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1 Architecture details – MNIST gen-
eration

The network consists of 24 segments with a conditional
coupling block and random permutation each:

24×
{

Cond. coupling block
Random permutation

The Adam optimizer was used, with β1 = 0.9, β2 = 0.999,
ε = 10−6, L2 weight decay 10−5. The initial learning
rate is 10−4, exponentially decaying to 10−6. The network
requires roughly 2GB VRAM, at a large batch size 256,
and can be easily trained on a single GPU. The affine
coefficients sj , tj are produced jointly by a single MLP of
the following form:

Fully connected 392 + 10 → 512
ReLU
Fully connected 512 → 512
ReLU
Fully connected 512 → 512
ReLU
Fully connected 512 → 784 (≡ [sj , tj ])

2 Architecture details – Coloriza-
tion

The network uses 5 resolution levels, segmenting the latent
space into 4 partitions. Each conditional coupling block
uses a separate head on top of the feature extraction net-
work, except for the lowest resolution level, which only
uses a single head for all coupling blocks. We produce the
multiplicative and additive affine coefficients sj , tj jointly
though a single network (‘Coefficient functions’ below).
All convolutions, unless otherwise specified, use kernel
size 3, stride 1, and padding 1. The Adam optimizer was
used, with β1 = 0.9, β2 = 0.999, ε = 10−6, L2 weight
decay 10−5. The initial learning rate is 1.6 · 10−4, reduc-
ing by a factor 0.2 when reaching a plateau. A batch size
of 16 fits within 8GB VRAM, and we train with a batch
size of 3× 16 = 48 on 3 GPUs.
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2.0.1 Level 1 (2x64x64 Px)

4×
{

Cond. coupling block
Random orthog. 1x1 conv.

Reshape

2×
{

Random orthog. 1x1 conv.
Coupling block (Uncond.)

Conditional coefficient functions:
Convolution 1 + 32 → 32 Ch.
Leaky ReLU Slope 5 · 10−2

Convolution 32 → 32 Ch.
Leaky ReLU Slope 5 · 10−2

Convolution 32 → 2 Ch. (≡ [sj , tj ])

Unconditional coefficient functions:
Convolution 4 → 64 Ch., 1× 1 Kernel
Leaky ReLU Slope 10−2

Convolution 64 → 64 Ch., 1× 1 Kernel
Leaky ReLU Slope 10−2

Convolution 64 → 8 Ch., 1× 1 Kernel

Conditioning heads:
Convolution 256 → 32 Ch.
Batch normalization

2.0.2 Level 2 (8x32x32 Px)

6×
{

Cond. coupling block
Random orthog. 1x1 conv.

Reshape

2×
{

Random orthog. 1x1 conv.
Coupling block (Uncond.)

Split off 16 channels as z(1)

Conditional coefficient functions:
Convolution 4 + 64 → 64 Ch.
Leaky ReLU Slope 5 · 10−2

Convolution 64 → 64 Ch.
Leaky ReLU Slope 5 · 10−2

Convolution 64 → 8 Ch.

Unconditional coefficient functions:
Convolution 16 → 128 Ch., 1× 1 Kernel
Leaky ReLU Slope 10−2

Convolution 128 → 128 Ch., 1× 1 Kernel
Leaky ReLU Slope 10−2

Convolution 128 → 32 Ch., 1× 1 Kernel

Conditioning heads:
Convolution 256 → 128 Ch., Stride 2
Leaky ReLU Slope 10−2

Convolution 128 → 64 Ch.
Batch normalization

2.0.3 Level 3 (16x16x16 Px)

6×
{

Cond. coupling block
Random orthog. 1x1 conv.

Reshape

2×
{

Random orthog. 1x1 conv.
Coupling block (Uncond.)

Split off 32 channels as z(2)

Conditional coefficient functions:
Convolution 8 + 128 → 128 Ch.
Leaky ReLU Slope 5 · 10−2

Convolution 128 → 128 Ch.
Leaky ReLU Slope 5 · 10−2

Convolution 128 → 16 Ch.

Unconditional coefficient functions:
Convolution 32 → 256 Ch., 1× 1 Kernel
Leaky ReLU Slope 10−2

Convolution 256 → 256 Ch., 1× 1 Kernel
Leaky ReLU Slope 10−2

Convolution 256 → 64 Ch., 1× 1 Kernel

Conditioning heads:
Convolution 256 → 128 Ch., Stride 2
Leaky ReLU Slope 10−2

Convolution 128 → 128 Ch., Stride 2
Leaky ReLU Slope 10−2

Convolution 128 → 128 Ch.
Batch normalization
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2.0.4 Level 4 (32x8x8 Px)

6×
{

Cond. coupling block
Random orthog. 1x1 conv.

Reshape

2×
{

Random orthog. 1x1 conv.
Coupling block (Uncond.)

Split off 96 channels as z(4)

Conditional coefficient functions:
Convolution 16 + 256 → 256 Ch.
Leaky ReLU Slope 5 · 10−2

Convolution 256 → 256 Ch.
Leaky ReLU Slope 5 · 10−2

Convolution 256 → 32 Ch.

