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Abstract. This work presents a deep object co-segmentation (DOCS)
approach for segmenting common objects of the same class within a pair
of images. This means that the method learns to ignore common, or un-
common, background stuff and focuses on common objects. If multiple
object classes are presented in the image pair, they are jointly extracted
as foreground. To address this task, we propose a CNN-based Siamese
encoder-decoder architecture. The encoder extracts high-level semantic
features of the foreground objects, a mutual correlation layer detects
the common objects, and finally, the decoder generates the output fore-
ground masks for each image. To train our model, we compile a large
object co-segmentation dataset consisting of image pairs from the PAS-
CAL dataset with common objects masks. We evaluate our approach
on commonly used datasets for co-segmentation tasks and observe that
our approach consistently outperforms competing methods, for both seen
and unseen object classes.

1 Introduction

Object co-segmentation is the task of segmenting the common objects from a
set of images. It is applied in various computer vision applications and beyond,
such as browsing in photo collections [30], 3D reconstruction [21], semantic seg-
mentation [33], object-based image retrieval [39], video object tracking and seg-
mentation [30], and interactive image segmentation [30].

There are different challenges for object co-segmentation with varying level
of difficulty: (1) Rother et al . [30] first proposed the term of co-segmentation as
the task of segmenting the common parts of an image pair simultaneously. They
showed that segmenting two images jointly achieves better accuracy in contrast
to segmenting them independently. They assume that the common parts have
similar appearance. However, the background in both images are significantly
different, see Fig. 1(a). (2) Another challenge is to segment the same object
instance or similar objects of the same class with low intra-class variation, even
with similar background [2, 39], see Fig. 1(b). (3) A more challenging task is to
segment common objects from the same class with large variability in terms of
scale, appearance, pose, viewpoint and background [31], see Fig. 1(c).
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Fig. 1. Different co-segmentation challenges: (a) segmenting common parts, in
terms of small appearance deviation, with varying background [30], (b) segmenting
common objects from the same class with low intra-class variation but similar back-
ground [2, 38], (c) segmenting common objects from the same class with large variabil-
ity in terms of scale, appearance, pose, viewpoint and background [31]. (d) segmenting
common objects in images including more than one object from multiple classes. Second
row shows our predicted co-segmentation of these challenging images.

All of the mentioned challenges assume that the image set contains only one
common object and the common object should be salient within each image.
In this work, we address a more general problem of co-segmentation without
this assumption, i.e. multiple object classes can be presented within the images,
see Fig. 1(d). As it is shown, the co-segmentation result for one specific image
including multiple objects can be different when we pair it with different images.
Additionally, we are interested in co-segmenting objects, i.e. things rather than
stuff. The idea of object co-segmentation was introduced by Vicente et al . [39] to
emphasize the resulting segmentation to be a thing such as a ‘cat’ or a ‘monitor’,
which excludes common, or uncommon, stuff classes like ‘sky’ or ‘sea’.

Segmenting objects in an image is one of the fundamental tasks in computer
vision. While image segmentation has received great attention during the recent
rise of deep learning [25, 29, 47, 43, 28], the related task of object co-segmentation
remains largely unexplored by newly developed deep learning techniques. Most
of the recently proposed object co-segmentation methods still rely on models
without feature learning. This includes methods utilizing super-pixels, or pro-
posal segments [39, 36] to extract a set of object candidates, or methods which
use a complex CRF model [22, 28] with hand-crafted features [28] to find the
segments with the highest similarity.

In this paper, we propose a simple yet powerful method for segmenting ob-
jects of a common semantic class from a pair of images using a convolutional
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encoder-decoder neural network. Our method uses a pair of Siamese encoder net-
works to extract semantic features for each image. The mutual correlation layer
at the network’s bottleneck computes localized correlations between the semantic
features of the two images to highlight the heat-maps of common objects. Finally,
the Siamese decoder networks combine the semantic features from each image
with the correlation features to produce detailed segmentation masks through
a series of deconvolutional layers. Our approach is trainable in an end-to-end
manner and does not require any, potentially long runtime, CRF optimization
procedure at evaluation time. We perform an extensive evaluation of our deep
object co-segmentation and show that our model can achieve state-of-the-art
performance on multiple common co-segmentation datasets. In summary, our
main contributions are as follows:

– We propose a simple yet effective convolutional neural network (CNN) ar-
chitecture for object co-segmentation that can be trained end-to-end. To
the best of our knowledge, this is the first pure CNN framework for object
co-segmentation, which does not depend on any hand-crafted features.

