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Final Project

Reinforcement Learning for Bomberman
Deadline: 25.3.2019

In this year’s final project you will use reinforcement learning techniques to train an agent to play
the classical game Bomberman.

In our setting, the game is played by up to four agents in discrete, but simultaneous time steps.
Your agent can move around, drop bombs or stand still. Crates can be cleared by well-placed bombs
and will sometimes drop coins, which you can collect for points. The deciding factor for the final
score, however, is to blow up opposing agents, and to avoid to get blown up yourself. To keep things
simple, special items and power-ups are not available in this version of the game.

After the project deadline, we will hold a tournament between all trained agents with real prizes.
Tournament performance will be a factor in the final grade as well, although the quality of your
approach (as described in the report and code) will carry more weight.

Regulations
Submission

Your submission for the final project should consist of the following:

• The agent code to be used in the competition, including all trained weights, in a subdirectory
of agent_code (see details below).

• A PDF report of your approach. Aim for a length of about 10 pages per team member and
indicate after headings who is responsible for each subsection.

• The URL of a public repository containing your entire code base, which must be mentioned
in the report.

Solutions not involving machine learning will be rejected. Zip all files into a single archive
with naming convention (sorted alphabetically by last names)

lastname1-firstname1_lastname2-firstname2_final-project.zip

or (if you work in a team of three)

lastname1-firstname1_lastname2-firstname2_lastname3-firstname3_final-project.zip

and upload it to Moodle before the given deadline.
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Development

As will be detailed later on, your agent’s code will be run in its own separate process. To not
interfere with interprocess communication, and to share resources fairly between competing agents,
you are not allowed to use multiprocessing in your final agent. However, multiprocessing during
training is perfectly fine.

We will distinguish classical and neural-network solutions. The choice among the two is entirely up
to you. Neural networks will be executed on the CPU during official games, but you may use GPUs
during training. If agent performance between these approaches differs too much, we will play the
tournament in two separate leagues.

Playing around with the provided framework is allowed, and may in fact be necessary to facilitate
fast training of your agent. However, be aware that the final agent code will simply be plugged into
our original version of the framework – any changes you made to other parts will not be present
during games.

Discussions with other teams are very much encouraged, and trained agents (not training code!) may
be exchanged among teams to serve as sparring partners. Just keep in mind that in the tournament
you will compete for prizes, so you may want to keep your best ideas to yourself :)

The internet provides plenty of material on all aspects of reinforcement learning. Study some of
it to learn more about RL and get inspiration. The use of free software libraries (e.g. pytoch) is
allowed, if they can be installed from an official repository like pip or conda, but you must not
copy-paste any existing solution in whole or in part. Plagiarism will lead to a “failed” grade.

1 Setup
You can find the framework for this project on Github:

git clone https :// github.com/ukoethe/bomberman_rl

It contains the game environment with all APIs you need for reinforcement learning, as well as
example code for a simple rule-based agent that does not learn anything. Running main.py from
the command line should let you watch a set of games between four of these simple agents. Direct
any questions about the framework to Jakob Kruse (jakob.kruse@iwr.uni-heidelberg.de).

As a game engine we are using the pygame package, which you can install into your existing conda
environment using pip:

pip install pygame

Other than that, we assume a standard Python 3 installation with numpy, scipy and sklearn.
Clearly indicate at the beginning of your report which additional libraries we need to install.

2 General setting and rules of the game
The game is played in discrete steps by one to four agents, who are represented by robot heads in
different colors. Because of the random elements, multiple episodes of the game will be played to
determine a winner by total score. In one step of a game episode, each robot can either move one
tile horizontally or vertically, drop a bomb or wait. Movement is restricted to empty (i.e. black)
tiles – stone walls, crates, bombs and other agents block movement. Coins are an exception, as they
are collected when moving onto their tile. While the placement of stone walls is the same for every
round, the distribution of crates and the hiding places of coins differ each time. Agents always start
in one of the board’s corners, but it is randomly determined which.

Once a bomb is dropped, it will detonate after four steps and create an explosion that extends three
tiles up, down, left and right (so you can just outrun the explosion). The explosion destroys crates
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and agents, but will stop at stone walls and does not reach around corners. It lingers for two time
steps, and agents running into it during that period are still defeated. Agents can only drop a new
bomb after their previous one has exploded.

A fixed number of coins is hidden at random positions in each episode. When the crate concealing
a coin is blown up, the coin becomes visible and can be collected. Collecting a coin gains the agent
one point, while blowing up an opponent is worth five points.

Every episode ends after 400 steps. The agent taking the highest average thinking time during an
episode is deducted one point to encourage efficient implementations. In addition, there is a fixed
time limit of 0.5 seconds1 per step for agents to arrive at their decisions. After this time, tardy
agent processes are interrupted and whatever actions they have picked by this time are performed.

The exact numbers used for all these rules can be found in settings.py. They may be subject to
change until seven days before the deadline, in case you inform us about major problems with the
current settings. You will be notified if any of the rules are adapted.

