it is possible to estimate the

ground plane in the scene. This reduces the problem of

sampling the pose from 6D to 3D, namely the 2D posi-

tion on the ground plane and one rotation angle around

the model’s vertical axis. Finally for (iv), we randomly

sample locations and rotations from an arbitrary dis-

tribution.

1 http://www.dmi-3d.net

We empirically found Manual car location annota-

tions to perform slightly better than Automatic road

segmentation and on par with road plane estimation as

described in Sec. 4. We use manual labeling in all our

experiments, unless stated otherwise.

We leverage the 360 degree panoramas of the envi-

ronment from the KITTI-360 dataset (Xie et al (2016))

as an environment map proxies for realistic rendering

of cars in street scenes. Using the 3D models, locations

and environment maps, we render cars using the Cycle

renderer implemented in Blender (Blender Online Com-

munity (2006)). Figure 2 illustrates our rendering ap-

proach. However, the renderings obtained from Blender

lack typical artifacts of the image formation process

such as motion blur, lens blur, chromatic aberrations,

etc. To better match the image statistics of the back-

ground, we thus design a post-processing work-flow in

Blender’s compositing editor which applies a sequence

of 2D effects and transformations to simulate those ef-

fects, resulting in renderings that are more visually sim-

ilar to the background. More specifically, we apply color

shifts to simulate chromatic aberrations in the camera

lens as well as depth-blur to match the camera depth-

of-field. Finally, we use several color curve and Gamma

transformations to better match the color statistics and

contrast of the real data. The parameters of these oper-

ations have been estimated empirically and some results

are shown in Figure 4.

4 Evaluation

In this section we show how augmenting driving scenes

with synthetic cars is an effective way to expand a

dataset and increase its quality and variance. In partic-

ular, we highlight two aspects in which data augmen-

tation can improve the real data performance. First,

introducing new synthetic cars in each image with de-

tailed ground truth labeling makes the model less likely

to over-fit to the small amount of real training data and

exposes it to a large variety of car poses, colors and

models that might not exist or be rare in real images.

Second, our augmented cars introduce realistic occlu-

sions of real cars which makes the learned model more

robust to occlusions since it is trained to detect the

same real car each time with a different occlusion con-

figuration. This second aspect also protects the model

from over-fitting to the relatively small amount of an-

notated real car instances.

We study the performance of our data augmenta-

tion method on two challenging vision tasks, instance

segmentation and object detection. Using different se-

tups of our augmentation method, we investigate how

the quality and quantity of augmented data affects the
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Fig. 2: Overview of our augmentation pipeline. Given a set of 3D car models, locations and environment maps,

we render high quality cars and overlay them on top of real images. The final post-processing step insures better

visual matching between the rendered and real parts of the resulting image.

Fig. 3: (Top) The original image. (Middle) Road seg-

mentation using (Teichmann et al (2016)) in red for

placing synthetic cars. (Down) Using the camera cali-

bration, we project the ground plane to get a birdseye

view of the scene. From this view, the annotator draws

lines indicating vacant trajectories where synthetic cars

can be placed.

performance of a state-of-the-art instance segmentation

model. In particular, we explore how the number of aug-

mentations per real image and number of added syn-

thetic cars affects the quality of the learned models. We

compare our results on both tasks to training on real

and fully synthetic data, as well as a combination of the

two (i.e., training on synthetic data and fine-tuning on

real data). We also experiment with different aspects of

realism such as environment maps, post-processing and

car placement methods.

4.1 Datasets

KITTI-360 For our experiments, we created a new dataset

which contains 200 images chosen from the dataset pre-

sented in Xie et al (2016). We labeled all car instances at

pixel level using our in-house annotators to create high

quality semantic instance segmentation ground truth.

This new dataset (KITTI-360) is unique compared to

KITTI (Geiger et al (2013)) or Cityscapes (Cordts et al

(2016)) in that each frame comes with two 180◦ im-

ages taken by two fish-eye cameras on top of recording

platform. Using an equirectangular projection, the two

images are warped and combined to create a full 360◦

omni-directional image that we use as an environment

map during the rendering process. These environment

maps are key to creating photo-realistic augmented im-

ages and are used frequently in Virtual Reality and Cin-

ematic special effects applications. The dataset consists

of 200 real images which form the basis for augmenta-

tion in all our experiments, i.e., we reuse each image

n times with differently rendered car configurations to

obtain an n-fold augmented dataset.