– We achieve state-of-the-art results on multiple object co-segmentation datasets,
and introduce a challenging object co-segmentation dataset by adapting Pas-
cal dataset for training and testing object co-segmentation models.

2 Related Work

We start by discussing object co-segmentation by roughly categorizing them into
three branches: co-segmentation without explicit learning, co-segmentation with
learning, and interactive co-segmentation. After that, we briefly discuss various
image segmentation tasks and corresponding approaches based on CNNs.
Co-Segmentation without Explicit Learning. Rother et al . [30] proposed
the problem of image co-segmentation for image pairs. They minimize an energy
function that combines an MRF smoothness prior term with a histogram match-
ing term. This forces the histogram statistic of common foreground regions to
be similar. In a follow-up work, Mukherjee et al . [26] replace the l1 norm in the
cost function by an l2 norm. In [14], Hochbaum and Singh used a reward model,
in contrast to the penalty strategy of [30]. In [38], Vicente et al . studied various
models and showed that a simple model based on Boykov-Jolly [3] works the best.
Joulin et al . [19] formulated the co-segmentation problem in terms of a discrimi-
native clustering task. Rubio et al . [32] proposed to match regions, which results
from an over-segmentation algorithm, to establish correspondences between the
common objects. Rubinstein et al . [31] combined a visual saliency and dense
correspondences, using SIFT flow, to capture the sparsity and visual variability
of the common object in a group of images. Fu et al . [12] formulated object
co-segmentation for RGB-D input images as a fully-connected graph structure,
together with mutex constraints. In contrast to these works, our method is a
pure learning based approach.
Co-Segmentation with Learning. In [39], Vicente et al . generated a pool
of object-like proposal-segmentations using constrained parametric min-cut [4].
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Then they trained a random forest classifier to score the similarity of a pair of
segmentation proposals. Yuan et al . [45] introduced a deep dense conditional
random field framework for object co-segmentation by inferring co-occurrence
maps. These co-occurrence maps measure the objectness scores, as well as, sim-
ilarity evidence for object proposals, which are generated using selective search
[37]. Similar to the constrained parametric min-cut, selective search also uses
hand-crafted SIFT and HOG features to generate object proposals. Therefore,
the model of [45] cannot be trained end-to-end. In addition, [45] assume that
there is a single common object in a given image set, which limits application in
real-world scenarios. Recently, Quan et al . [28] proposed a manifold ranking algo-
rithm for object co-segmentation by combining low-level appearance features and
high-level semantic features. However, their semantic features are pre-trained on
the ImageNet dataset. In contrast, our method is based on a pure CNN archi-
tecture, which is free of any hand-crafted features and object proposals and does
not depend on any assumption about the existence of common objects.

Interactive Co-Segmentation. Batra et al . [2] firstly presented an algorithm
for interactive co-segmentation of a foreground object from a group of related
images. They use users’ scribbles to indicate the foreground. Collins et al . [7]
used a random walker model to add consistency constraints between foreground
regions within the interactive co-segmentation framework. However, their co-
segmentation results are sensitive to the size and positions of users’ scribbles.
Dong et al . [9] proposed an interactive co-segmentation method which uses global
and local energy optimization, whereby the energy function is based on scribbles,
inter-image consistency, and a standard local smoothness prior. In contrast, our
work is not a user-interactive co-segmentation approach.

Convolutional Neural Networks for Image Segmentation. In the last few
years, CNNs have achieved great success for the tasks of image segmentation,
such as semantic segmentation [25, 27, 44, 24, 43, 46], interactive segmentation
[43, 42], and salient object segmentation [23, 41, 15].

