# Intelligent Systems Introduction to Machine Learning

## Carsten Rother, Dmitrij Schlesinger WS 2016/2017





### Machine Learning everywhere

#### Completing requests

| ••• <> | © ⊜ google.de ♂ A A                                                                                                                                                    | X        |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|        | ScholarOne Manuscripts Arbeit v Lehre v Doos v prive                                                                                                                   | rat ~    |
|        | machine learning - Google-Suche                                                                                                                                        | 1        |
| Google | machine learning Q                                                                                                                                                     | Anmelden |
|        | machine learning                                                                                                                                                       |          |
|        | machine learning tu berlin                                                                                                                                             | \$       |
|        | machine learning algorithms                                                                                                                                            |          |
|        | Weitere Informationen                                                                                                                                                  |          |
|        | Maschinelles Lernen – Wikipedia                                                                                                                                        |          |
|        | https://de.wikipedia.org/wiki/Maschinelles_Lernen 🔻                                                                                                                    |          |
|        | aus Christopher M. Bishop: Pattern Recognition and Machine Learning .                                                                                                  |          |
|        | Symbolische und subsymbolische Algorithmische Ansätze - Lernkategorien                                                                                                 |          |
|        | Machine learning - Wikipedia, the free encyclopedia                                                                                                                    |          |
|        | https://en.wikipedia.org/wiki/Machine_learning * Diese Seite übersetzen                                                                                                |          |
|        | Machine learning is a subfield of computer science that evolved from the study of<br>nations recognition and computational learning theory in artificial intelligence. |          |
|        | List of machine learning - Supervised learning - Computational learning theory                                                                                         |          |
|        | Machine Learning - Stanford University   Coursera                                                                                                                      |          |
|        | https://www.coursera.org/learn/machine-learning > Diese Seite übersetzen                                                                                               |          |
|        | Machine Learning from Stanford University. Machine learning is the science of getting                                                                                  |          |
|        | computers to act without being explicitly programmed. In the past decade,                                                                                              |          |
|        | Machine Learning – Predictive Analytics   Microsoft Azure                                                                                                              |          |
|        | https://azure.microsoft.com/de-de/services/machine-learning/ *                                                                                                         |          |
|        | Dienst für Predictive Analytics in den Bereichen Big Data Mining, künstliche                                                                                           |          |
|        | Machine Learning John Ashelikin David Lindson and                                                                                                                      |          |
|        | Machine Learning Jobs, Arbeit in Benin   Indeed.com<br>de.indeed.com/Machine-Learning-Jobs-in-Berlin 🔻                                                                 |          |
|        | 155 verfügbare Machine Learning Jobs in Berlin auf Indeed Deutschland. Ein Klick. Alle                                                                                 |          |
|        | Jobs.                                                                                                                                                                  |          |
|        |                                                                                                                                                                        |          |



### Machine Learning everywhere

#### Recommender systems



COMPUTER

### Machine Learning everywhere

#### Image segmentation





### What is Machine Learning?



#### Symbolic data and measurements $\Rightarrow$ Semantics and structure



### What is Machine Learning?

Machines that learn to perform a task from experience We can formalize this as:

$$y = f(x; \theta)$$

- y is called output variable,
- x the input variable and
- heta the model parameters

learn... adjust the parameter  $\theta$ 

- ... to perform ...
- $\dots$  a task  $\dots$  the function f
- ... from experience using a training dataset

$$L = ((x_1, y_1), (x_2, y_2) \dots (x_l, y_l))$$
 or  $L = (x_1, x_2 \dots x_l)$ 



### What does it mean "to perform" ?

Performance: "99% correct classification"

- of what ?
- i.e. on speech recognition (correct words, characters, speakers identification etc.)
- over which dataset ?
- Is 99% good enough ?
- 1% false alarm for 300.000 passengers at airport Frankfurt ?

"The car drives without human intervention 99% of the time on country roads"





### Different learning scenarios

Statistical vs. discriminative: probabilities vs. strategies

Supervised: there is a completely labelled (annotated) dataset

Semi-Supervised: dataset is partially labelled

Unsupervised: no annotations at all

*Reinforcement*: there is a reward for correct action/recognition

Transductive: no model, just find the "true" answer

On-line: the training samples are not available at a time

Large-scale: lots of data

Active: how to ask a "teacher" for an annotation ?

### Lecture overview

- 14.12: Introduction to Machine Learning, Probability Theory
- 21.12: Decision Making, Statistical Learning (Schlesinger)
- 04.01: Directed Graphical Models (Rother)
- 11.01: Undirected Graphical Models (Rother)
- 18.01: Neural Networks (Schlesinger)
- 25.01: Reinforcement Learning (Krull)
- 01.02: Wrap-up (Rother)

First exercise: 14.12 about Probability Theory (Heidrich)

Course homepage:

http://cvlab-dresden.de/courses/intelligente-systeme/