VKITTI To compare our augmented images to fully

synthetic data, we use the Virtual KITTI (VKITTI)

dataset (Gaidon et al (2016)) which has been designed

as a virtual proxy for the KITTI 2015 dataset (Menze

and Geiger (2015)). Thus, the statistics of VKITTI

(e.g., semantic class distribution, car poses and environ-

ment types) closely resembles those of KITTI-15 which

we use as a testbed for evaluation. The dataset com-

prises ∼12,000 images divided into 5 sequences with 6

different weather and lighting conditions for each se-

quence.
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(a) The two cars in the center are rendered

(b) The car to the left and in the center are rendered

(c) The three cars in the center are rendered

(d) The three cars on the road are rendered

Fig. 4: Example images produced by our augmentation pipeline.

KITTI-15 To demonstrate the advantage of data aug-

mentation for training robust models, we create a new

benchmark test dataset different from the training set

using the popular KITTI 2015 dataset (Menze and Geiger

(2015)). More specifically, we annotated all the 200 pub-

licly available images of the KITTI 2015 (Menze and

Geiger (2015)) with pixel-accurate semantic instance

labels using our in-house annotators. While the statis-

tics of the KITTI-15 dataset are similar to those of

the KITTI-360 dataset, it has been recorded in a dif-

ferent year and at a different location / suburb. This

allows us to assess performance of instance segmenta-
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tion and detection methods trained on the KITTI-360

and VKITTI dataset.

Cityscapes To further evaluate the generalization per-

formance of augmented data, we test our models using

the larger Cityscapes validation dataset (Cordts et al

(2016)) which consists of 500 instance mask annotated

images. The capturing setup and data statistics of this

dataset is different to those of KITTI-360, KITTI-15

and VKITTI making it a more challenging test set.

4.2 Evaluation Protocol

We evaluate the effectiveness of augmented data for

training deep neural networks using two challenging

tasks, instance-level segmentation and bounding-box ob-

ject detection. In particular, we focus on the task of car

instance segmentation and detection as those dominate

our driving scenes.

Instance segmentation We choose the state-of-the-art

Multi-task Network Cascade (MNC) by Dai et al (2016)

for instance-aware semantic segmentation. We initialize

each model using the features from the VGG model

(Simonyan and Zisserman (2015)) trained on ImageNet

and train the method using variants of real, augmented

or synthetic training data. For each variant, we train the

model until convergence and average the result of the

best performing 5 snapshots on each test set. We report

the standard average precision metric of an intersection-

over-union threshold of 50% (AP50) and 70% (AP70),

respectively.

Object detection For bounding-box car detection we adopt

the popular Faster-RCNN (Ren et al (2015)) method.

We initialize the model using the VGG model trained

on ImageNet as well and then train it using the same

dataset variants for 10 epochs and average the best per-

forming 3 snapshots on each test set. For this task, we

report the mean average precision (mAP) metric com-

monly used in object detection evaluation.

4.3 Augmentation Analysis

We experiment with the two major factors for adding

variation in the augmented data. Those are, (i) the

number of augmentations, i.e the number of augmented

images created from each real image, (ii) the number of

synthetic cars rendered in each augmented images.

Figure 5a shows how increasing the number of augmen-

tations per real image improves the performance of the

trained model through the added diversity of the tar-

get class, but then saturates beyond 20 augmentations.

While creating one augmentation of the real dataset

adds a few more synthetic instances to each real im-

age, it fails to improve the model performance com-

pared to training on real data only. Nevertheless, cre-

ating more augmentations results in a larger and more

diverse dataset that performs significantly better on the

real test data. This suggests that the main advantage of

our data augmentation comes from adding realistic di-

versity to existing datasets through having several aug-

mented versions of each real image. In the rest of our

experiments, we use 20 augmentations per real unless

stated otherwise.

In figure 5b we examine the role of the synthetic

content of each augmented image on performance by

augmenting the dataset with various numbers of syn-

thetic cars in each augmented image. At first, adding

more synthetic cars improves the performance by intro-

ducing more instances to the training set. It provides

more novel car poses and realistic occlusions on top of

real cars leading to more generalizable models. Nev-

ertheless, increasing the number of cars beyond 5 per

image results in a noticeable decrease in performance.

Considering that our augmentation pipeline works by

overlaying rendered cars on top of real images, adding

a larger number of synthetic cars will cover more of

the smaller real cars in the image reducing the ratio of

real to synthetic instances in the dataset. This negative

effect soon undercuts the benefit of the diversity pro-

vided by the augmentation leading to decreasing perfor-

mance. Our conjecture is that the best performance can

be achieved using a balanced combination of real and

synthetic data. Unless explicitly mentioned otherwise,

all our experiments were conducting using 5 synthetic

cars per augmented image.

4.4 Comparing Real, Synthetic and Augmented Data

Synthetic data generation for autonomous driving has

shown promising results in the recent years. However,

it comes with several drawbacks:

– The time and effort needed to create a realistic and

detailed 3D world and populate it with agents that

can move and interact.