Semantic segmentation aims at assigning semantic labels to each pixel in an
image. Fully convolutional networks (FCN) [25] became one of the first popular
architectures for semantic segmentation. Nor et al . [27] proposed a deep de-
convolutional network to learn the upsampling of low-resolution features. Both
U-Net [29] and SegNet [1] proposed an encoder-decoder architecture, in which
the decoder network consists of a hierarchy of decoders, each corresponding to
an encoder. Yu et al. [44] and Chen et al. [5] proposed dilated convolutions to ag-
gregate multi-scale contextual information, by considering larger receptive fields.
Salient object segmentation aims at detecting and segmenting the salient objects
in a given image. Recently, deep learning architectures have become popular for
salient object segmentation [23, 41, 15]. Li and Yu [23] addressed salient object
segmentation using a deep network which consists of a pixel-level multi-scale
FCN and a segment scale spatial pooling stream. Wang et al . [41] proposed
recurrent FCN to incorporate saliency prior knowledge for improved inference,
utilizing a pre-training strategy based on semantic segmentation data. Jain et
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Fig. 2. Deep Object Co-Segmentation. Our network includes three parts: (i) pass-
ing input images IA and IB through a Siamese encoder to extract feature maps fA
and fB , (ii) using a mutual correlation network to perform feature matching to obtain
correspondence maps CAB and CBA, (iii) passing concatenation of squeezed feature
maps and correspondence maps through a Siamese decoder to get the common objects
masks MA and MB .

al . [15] proposed to train a FCN to produce pixel-level masks of all object-like
regions given a single input image.

Although CNNs play a central role in image segmentation tasks, there has
been no prior work with a pure CNN architecture for object co-segmentation.
To the best of our knowledge, our deep CNN architecture is the first of its kind
for object co-segmentation.

3 Method

In this section, we introduce a new CNN architecture for segmenting the com-
mon objects from two input images. The architecture is end-to-end trainable for
the object co-segmentation task. Fig. 2 illustrates the overall structure of our
architecture. Our network consists of three main parts: (1) Given two input im-
ages IA and IB , we use a Siamese encoder to extract high-level semantic feature
maps fA and fB . (2) Then, we propose a mutual correlation layer to obtain
correspondence maps CAB and CBA by matching feature maps fA and fB at
pixel-level. (3) Finally, given the concatenation of the feature maps fA and fB
and correspondence maps CAB and CBA, a Siamese decoder is used to obtain
and refine the common object masks MA and MB .

In the following, we first describe each of the three parts of our architecture
in detail. Then in Sec 3.4, the loss function is introduced. Finally, in Sec 3.5,
we explain how to extend our approach to handle co-segmentation of a group of
images, i.e. going beyond two images.

3.1 Siamese Encoder

The first part of our architecture is a Siamese encoder which consists of two
identical feature extraction CNNs with shared parameters. We pass the input
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Fig. 3. The visualization of the heat-maps. Given a pair of input images IA
and IB , after passing them through the Siamese encoder, we extract feature maps fA
and fB . We use the mutual correlation layer to perform feature matching to obtain
correspondence maps CAB and CBA. Then, using our Siamese decoder we predict the
common objects masks MA and MB . As shown before correlation layer, the heat-maps
are covering all the objects inside the images. After applying the correlation layer, the
heat-maps on uncommon objects are filtered out. Therefore, we utilize the output of
the correlation layer to guide the network for segmenting the common objects.

image pair IA and IB through the Siamese encoder network pair to extract
feature maps fA and fB . More specifically, our encoder is based on the VGG16
network [35]. We keep the first 13 convolutional layers and replace fc6 and fc7
with two 3×3 convolutional layers conv6-1 and conv6-2 to produce feature maps
which contain more spatial information. In total, our encoder network has 15
convolutional layers and 5 pooling layers to create a set of high-level semantic
features fA and fB . The input to the Siamese encoder is two 512× 512 images
and the output of the encoder is two 1024-channel feature maps with a spatial
size of 16× 16.

3.2 Mutual Correlation

The second part of our architecture is a mutual correlation layer. The outputs of
encoders fA and fB represent the high-level semantic content of the input images.
When the two images contain objects that belong to a common class, they
should contain similar features at the locations of the shared objects. Therefore,
we propose a mutual correlation layer to compute the correlation between each
pair of locations on the feature maps. The idea of utilizing the correlation layer
is inspired by Flownet [10], in which the correlation layer is used to match
feature points between frames for optical flow estimation. Our motivation of
using the correlation layer is to filter the heat-maps (high-level features), which
are generated separately for each input image, to highlight the heat-maps on the
common objects (see Fig. 3). In detail, the mutual correlation layer performs a
pixel-wise comparison between two feature maps fA and fB . Given a point (i, j)
and a point (m,n) inside a patch around (i, j), the correlation between feature
vectors fA(i, j) and fB(m,n) is defined as