3 Tasks your agents will have to solve
We are trying this project setting for the first time and don’t know how difficult learning of the full
game will be. We thus define preliminary tasks to help your method evolve from simple to complex
and ease debugging. The tasks are subsets of each other, so an agent that can handle task 3 should
also be able to solve 1 and 2. Configuration instructions for these tasks are given in section 5.

1. On a game board without any crates, collect a number of revealed coins as quickly as possible.
This task does not require dropping any bombs. The agent should learn how to navigate the
board efficiently.

2. On a game board with randomly placed crates, find all hidden coins and collect them within
the step limit. The agent must drop bombs to destroy the crates. It should learn how to use
bombs without killing itself, while not forgetting efficient navigation.

3. On a game board with crates, hold your own against one or more opposing agents and fight
for the highest score.

4 Framework structure and interface for your agent
In reinforcement learning, we typically distinguish between the agent and the environment it has
to interact with. Let us start with the environment here.

Environment

The game world and logic is defined in environment.py in the class BombeRLeWorld. It keeps track
of the board and all game objects, can run a step of the game, start a new round and render
everything to the screen. What’s most interesting for you is that it keeps track of the agents playing
the game via objects of the Agent class defined in agents.py. In addition to position, score etc.,
each Agent object contains a handle to a separate process which will run your custom code. This
process is also defined in agents.py as AgentProcess.

Agent

The agent process runs a loop that interacts with the main game loop. Before it enters the loop, it
imports your custom code from a file called callbacks.py within a subdirectory of agent_code.
Your script must provide two functions which will be called by the agent process at the appropriate
times:

1Assume that your agent will have exclusive access to one core of an Intel i7-8700K processor and can use up
to 8GB of RAM when we run the tournament.
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The function setup(self) is called once, before the first round starts, to give you a place to initialize
everything you need. The self argument is the same as in an instance method – a persistent object
that will be passed to all subsequent callbacks as well. That means you can assign values or objects
to it which you may need later on:
def setup(self):

self.model = MyModel ()
...
self.model.set_initial_guess(x)

The function act(self) is called once every step to give your agent the opportunity to figure
out the best next move. The available actions are 'UP', 'DOWN', 'LEFT', 'RIGHT', 'BOMB' and
'WAIT', with the latter being the default. To choose an action, simply assign the respective string
to self.next_action within your act(self) implementation:
def act(self):

... # think
self.next_action = 'RIGHT '
... # think more , if time limit has not been reached
self.next_action = 'BOMB' # seems to be better
... # you can update your decision as often as you want

Once your agent is sure about the best decision, simply return from act(self). If act(self)
doesn’t return within the time limit, the game engine will interrupt its execution. In either case,
the current (possibly default) value of self.next_action will be executed in the next step (this
strategy is generally called “any-time algorithm”).

In order to make informed decisions on what to do, you need to know about the agent’s environment.
The current state of the game world is stored within each agent before act(self) is called. It is a
dictionary, which you can access as self.game_state, and has the following entries:

'step' The number of steps in the episode so far, starting at 1.
'arena' A 2D numpy array describing the tiles of the game board. Its entries are 1 for

crates, −1 for stone walls and 0 for free tiles.
'self' A tuple (x, y, n, b, s) describing your own agent. x and y are its coordinates

on the board, n its name, b ∈ {0, 1} a flag indicating if the 'BOMB' action is
possible (i.e. no own bomb is currently ticking) and s is its current score.

'train' A Boolean indicating whether the agent is in training mode.
'others' A list of tuples like the one above for all opponents that are still in the game.
'bombs' A list of tuples (x, y, t) of coordinates and countdowns for all active bombs.
'explosions' A 2D numpy array stating, for each tile, for how many steps an explosion will

be present. Where there is no explosion, the value is 0.
'coins' A list of coordinates (x, y) for all currently collectable coins.

When the game is run in training mode, there are two additional callbacks: reward_update(self)
is called once after each but the final step for an agent, i.e. after the actions have been executed
and their consequences are known. This information is needed to collect training data and fill
an experience buffer. The other callback is end_of_episode(self), which is very similar to the
previous, but only called once per agent after the last step of a episode. This is where most of your
learning should take place, as you have knowledge of the whole episode. Note that neither of these
functions has a time limit.

In both callbacks, self.events will hold a list of game events that transpired in the previous step
and are relevant to your agent. You can use these as a basis for auxilliary rewards and penalties
to speed-up training. They will not be available when the game is run out of training mode. All
available events are stored in the constant e which you can import from settings.py:

from settings import e

They are defined as follows:
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e.MOVED_LEFT Successfully moved one tile to the left.
e.MOVED_RIGHT Successfully moved one tile to the right.
e.MOVED_UP Successfully moved one tile up.
e.MOVED_DOWN Successfully moved one tile down.
e.WAITED Intentionally didn’t act at all.
e.INTERRUPTED Got interrupted for taking too much time.
e.INVALID_ACTION Picked a non-existent action or one that couldn’t be executed.
e.BOMB_DROPPED Successfully dropped a bomb.
e.BOMB_EXPLODED Own bomb dropped earlier on has exploded.
e.CRATE_DESTROYED A crate was destroyed by own bomb.
e.COIN_FOUND A coin has been revealed by own bomb.
e.COIN_COLLECTED Collected a coin.
e.KILLED_OPPONENT Blew up an opponent.
e.KILLED_SELF Blew up self.
e.GOT_KILLED Got blown up by an opponent’s bomb.
e.OPPONENT_ELIMINATED Opponent got blown up by someone else.
e.SURVIVED_ROUND End of round reached and agent still alive.