– The difference in data distribution and pixel-value

statistics between the real and virtual data prevents

it from being a direct replacement to real training

data. Instead, it is often used in combination with

a two stage training procedure where the model is

first pre-trained on large amounts of virtual data
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(a) (b)

Fig. 5: Instance segmentation performance using augmented data. (a) We fix the number of synthetic cars to 5

per augmentation and vary the number of augmentations per real image. (b) We fix the number of augmentations

to 20 and vary the maximum number of synthetic cars rendered in each augmented image.

(a) (b)

Fig. 6: Using our augmented dataset, we can achieve better performance on both (a) the KITTI-15 test set and (b)

Cityscapes (Cordts et al (2016)) test set compared to using synthetic data or real data separately. We also outper-

form models trained on synthetic data and fine-tuned with real data (VKITTI+Real) while significantly reducing

manual effort. Additionally, fine-tuning the model trained on VKITTI using our Augmented data (VKITTI+Aug)

further improves the performance.

and then fine tuned on real data to better match

the test data distribution.

Using our data augmentation method we hope to over-

come these two limitations. First, by using real images

as background, we limit the manual effort to model-

ing high quality 3D cars compared to designing full 3D

scenes. A large variety of 3D cars is available through

online 3D model warehouses and can be easily cus-

tomized. Second, by limiting the modification of the

images to the foreground objects and compositing them

with the real backgrounds, we keep the difference in ap-

pearance and image artifacts at minimum. As a result,

we are able to boost the performance of the model di-

rectly trained on the augmented data without the need

for a two stage pre-training/refinement procedure.

To compare our augmented data to fully synthetic

data, we train a model using VKITTI and refine it with

the real KITTI-360 training set. Figures 6a and 6b show

our results tested on KITTI-15 and Cityscapes respec-

tively. While fine-tuning a model trained on VKITTI

with real data improves the results from 42.8% to 48.2%,

our augmented dataset achieves a performance of 49.7%

in a single step. Additionally, using our augmented data

for fine-tuning the VKITTI trained model significantly

improves the results (51.3%). This demonstrates that

the augmented data is closer in nature to real than to

synthetic data. While the flexibility of synthetic data
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(a) (b)

Fig. 7: Training the Faster RCNN model (Ren et al (2015)) for bounding box detection on various datasets. Using

our augmented dataset we outperform the models trained using synthetic data or real data separately on both

(a) KITTI-15 test set and (b) Citescapes (Cordts et al (2016)) test set. We also outperform the model trained on

VKITTI and fine-tuned on real data (VKITTI+Real) by using our augmented data to fine tune the model trained

on VKITTI (VKITTI+Aug).

can provide important variability, it fails to provide the

expected boost over real data due to differences in ap-

pearance. On the other hand, augmented data comple-

ments this by providing high visual similarity to the

real data, yet preventing over-fitting.

While virtual data captures the semantics of the real

world, at the low level real and synthetic data statistics

can differ significantly. Thus training with purely syn-

thetic data leads to biased models that under-perform

on real data. Similarly training or fine-tuning on a lim-

ited size dataset of real images restricts the generaliza-

tion performance of the model. In contrast, the com-

position of real images and synthetic cars into a single

frame can help the model to learn shared features be-

tween the two data distributions without over-fitting to

the synthetic ones. Note that our augmented dataset

alone performs slightly better than the models trained

on VKITTI and fine-tuned on the real dataset only.

This demonstrates that state-of-the-art performance can

be obtained without designing complete 3D models of

the environment. Figure 7a and 7b show similar results

achieved for the detection task on both KITTI-15 and

Cityscapes respectively.

4.5 Dataset Size And Variability

The potential usefulness of data augmentations comes

mainly from its ability to realistically expand a rela-

tively small dataset and train more generalizable mod-

els. We analyze here the impact of dataset size on train-

ing using real, synthetic and augmented data. Figures

8a and 8c show the results obtained by training on var-

ious number of real images with and without augmen-

tation, respectively. The models trained on a small real

dataset suffer from over-fitting that leads to low per-

formance, but then slowly improve when adding more

training images. Meanwhile, the augmented datasets

reach good performance even with a small number of

real images and significantly improve when increasing

dataset size outperforming the full real data by a large

margin. This suggests that our data augmentation can

help improve the performance of not only smaller datasets,

but also medium or even larger ones.

In figure 8b, the total size of the augmented dataset is

fixed to 4000 images by adjusting the number of aug-

mentations for each real dataset size. In this case the

number of synthetic car instances is equal across all

variants which only differ in the number of real back-

grounds. The results highlight the crucial role of the real

background diversity in the quality of the trained mod-

els regardless of the number of added synthetic cars.