CAB(i, j, k) = 〈 fA(i, j), fB(m,n)〉 (1)
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where k = (n − j)D + (m − i) and D × D is patch size. Since the common
objects can locate at any place on the two input images, we set the patch size
to D = 2 ∗max(w− 1, h− 1) + 1, where w and h are the width and height of the
feature maps fA and fB . The output of the correlation layer is a feature map
CAB of size w × h ×D2. We use the same method to compute the correlation
map CBA between fB and fA.

3.3 Siamese Decoder

The Siamese decoder is the third part of our architecture, which predicts two
foreground masks of the common objects. We squeeze the feature maps fA and
fB and concatenate them with their correspondence maps CAB and CBA as the
input to the Siamese decoder (Fig. 2). The same as the Siamese encoder, the
decoder is also arranged in a Siamese structure with shared parameters. There
are five blocks in our decoder, whereby each block has one deconvolutional layer
and two convolutional layers. All the convolutional and deconvolutional layers in
our Siamese decoder are followed by a ReLU activation function. By applying a
Softmax function, the decoder produces two probability maps pA and pB . Each
probability map has two channels, background and foreground, with the same
size as the input images.

3.4 Loss Function

We define our object co-segmentation as a binary image labeling problem and
use the standard cross entropy loss function to train our network. The full loss
score LAB is then estimated by LAB = LA +LB , where the LA and the LB are
cross-entropy loss functions for the image A and the image B, respectively.

3.5 Group Co-Segmentation

Although our architecture is trained for image pairs, our method can handle
a group of images. Given a set of N images I = {I1, ..., IN}, we pair each
image with K ≤ N − 1 other images from I. Then, we use our DOCS network
to predict the probability maps for the pairs, P =

{
pkn : 1 ≤ n ≤ N, 1 ≤ k ≤ K

}
,

where pkn is the predicted probability map for the kth pair of image In. Finally,
we compute the final mask Mn for image In as

Mn(x, y) = median{pkn(x, y)} > σ. (2)

where σ is the acceptance threshold. In this work, we set σ = 0.5. We use the
median to make our approach more robust to groups with outliers.

4 Experiments

4.1 Datasets

Training a CNN requires a lot of data. However, existing co-segmentation datasets
are either too small or have a limited number of object classes. The MSRC
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dataset [34] was first introduced for supervised semantic segmentation, then a
subset was used for object co-segmentation [39]. This subset of MSRC only has 7
groups of images and each group has 10 images. The iCoseg dataset, introduced
in [2], consists of several groups of images and is widely used to evaluate co-
segmentation methods. However, each group contains images of the same object
instance or very similar objects from the same class. The Internet dataset [31]
contains thousands of images obtained from the Internet using image retrieval
techniques. However, it only has three object classes: car, horse and airplane,
where images of each class are mixed with other noise objects. In [11], Faktor and
Irani use PASCAL dataset for object co-segmentation. They separate the images
into 20 groups according to the object classes and assume that each group only
has one object. However, this assumption is not common for natural images.

Inspired by [11], we create an object co-segmentation dataset by adapting the
PASCAL dataset labeled by [13]. The original dataset consists of 20 foreground
object classes and one background class. It contains 8, 498 training and 2, 857 val-
idation pixel-level labeled images. From the training images, we sampled 161, 229
pairs of images, which have common objects, as a new co-segmentation training
set. We used PASCAL validation images to sample 42, 831 validation pairs and
40, 303 test pairs. Since our goal is to segment the common objects from the pair
of images, we discard the object class labels and instead we label the common
objects as foreground. Fig. 1(d) shows some examples of image pairs of our ob-
ject co-segmentation dataset. In contrast to [11], our dataset consists of image
pairs of one or more arbitrary common classes.

4.2 Implementation Details and Runtime

We use the Caffe framework [18] to design and train our network. We use our co-
segmentation dataset for training. We did not use any images from the MSCR,
Internet or iCoseg datasets to fine tune our model. The conv1-conv5 layers of our
Siamese encoder (VGG-16 net [35]) are initialized with weights trained on the
Imagenet dataset [8]. We train our network on one GPU for 100K iterations using
Adam solver [20]. We use small mini-batches of 10 image pairs, a momentum of
0.9, a learning rate of 1e− 5, and a weight decay of 0.0005.