Unconditional coefficient functions:
Convolution 64 → 256 Ch., 1× 1 Kernel
Leaky ReLU Slope 10−2

Convolution 256 → 256 Ch., 1× 1 Kernel
Leaky ReLU Slope 10−2

Convolution 256 → 128 Ch., 1× 1 Kernel

Conditioning heads:
Convolution 256 → 128 Ch., Stride 2
Leaky ReLU Slope 10−2

Convolution 128 → 128 Ch., Stride 2
Leaky ReLU Slope 10−2

Convolution 128 → 256 Ch., Stride 2
Leaky ReLU Slope 10−2

Convolution 256 → 256 Ch.
Batch normalization

2.0.5 Level 5 (Fully conn. 512)

8×
{

Cond. coupling block
Random permutation

Result is z(5)

Conditional coefficient functions:
Fully connected 256 + 512 → 512
ReLU
Fully connected 512 → 512
ReLU
Fully connected 512 → 512
ReLU
Fully connected 512 → 512

Conditioning head (shared for all coupling blocks):
Convolution 256 → 128 Ch., Stride 2
Leaky ReLU Slope 10−2

Convolution 128 → 256 Ch., Stride 2
Leaky ReLU Slope 10−2

Convolution 256 → 256 Ch., Stride 2
Leaky ReLU Slope 10−2

Convolution 256 → 512 Ch., Stride 2
Global average pool
Batch normalization

3 Colorization – Ablations

In the following, we compare the following ablated ver-
sions of the cINN architecture:

1. No conditioning network at all, the grayscale image
is used directly as conditioning input (‘No c.n.’).

2. The same VGG-like conditioning network as in the
main paper, but it is only pretrained and then left fixed
during the training of the cINN (‘Fixed c.n.’).

3. Both cINN and conditioning network are trained
jointly, as in the main paper.

In general, we observe that it is critical that the condi-
tioning network and the cINN are trained jointly. With a
pretrained but fixed conditioning network, the generated
images lack global coherence and exhibit exaggerated vari-
ance and artifacts.

The quantitaive scores for the ablated versions are as
follows, computed in the same way as Table 1 in the main
paper.

No c.n. Fixed c.n. Jointly trained
MSE best of 8 4.06±0.04 3.37±0.04 3.53±0.04
Variance 41.1±0.3 58.0±0.4 35.2±0.3
FID 29.5±0.5 32.4±0.5 25.1±0.3
VGG top 5 82.9±0.5 80.8±0.6 85.0±0.5
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No conditioning network

Fixed conditioning network

Jointly trained conditioning network

No conditioning network

Fixed conditioning network

Jointly trained conditioning network

No conditioning network

Fixed conditioning network

Jointly trained conditioning network

No conditioning network

Fixed conditioning network

Jointly trained conditioning network
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4 Colorization – Interpolations
In the following, we show 2-dimensional interpolations in latent space. Two random latent vectors z(1), z(2) are linearly
combined:

z∗ = a1z
(1) + a2z

(2)

with varying a1, a2 ∈ [−0.9 . . . 0.9] across each axis of a grid. The center image has z∗ = 0. Note that the images in
the corners have a larger magnitude than trained for, ‖z∗‖2 ≈ 1.3E

[
‖z‖2

]
, leading to some oversaturation artifacts, as

in Fig. 12 of the main paper.
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5 Colorization – Additional examples

On the following pages, we provide some additional colorized images, as well as comparisons to alternative methods.
All images are taken from the ImageNet 2012 validation set, and all methods were trained on ImageNet 2012. As we
do not observe any significant diversity for the cGAN, we only provide a single sample.

5.1 General examples

Ground truth

Grayscale

CNN

cGAN cINN (ours) cVAE
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cGAN cINN (ours) cVAE
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5.2 Humans

We find that the cINN often has difficulties generating convincing skin colors, as shown below. Clothing is colored in
diverse ways, but not always with the correct connectivity and consistency.
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5.3 Lacking consistency

The following failure cases exhibit a lack in consistency, in occluded objects, multi-part objects, or reflections.
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5.4 Color ignores semantic content

In the following examples, the semantic content of the image was not recognized, and the generated colors are clearly
incorrect.

Ground truth

Grayscale

CNN

cGAN cINN (ours) cVAE

Ground truth

Grayscale

CNN

cGAN cINN (ours) cVAE

33



Ground truth

Grayscale

CNN

cGAN cINN (ours) cVAE

Ground truth

Grayscale

CNN

cGAN cINN (ours) cVAE

Ground truth

Grayscale

CNN

cGAN cINN (ours) cVAE

34



Ground truth

Grayscale

CNN

cGAN cINN (ours) cVAE

Ground truth

Grayscale

CNN

cGAN cINN (ours) cVAE

Ground truth

Grayscale

CNN

cGAN cINN (ours) cVAE

35



Ground truth

Grayscale

CNN

cGAN cINN (ours) cVAE

Ground truth

Grayscale

CNN

cGAN cINN (ours) cVAE

Ground truth

Grayscale

CNN

cGAN cINN (ours) cVAE

36



Ground truth

Grayscale

CNN

cGAN cINN (ours) cVAE

5.5 Outright failures

For the following images, the cINN fails completely, and generates colors with seemingly little or no connection to the
grayscale image.
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