Even though fully synthetic data generation methods

can theoretically render an unlimited number of train-

ing images, the performance gain becomes smaller as

the dataset grows larger. We see this effect in figure 8d

where we train the model using various randomly se-

lected subsets of the original VKITTI dataset. In this

case, rendering adding data beyond 4000 images doesn’t

improve the model performance.
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(a) (b)

(c) (d)

Fig. 8: Instance segmentation performance using real, synthetic and augmented datasets of various sizes tested

on KITTI-15. (a) We fix the number of augmentations per image to 20 but vary the number of real image used

for augmentation. This leads to a various size dataset depending on the number of real images. (b) We vary the

number real images while keeping the resulting augmented dataset size fixed to 4000 images by changing the

number of augmentations accordingly. (c) We train on various number of real images only. (d) We train on various

number of VKITTI images.

4.6 Realism and Rendering Quality

Even though our task is mainly concerned with seg-

menting foreground car instances, having a realistic back-

ground is very important for learning good models.

Here, we analyze the effect of realism of the background

for our task. In Figure 9 we compare models trained on

the same foreground objects consisting of a mix of real

and synthetic cars, while changing the background us-

ing the following four variations: (i) black background,

(ii) random Flickr images (Philbin et al (2007)), (iii)

Virtual KITTI images, (iv) real background images.

The results clearly show the important role of the back-

ground imagery and its impact even when using the

same foreground instance. Having the same black back-

ground in all training images leads to over-fitting to the

background and consequently poor performance on the

real test data. Using random Flickr images improves

the performance by preventing background over-fitting

but fails to provide any meaningful semantic cues for

the model. VKITTI images provide better context for

foreground cars improving the segmentation. Neverthe-

less, it falls short on performance because of the appear-

ance difference between the foreground and background

compared to using real backgrounds.

Finally, we take a closer look at the importance

of realism in the augmented data. In particular, we

focus on three key aspects of realism that is, accu-

rate reflections, post-processing and object positioning.

Reflections are extremely important for visual quality

when rendering photo-realistic car models (see Figure

10) but are they of the same importance for learning

instance-level segmentation? In Figure 10 we compare

augmented data using the true environment map to

that using a random environment map chosen from the

same car driving sequence or using no environment map

at all. The results demonstrate that the choice of en-

vironment map during data augmentation affects the

performance of the instance segmentation model only

minimally. This finding means that it’s possible to use
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(a) Black BG
AP50 = 21.5%

(b) Flickr BG
AP50 = 40.3%

(c) Virtual KITTI BG
AP50 = 47.7.3%

(d) Real BG
AP50 = 49.7%

Fig. 9: Comparison of performance of models trained on augmented foreground cars (real and synthetic) over

different kinds of background.

(a) No env. map
AP50 = 49.1%

(b) Random env. map
AP50 = 49.2%

(c) True env. map
AP50 = 49.7%

(d) No postprocessing
AP50 = 43.8%

Fig. 10: Comparison of the effect of post-processing and environment maps for rendering.

Fig. 11: Results using different techniques for sampling

car poses.

our data augmentation method even on datasets that

do not provide spherical views for the creation of accu-

rate environment map. On the other hand, comparing

the results with and without post-processing (Figure

10c+10d) reveals the importance of realism in low-level

appearance.

Another important aspect which can bias the distribu-

tion of the augmented dataset is the placement of the

synthetic cars. We experiment with 4 variants: (i) ran-

domly placing the cars in the 3D scene with random 3D

rotation, (ii) randomly placing the cars on the ground

plane with a random rotation around the up axis, (iii)

using semantic segmentation to find road pixels and

projecting them onto the 3D ground plane while set-

ting the rotation around the up axis at random, (iv)

using manually annotated tracks from birdseye views.

Figure 11 shows our results. Randomly placing the cars

in 3D performs noticeably worse than placing them on

the ground plane. This is not surprising as cars can

be placed at physically implausible locations, which do

not appear in our validation data. The road segmenta-

tion method tends to place more synthetic cars in the

clear road areas closer to the camera which covers the

majority of the smaller (real) cars in the background

leading to slightly worse results. The other 2 location

sampling protocols don’t show significant differences.

This indicates that manual annotations are not nec-
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essary for placing the augmented cars as long as the

ground plane and camera parameters are known.

5 Conclusion

In this paper, we have proposed a new paradigm for effi-

ciently enlarging existing data distributions using aug-

mented reality. The realism of our augmented images

rivals the realism of the input data, thereby enabling

us to create highly realistic data sets which are suit-

able for training deep neural networks. In the future

we plan to expand our method to other data sets and

training tasks. We also plan to improve the realism of

our method by making use of additional labels such

as depth and optical flow or by training a generative

adversarial method which allows for further fine-tuning

the low-level image statistics to the distribution of real-

world imagery.
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