Our method can handle a large set of images in linear time complexity O(N).
As mentioned in Sec. 3.5 in order to co-segment an image, we pair it with K
(K ≤ N−1) other images. In our experiments, we used all possible pairs to make
the evaluations comparable to other approaches. Although in this case our time
complexity is quadratic O(N2), our method is significantly faster than others.

Number of images Others time Our time

2 8 minutes [19] 0.1 seconds
30 4 to 9 hours [19] 43.5 seconds
30 22.5 minutes [40] 43.5 seconds

418 (14 categories, ∼ 30 images per category) 29.2 hours [11] 10.15 minutes
418 (14 categories, ∼ 30 images per category) 8.5 hours [17] 10.15 minutes
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To show the influence of number of pairs K, we validate our method on the
Internet dataset w.r.t. K (Table 1). Each image is paired with K random images
from the set. As shown, we achieve state-of-the-art performance even with K =
10. Therefore, the complexity of our approach is O(KN) = O(N) which is linear
with respect to the group size.

Table 1. Influence of number of pairs K.

Internet K=10 K=20 K=99(all)
(N=100) P J P J P J

Car 93.93 82.89 93.91 82.85 93.90 82.81

Horse 92.31 69.12 92.35 69.17 92.45 69.44

Airplane 94.10 65.37 94.12 65.45 94.11 65.43

Average 93.45 72.46 93.46 72.49 93.49 72.56

4.3 Results

We report the performance of our approach on MSCR [34, 38], Internet [31], and
iCoseg [2] datasets, as well as our own co-segmentation dataset.

Metrics. For evaluating the co-segmentation performance, there are two com-
mon metrics. The first one is Precision, which is the percentage of correctly
segmented pixels of both foreground and background masks. The second one is
Jaccard, which is the intersection over union of the co-segmentation result and
the ground truth foreground segmentation.

PASCAL Co-Segmentation. As we mentioned in Sec 4.1, our co-segmentation
dataset consists of 40, 303 test image pairs. We evaluate the performance of our
method on our co-segmentation test data. We also tried to obtain the com-
mon objects of same classes using a deep semantic segmentation model, here
FCN8s [25]. First, we train FCN8s with the PASCAL dataset. Then, we obtain
the common objects from two images by predicting the semantic labels using
FCN8s and keeping the segments with common classes as foreground. Our co-
segmentation method (94.2% for Precision and 64.5% for Jaccard) outperforms
FCN8s (93.2% for Precision and 55.2% for Jaccard), which uses the same VGG
encoder, and trained with the same training images. The improvement is prob-
ably due to the fact that our DOCS architecture is specifically designed for the
object co-segmentation task, which FCN8s is designed for the semantic labeling
problem. Another potential reason is that generating image pairs is a form of
data augmentation. We would like to exploit these ideas in the future work. Fig.
4 shows the qualitative results of our approach on the PASCAL co-segmentation
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Fig. 4. Our qualitative results on PASCAL Co-segmentation dataset. (odd
rows) the input images, (even rows) the corresponding object co-segmentation results.

dataset. We can see that our method successfully extracts different foreground
objects for the left image when paired with a different image to the right.

MSRC. The MSRC subset has been used to evaluate the object co-segmentation
performance by many previous methods [38, 31, 11, 40]. For the fair comparison,
we use the same subset as [38]. We use our group co-segmentation method to
extract the foreground masks for each group. In Table. 2, we show the quantita-
tive results of our method as well as four state-of-the-art methods [39, 31, 11, 40].
Our Precision and Jaccard show a significant improvement compared to previous
methods. It is important to note that [39] and [40] are supervised methods, i.e.
both use images of the MSRC dataset to train their models. We obtain the new
state-of-the-art results on this dataset even without training or fine-tuning on
any images from the MSRC dataset. Visual examples of object co-segmentation
results on the subset of the MSRC dataset can be found in Fig. 5.