5 Putting it all together
In order to train a new agent, you must create a subdirectory within agent_code with your agent’s
name – this name will also identify your agent during the tournament. Let’s go with “my_agent”
as an example. Within agent_code/my_agent/, you put your script callbacks.py as described
above. Other custom files, such as trained model parameters, must also be stored in this directory!

You can put the agent into the game by passing its name to the game world’s constructor in
main.py. To have it play against two instances of our rule-based example agent and one agent that
chooses random actions, change the code like this:

world = BombeRLeWorld ([
('my_agent ', True),
('simple_agent ', False),
('simple_agent ', False),
('random_agent ', False)

], save_replay=False)

The Boolean values after each agent name indicate whether this agent will be run in training mode,
i.e. whether its reward_update(self) and end_of_episode(self) functions will be called. You
can also specify several agents of your own, or even the same agent multiple times, in order to train
your agents by self-play. If you choose this strategy, it may be helpful to add a random element to
the choice of actions to avoid quick convergence to a bad local optimum.

For efficient training, you should of course turn off the graphical user interface. To do so, simply
change the value of 'gui' in settings.py to False. The game will then skip the rendering and
run as fast as the agents can make decisions. Many of the other settings should not be changed,
but you can safely play around with the following:

'update_interval' Minimum time for a step of the game, in seconds.
'turn_based' If True, wait for a key press before executing each step.
'n_rounds' Number of episodes to play in one session.
'save_replay' If True, record the game to a file in replays/ (see below).
'make_video_from_replay' If True, automatically render a video during a replay.
'crate_density' What fraction of the board should be occupied by crates.
'max_steps' Maximum number of steps per episode.
'stop_if_not_training' If True, end episode as soon as all agents running in training

mode have been eliminated.
'timeout' Maximum time for agents to decide on an action, in seconds.
'log_agent_code' Logging level for your agent’s code, see below.
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These settings can be accessed from the code by again importing from settings.py:
from settings import s
print(s.timeout)

To test an agent on the tasks 1 or 2 outlined in section 3, pass only that agent to the game world’s
constructor in main.py. For task 1, additionally set 'crate_density' in settings.py to 0.

6 Some hints to get you started
The self object passed to your callback functions comes with logging functionality that you can
use to monitor and debug what your agent is up to:

self.logger.info(f"Choosing an action for step {self.game_state['step ']}...")
self.logger.debug("This is only logged if s.log_agent_code == logging.DEBUG")

All logged messages will appear in a file named after your agent in your subdirectory. Continuing
with the example from earlier, that would be agent_code/my_agent/logs/my_agent.log.

agent_code/simple_agent/ contains code for a rule-based agent that plays the game reasonably
well. Look at this agent’s act(self) callback to see an example of how reading the game state,
logging and choosing an action are done. You can adapt this agent as a training opponent, or even
use it to create training data while your own agent is still struggling.

If you have s.save_replay enabled, a new replay file will be saved in replays/ for each episode.
To watch it back, change the world initialization in main.py to

world = ReplayWorld('replay_filename_without_extension ')

and run the game like normal. You can watch the playback at a step speed and fps different from
the original game by changing the values in settings.py. If s.make_video_from_replay is enabled
and you have ffmpeg installed with libx264 or libvpx-vp9 codecs, what you see will automatically
be encoded as a video file and saved to screenshots/.

There is also an option to control one of the agents via keyboard. To do so, change one of the agents
passed to the game world to

('user_agent ', False)

and use the arrow keys to move around, Space to drop a bomb and Return to wait. This is clearly
not an efficient way to create training data for your agent, but helps you develop an intuition for the
game’s behaviour. This might, for example, be useful for designing auxilliary rewards or learning
curricula.

7 Report and code repository
Put all your code into a public Github or Bitbucket repository and include the URL into your
report. The zip-file to be uploaded on Moodle shall only contain the subdirectory of agent_code
containing your fully trained player, along with the report.

You report should consist of roughly ten pages per team member, not counting title page etc.
The first section shall describe the reinforcement learning method and regression model you finally
implemented, including all crucial design choices. You may also describe approaches you tried and
abandoned later, including the reasons. The second section should decribe your training process,
including all tricks employed to speed it up (e.g. self play strategy, design of auxilliary rewards,
prioritization of experience replay and so on). The third section shall report experimental results
(e.g. training progress diagrams), describe interesting observations, and discuss the difficulties you
faced and how you overcame them. The final section shall give an outlook on how you would improve
your agent if you had more time, and how we can improve the game setup for next year.
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