Internet. In our experiment, for the fair comparison, we followed [31, 6, 28,
45] to use the subset of the Internet dataset to evaluate our method. In this
subset, there are 100 images in each category. We compare our method with five
previous approaches [19, 6, 31, 28, 45]. Table 3 shows the quantitative results of
each object category with respect to Precision and Jaccard. We outperform most
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Fig. 5. Our qualitative results on the MSRC dataset (seen classes). (odd rows)
the input images, (even rows) the corresponding object co-segmentation results.

Fig. 6. Our qualitative results on the Internet dataset (seen classes). (odd
rows) the input images, (even rows) the corresponding object co-segmentation results.
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Table 2. Quantitative results on the MSRC dataset (seen classes). Quan-
titative comparison results of our DOCS approach with four state-of-the-art co-
segmentation methods on the co-segmentation subset of the MSCR dataset.

MSCR [39] [31] [40] [11] Ours

Precision 90.2 92.2 92.2 92.0 95.4
Jaccard 70.6 74.7 - 77.0 82.9

Table 3. Quantitative results on the Internet dataset (seen classes). Quanti-
tative comparison of our DOCS approach with several state-of-the-art co-segmentation
methods on the co-segmentation subset of the Internet dataset. ‘P’ is the Precision,
and ‘J’ is the Jaccard.

Internet [19] [31] [6] [28] [45] Ours

Car
P 58.7 85.3 87.6 88.5 90.4 93.9
J 37.1 64.4 64.9 66.8 72.0 82.8

Horse
P 63.8 82.8 86.2 89.3 90.2 92.4
J 30.1 51.6 33.4 58.1 65.0 69.4

Airplane
P 49.2 88.0 90.3 92.6 91.0 94.1
J 15.3 55.8 40.3 56.3 66.0 65.4

Average
P 57.2 85.4 88.0 89.6 91.1 93.5
J 27.5 57.3 46.2 60.4 67.7 72.6

of the previous methods [19, 6, 31, 28, 45] in terms of Precision and Jaccard. Note
that [45] is a supervised co-segmentation method, [6] trained a discriminative
Latent-SVM detector and [28] used a CNN trained on the ImageNet to extract
semantic features. Fig. 6 shows some quantitative results of our method. It can be
seen that even for the ‘noise’ images in each group, our method can successfully
recognize them. We show the ‘noise’ images in the last column.

iCoseg To show that our method can generalize on unseen classes, i.e. classes
which are not part of the training data, we need to evaluate our method on
unseen classes. Batra et al . [2] introduced the iCoseg dataset for the interactive
co-segmentation task. In contrast to the MSRC and Internet datasets, there are
multiple object classes in the iCoseg dataset which do not appear in PASCAL
VOC dataset. Therefore, it is possible to use the iCoseg dataset to evaluate the
generalization of our method on unseen object classes. We choose eight groups
of images from the iCoseg dataset as our unseen object classes, which are bear2,
brown bear, cheetah, elephant, helicopter, hotballoon, panda1 and panda2. There
are two reasons for this choice: firstly, these object classes are not included in
the PASCAL VOC dataset. Secondly, in order to focus on objects, in contrast to
stuff, we ignore groups like pyramid, stonehenge and taj-mahal. We compare our
method with four state-of-the-art approaches [16, 31, 11, 17] on unseen objects of
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Fig. 7. Our qualitative results on iCoseg dataset (unseen classes). Some results
of our object co-segmentation method, with input image pairs in the odd rows and the
corresponding object co-segmentation results in the even rows. For this dataset, the
object classes were not known during training of our method (i.e. unseen).

Table 4. Quantitative results on the iCoseg dataset (unseen classes). Quan-
titative comparison of our DOCS approach with four state-of-the-art co-segmentation
methods on some object classes of the iCoseg dataset, in terms of Jaccard. For this
dataset, these object classes were not known during training of our method (i.e. un-
seen).

iCoseg [31] [16] [11] [17] Ours

bear2 65.3 70.1 72.0 67.5 88.7
brownbear 73.6 66.2 92.0 72.5 91.5
cheetah 69.7 75.4 67.0 78.0 71.5
elephant 68.8 73.5 67.0 79.9 85.1
helicopter 80.3 76.6 82.0 80.0 73.1
hotballoon 65.7 76.3 88.0 80.2 91.1
panda1 75.9 80.6 70.0 72.2 87.5
panda2 62.5 71.8 55.0 61.4 84.7

average 70.2 73.8 78.2 74.0 84.2

the iCoseg dataset. Table 4 shows the comparison results of each unseen object
groups in terms of Jaccard. The results show that for 5 out of 8 object groups our
method performs best, and it is also superior on average. Note that the results
of [16, 31, 11, 17] are taken from Table X in [17]. Fig. 7 shows some qualitative
results of our method. It can be seen that our object co-segmentation method
can detect and segment the common objects of these unseen classes accurately.

Furthermore to show the effect of number of PASCAL classes on the per-
formance of our approach on unseen classes, we train our network on partial
randomly picked PASCAL classes, i.e. {5, 10, 15}, and evaluate it on the iCoseg
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unseen classes. As it is shown in Table 5, our approach can generalize to unseen
classes even when it is trained with only 10 classes from PASCAL.

Table 5. Analyzing the effect of number of training classes on unseen classes.

iCoseg P(5) P(10) P(15) P(20)

average 75.5 83.9 83.7 84.2

4.4 Ablation Study

To show the impact of the mutual correlation layer in our network architecture,
we design a baseline network DOCS-Concat without using mutual correlation
layers. In detail, we removed the correlation layer and we concatenate fA and fB
(instead of CAB) for image IA and concatenate fB and fA (instead of CBA) for
image IB . In Table 6, we compare the performance of different network designs
on multiple datasets. As shown, the mutual correlation layer in DOCS-Corr
improved the performance significantly.

Table 6. Impact of mutual correlation layer.

DOCS-Concat DOCS-Corr
Precision Jaccard Precision Jaccard

Pascal VOC 92.6 49.9 94.2 64.5
MSRC 92.6 72.0 95.4 82.9

Internet 91.8 62.7 93.5 72.6
iCoseg(unseen) 93.6 78.9 95.1 84.2

5 Conclusions

In this work, we presented a new and efficient CNN-based method for solving
the problem of object class co-segmentation, which consists of jointly detecting
and segmenting objects belonging to a common semantic class from a pair of
images. Based on a simple encoder-decoder architecture, combined with the mu-
tual correlation layer for matching semantic features, we achieve state-of-the-art
performance on various datasets, and demonstrate good generalization perfor-
mance on segmenting objects of new semantic classes, unseen during training.
To train our model, we compile a large object co-segmentation dataset consisting
of image pairs from PASCAL dataset with shared objects masks.
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32. Rubio, J.C., Serrat, J., López, A., Paragios, N.: Unsupervised co-segmentation
through region matching. In: CVPR (2012)

33. Shen, T., Lin, G., Liu, L., Shen, C., Reid, I.: Weakly supervised semantic segmen-
tation based on co-segmentation. In: BMVC (2017)

34. Shotton, J., Winn, J., Rother, C., Criminisi, A.: Textonboost: Joint appearance,
shape and context modeling for multi-class object recognition and segmentation.
In: ECCV (2006)

35. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR (2015)

36. Taniai, T., Sinha, S.N., Sato, Y.: Joint recovery of dense correspondence and coseg-
mentation in two images. In: CVPR (2016)

37. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search
for object recognition. IJCV (2013)

38. Vicente, S., Kolmogorov, V., Rother, C.: Cosegmentation revisited: Models and
optimization. In: ECCV (2010)

39. Vicente, S., Rother, C., Kolmogorov, V.: Object cosegmentation. In: CVPR (2011)
40. Wang, F., Huang, Q., Guibas, L.J.: Image co-segmentation via consistent functional

maps. In: ICCV (2013)
41. Wang, L., Wang, L., Lu, H., Zhang, P., Ruan, X.: Saliency detection with recurrent

fully convolutional networks. In: ECCV (2016)
42. Xu, N., Price, B., Cohen, S., Yang, J., Huang, T.: Deep grabcut for object selection.

In: BMVC (2017)
43. Xu, N., Price, B., Cohen, S., Yang, J., Huang, T.S.: Deep interactive object selec-

tion. In: CVPR (2016)
44. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In:

ICLR (2016)
45. Yuan, Z., Lu, T., Wu, Y.: Deep-dense conditional random fields for object co-

segmentation. In: IJCAI (2017)
46. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In:

CVPR (2017)
47. Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang,

C., Torr, P.H.S.: Conditional random fields as recurrent neural networks. In: ICCV
(2015)


